Determination of intensity factors at an arched crack tip by

the method of caustics
by ARIS ROSAKIS,

University College, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ

Perpendicular sections of caustic surfaces reflected
by the constrained zone around the tip of an arched
crack in a perspex plate under plane tension, were
measured and analysed. The experiments corro-
borated the theory, the Theocaris method of
Caustics and also show that the intensity factors are
functions of the curvature of the crack and the
subtended angle.

Notation

c constant depending on optical properties of
specimen

C =dtc

d distance of specimen from screen

d, distance of specimen from focus

K™ =Ki—iK;i

Ki opening mode

Kii sliding mode

a constant determined by the fixed value of Rc
and vy

r =z|

3CK*\25

fo =radius of the initial curve= m)

R =|W|

Re radius of curvature

Re  real part of

t specimen thickness

w =X+iY

z =x+iy

2 =x—1Iy

B 1/2 subtended angle

Y inclination of chord relative to applied loading

) =EC/r,

0 =Arc z

A =Arg. W

u =—Kii/Ki

P maghnification ratio

o applied loading (stress)

(1)) =0—2m

. =tan~! i

Introduction

This paper summarises work planned with the object
of investigating whether data relating to stress
intensity applied to the case of a circular arc crack
agree with the general theory, and the predicted
expressions, for the determination of stress intensity
factors.
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The theoretical work is concerned with linear elastic
fracture' mechanics and is based on a set of equations
derived by Westergaard.!'3 These were developed
for the three possible modes of displacement of the
crack surfaces; the opening mode, the sliding mode
and the tearing mode. Any type of crack deformation
can be represented as a combination of the above
three modes. This paper deals with internal circular-
arc cracks in thin plates for which a plane-stress
analysis can be used without significant loss of
accuracy. The situation considered is that of a com-
bination of opening and sl/iding mode only.

Mathematicians and experimenters have attempted to
deduce expressions representing the stress field for
cracks of various geometrical forms. Solutions
include (a) analytical,’>2 5% based on Wester-
gaard’'s combination of equations for the three modes,
(b) numerical, (c) experimental, based on opticai
methods. Some of these methods have not been very
successful in evaluating the individual stresses oy,
Oy, Oxy, independently, point by point. One of the first
and most successful experimental techniques for the
determination of the stress field around a crack was
the photoelastic method. Photoelasticity? 3-4 pro-
vides information about the variation of the difference
between the principal stresses at points in the field;
however this is not accurate enough for the deter-
mination of the differences in the vicinity of the
crack tip where an elastic singularity complicates
and confuses the stress-optical pattern due to the
rapid change of stress near the crack tip. The crucial
region, where the high stress gradients occur, is very
small; the contour lines (representing equal values
of principal stress difference) become very tightly
packed and ill-defined. Thus it was necessary to
extrapolate from known values as near to the crack
tip as possible.

The method of ‘Caustics’ developed recently by
Theocaris,” 8 provides a way of determining the sum
of the principal stresses at a point, instead of the
difference. In this paper the method of caustics is
briefly discussed and is used to evaluate the stress
intensity factors in the vicinity of the tips of circular
cracks.

The method of caustics

Light rays emitted from a given source, after reflec-
tion or refraction by a given curved surface, in
general do not focus at one point. Consecutive rays
intersect at points lying on a caustic curved surface
(Greek xovoTikd(, ‘burning’) so called because
along it the intersection of consecutive rays forms
an envelope of maximal concentration of luminous
and heating effects. Such rays are generally tangents
to the caustic which is observed as a bright curve
when projected onto a screen (Figs 7, 8, 9).

By varying the curvature of the reflecting surface, or
moving the source of light, a variety of patterns can
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be obtained. Huygens, Bernoulli and others studied
the geometry of those patterns, the caustics, with
reference to the reflecting surface.

An inverse procedure has been discussed!! and
applied elsewhere’ 8 9% 1°; now the geometry of the
caustic is used to determine the topography of the
surface, its stress field and the intensity factors
acting upon it.

The method of caustics as used in the experiment of
this paper employs a transparent slitted plane speci-
men made from an isotropic material which is loaded
under conditions of plane stress and illuminated by a
monochromatic beam of light. The light is partially
reflected from the front face of the specimen and is
also reflected from the rear face after having been
twice refracted.

The variation in curvature of the lateral faces close to
the crack tip, together with the variation of the
refractive index (Maxwell-Neumann law), causes
the reflected and refracted rays to deviate and
concenfrate along a three-dimensional surface
which is an envelope formed by the intersection of
rays refracted and reflected from the surfaces around
the crack tip; its two-dimensional section can be
recorded on a screen perpendicular to the axis of
projection, magnified and measured.

The bright curve shown in Figs 7, 8, 9 and 10(i), is
the section of the caustic surface. The surrounding
fringes are the result of the interference of the light
rays reflected from the back and front faces of the
transparent specimen either cancelling or reinforcing
each other. The fringe patterns are a clue to the
evaluation of stresses,'? but in the case of an opaque
specimen (e.g. metal) fringes do not appear around
the caustic.

The caustic curve

Let P(x, y) be a point on the specimen (Fig 1). The
reflected rays will map P on point Q(X, Y) on the
screen. The complex representation of Q, with
respect to the projection of the x, y axes on the
screen, is given by,

W=z+C grad (o;+0,) M

where z=x+iy, W=X+iY, and C is a constant
depending on the optical properties of the specimen
material.”-® ,+0, is given by the Westergaard rela-
tion!- % as,

K+
01+02:4Re(m)

where K*=Ki—iKii and z=re®=r(cos 6+i sin 0).
Substituting the value of 6,+c, into (1) we get

.
W=z+ 5 g )

Making use now of the mathematical condition for
the points Q on the screen to form a continuous
curve (zeroing of the Jacobian of the transformation
from the (x, y) axes to the (X, Y) axes), yields,

A=(05s) =" @

21

called the equation of the initial curve.
(2) and (3) now form a system which represents the
caustic curve.
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Fig 1. Schematic of the formation of a caustic by the tip of a circular arc crack. The geometrical construction of the curve is

explained elsewherel0,
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Chcosing axes tangential and normal to the crack tip,
letting

Kii_
K= p=tan ® (4)
and combining (2) and (3), the equation of the
caustic can be written in polar form as,

W= Ref— | e’®+ e(z”") fe (5)

and in parametric form as:

, 2 1 306 2 30)
X=r, cos®+3(1+ i os—§—§ (1+u)1/23'n f
] 2 1 . 30,2 3@}
Y=r, tsm@+3(1+ ML sin— +3(1+ )1/2C°S
(6)

Now considering new axes, which are obtained from
the old system (the one tangential to the crack tip)
by rotation through an angle 2(n—®),

W' =W - g-2n-o)
the parametric equations of which are:

X'=r, cOs (I>+§ ro COS 3_d>|

. where ®+20== (7)

Y'=r, sin d>+g 7‘

Io Sin
30

O
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The above equations describe a curve (an epi-
cycloid) (cf. other work® 1), which is symmetrical
about the new X' axis. The X’ axis is rotated in such
a way that it forms an angle —2® with the tangent at
the crack tip. As seen from equations (4) and (6),
the ratio of the opening-mode and sliding-mode
stress intensity factors actually determines the
inclination of the axis of symmetry of the caustic, with
respect to the tangent at the crack tip. Furthermore r,
depends on |K* | = Ki—iK;, thus the size of the
caustic is dependent on (K2+K2).%- 10

Circular arc crack

For the case of circular arc cracks the factors deter-
mining the values of K; and Kj are:

—the applied loading o,

—the curvature 1/Rc,

—the subtended angle 2§,

—the inclination y of the chord relative to the
direction of the applied loading, and—the inclina-
tion of the X axis to the tangent at the crack tip
relative to the direction of the applied loading.

The last factor is directly related to all other previous
factors, because of the particular geometry of the
circular arc. In this paper the simple case is con-
sidered of cracks of constant radius, whose chord is
either parallel, or perpendicular to the axis of applied
loading (Figs 7, 8, 9, 10); thus Ki=qf,(c, B),
Ki=dgf, (o, B), where q is a constant determined by
the fixed value of R; and .

N
Fig 2. Crack chord perpendicular to ¢. Geometrical construction of the caustic curve for the case of a 60° circular arc crack.

Compare the inverse formation of the caustic in the case of an arc crack the chord of which is paralle/ to the direction of
loading (cf. Fig 7(i) and 7(ii); Fig 8 and Fig 9).
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Evaluation of K; and K;;

For each crack there exists a unique value of p. As the
loading increases each individual p gives rise to a set
of ‘similar’ caustics. Every member of the set have
certain invariant geometrical properties, depending
only on p (not on the applied loading). It has been
shown?® 1 that the most sensitive property is the
ratio AE/CE (Fig 2), where A, C, E, are the intercepts
with the x axis. In the case of a circular arc crack, the
axis coincides with the tangent at the crack tip; thus
AE/EC is the ratio of the distances measured along
the tangent (Fig 2). Rearranging equation (5),

3 sin @+ 2 sin (?ﬂo)

tan A=

3cos©@+2 cos(?’?@ﬂo)

(angles A, ®, 8, are shown in Fig 2). Letting A be O,
n, 2w, 3w, O can be found since p=tan o is a given
parameter in each case. Substituting these values in
(6) the co-ordinates of A, C, E (and hence EC and
EA) can be found with respect to r,. Graphs can
therefore be drawn showing the variation of EC/r,=298

and (EC—CA)/EC versus p?® (Figs 3, 4). Thus it is

possible to make use of these graphs to deduce the:

value of p from the shape of the epicycloid by
measuring the lengths EC and CA. The ratio'EC—E_CC—A
can be obtained from the photographs (Figs 7-10)
u is obtained from the corresponding graph and can
thus be introduced to the second graph to determine
8=EC/r,. Since EC has already been measured, the

" value of r, is obtained as,

(3 ICl (K +K2 1/2] 2/5
U J
(3 |C| Ki K, 2/5

(2vze ) AP

from which the value of K* can be found. Solving for
Ki and Kj, since |C |=dtc,

1 671 1
(to) Py

1- 671 52 B
C (0) (1+”’2)”2

giving ro=

Kil=—
(8)

and |K..|—

The experiment to determine K; and K

For the study of the stress field, and the evaluation of
the stress intensity factor at the crack tip, a series of
experiments was performed on thin plates subjected
to tension.

All specimens were made of plane sheets of perspex,
2 mm thick, 110 mm wide, 190 mm long. Slits in the
form of arcs of radius 15 mm were cut with a fine
thread saw, so that the tangent at the middle of the
arc was at an angle of either 90° or 0° to the longi-
tudinal axis of the specimen, and centred at the
intersection of the diagonals. Several cases were
considered in which the arc took the values 2=30°,
60°, 120°, 180° and 192° .
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Fig 3. The variation of EC versus the ratio —Kii/Ki=u. The
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Fig 4. The variation of (EC—CA)/EC versus the ratio — K;/Ki;
= /.

The replacement of the stationary crack by a central
slit is in agreement with the simple linear approach of
the stress distribution considered here. The maximum
slit (or chord) length is small as compared to the
width of the specimen so that it may be assumed
that the crack is remote from any boundary of the
plate. In such an experiment the light used should
possess certain properties : definite wavelength and
intensity, such as the properties of a monochromatic
and brilliant beam emitted from a L.A.S.E.R. source.
The diameter of the light beam ought to be larger
than the chord of the slit. Since the pencil of light
coming directly out of the laser was very narrow and
intense, it was necessary to eliminate light spots and
convert the beam into the proper diameter and
intensity. The final arrangement thus included the
laser, a shutter, a diffuser, a pair of lenses, the
specimens placed beyond the focal point, and a
screen upon which photographic films were exposed
to record the magnified sections of the caustics

(Fig 6).

Since divergent light was used, the magnification
ratio p had to be taken into account; p is equal to
(d+d,)/d,, where d is the distance of specimen from
screen and d, its distance from the focal point. Thus
relations (8) become:

PO B < L
T dte p3/ K (1+P-2)”2

. 9

i 18671 1 (EC 52 n ®
|Ki| = “dtc Wi K3 (1+p2)'12
where %:zro
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Results

Some expressions have been established® for the
theoretical stress intensity in the case of an internal
arc crack of radius R¢, 2Prad, subjected to tension.
When the direction of the applied loading is parallel/
to the chord of the crack,

Kizg-\/ch sin px
{1+sin? B/2 cos? B/2

cos B/2 _0053[3}

[ 1+sin? B/2 2
Kii:gvnac sin B x (10)

(1+sin2 B/2 cos® B/2 . . 3[3}

l T+sin? /2 sin $/2— sin >

When the direction of the loading is perpendicular to
the chord of the crack, the respective expressions
are:

Ki=%\/1tRc sin Bx ‘
{1—sin? B/2 cos? B/2

3p|

cos B/2+cos -

( 1+sin2 /2 2|
Kn=%\/ch Sin B> (11)

{1—sin? p/2 cos® B/2 . . 3B

T Aasi piz on Pr2rsiny

where o is the stress at infinity.

Repeated experiments, tests, and measurements have
corroborated the theory, there being agreement
between the theoretical and the experimental data,
as shown by the table below. The indicative values
of both theoretical and experimental estimates of p,
|Ki| /o, |Ki| /o, have been evaluated for the case of
cracks of p=15°, 30°, 45° and 90°; in all the cases
the chord was perpendicular to the direction of load.
The tabulated values were produced from measure-
ments on the photographs (Figs 7, 8, 9).

Discussion of results

The agreement between the theory and the experi-
ments is satisfactory, indicating the accuracy of the
method. Caustics corresponding to different values of
o were taken in order to increase the accuracy of the
measured values of 1, which were obtained from the
curves. K; and K; are directly proportional to the
applied stress, equations (10) and (11), but their
ratio is not. Therefore by increasing ¢ similar curves

Crack chord
parallel to &

DETATL

Fig 5. Chord parallel to o; in the case of arc 192° the axis of
symmetry of the caustic coincides with the tangent to the
crack tip, thus zeroing K;; (cf. Fig 10).

were obtained, having the same ratio AE/EC=a
which remained fixed although the dimensions of the
curves increased after each loading step. (See Fig 9
where a, b, . .. onwards are successive loading steps.)

According to (9) AE/EC=a is a function of p only
and does not change; EC increases only when K;
and K; increase with . The photographs taken for
various loading steps show the dimensional increase
of the caustics (Figs 9(a), 9(b), 9(c), 9(d)).

In the case of cracks having their chords parallel to
the direction of the loading, it has been established by
expressions (10) and (11) (giving the theoretical
estimates of K; and Kj), that for p=96° one must
expect Ki=0 and Ki+0, where Kii/Ki=p=0. To test
the above theoretical prediction a two times 96° arc
was tested. As expected, the caustic curve obtained
had an axis of symmetry rotated at an angle of
—2 tan~! (pn)=—2 tan~! (0)=0° with respect to
the x axis which, in this case, coincides with the

B Theory Experiment Theory Experiment Theory Experiment
deg. of
arc n (|Ki]/o) x102 m~12 (|Ki}/o) x10? m~12
15 0-5 0-63 2-51 2:49 1-26 1-3
30 1-2 11 : 297 2-64 3-56 29
45 2:0 2-1 1-86 17 37 36
90 30 30 0-96 0-95 2-98 2-85
“Strain’, July 1979 83



tangent at the crack tip. Therefore the caustic curve
looped on the tangent, as expected (Figs 5 and 10).

In the cases considered in this paper the curvature is
kept constant. The value of the stress intensity
factors, apart from the applied loading, depend on
two additional factors:

first, the length of the arc (angle and radius of
curvature)

second, the angle of inclination of the tangent at
the crack tip, relative to the direction of the applied
loading.

The dependence on the second factor only (angle of
inclination) has been demonstrated by earlier experi-
menters using the method of caustics on straight
line cracks (arc crack radius — ). Kj and K; vary in
response to the change of orientation of the chord
with respect to the direction of loading.® In these
cases the direction of the tangent at the crack tip
coincides with the crack itself and its chord. When
an arc slit of zero curvature (straight line crack),
parallel to the direction of load, is constructed, no
caustic will appear and both K; and K will be zero.
On the other hand caustics will appear when a
specimen of finite curvature 2=180° is tested, the
tangent at the crack tip being parallel to the direction
of the loading, as in the straight line case. Here it is
the first factor (curvature contribution) that gives rise
to caustics which are smaller than the ones obtained
by lesser arcs under the same loading conditions (see
Fig 8 for a comparison of the size of caustics at
loading step b; the load is the same; the area of the
caustic formed by arc 60° is larger than the one
formed by arc 90°).

The second factor (inclination of tangent) does not
contribute to the value of the K's in the case of a
parallel tangent at the tip of an arc of 180°.

Using a similar qualitative argument it can be shown
why Kj is not zero in the case of an 180° arc crack,
where the tangent at the tip is perpendicular to the
-direction of loading. In the case of a straight line
crack perpendicular to the applied loading, Ki is
equal to zero. For a 2Bf=180° arc crack, whose
tangent at the tip is perpendicular to the direction of
loading, Kii is not equal to zero because of the
contribution of the curvature to its value. The con-
tribution of the tangent inclination is zero, as indi-
cated by the zero curvature experiment. Now if B is
increased to 96° (arc 192°), Ki becomes zero, since
the influence of the curvature is cancelled by the
contribution of the added 6° inclination of the
tangent (Figs 5 and 10 where arc is 192°).

Optical system and photographs

The optical system shown in Fig 6, is very simple. A
source of intense monochromatic light (in this case
a laser) emits a pencil of light through a shutter to a
diffuser and then to a pair of lenses. The convergent
light beam impinges, at incidence as near the normal
as possible, on the specimen which is placed beyond

the focal point. The reflected diverging beam forms an
 image of the crack on the screen (Figs 1 and 6). The
singularity of the crack tip causes the formation of the
caustic surface which is shown as a very bright
cycloidic and epicycloidic curve surrounding the tip.
The fringe patterns (see earlier section on ‘The
method of caustics’ final paragraph) are not taken
into consideration in this paper.
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Fig 6. A schematic view of the optical system.

No camera is needed. Figs 7, 8, 9 and 10(i) are expo-
sures of photosensitive films coating the screen
surface. The direction of tension is always perpen-
dicular to the long side of each photograph shown
in this paper and letters a, b, ¢, . . . indicate progres-
sive steps of loading. The variations of the area of
the caustics and the ratio EA/AC with respect to
angle B can be best understood if the photographs
would be considered together with Figs 2, 3, 4 and
5.

To illustrate the results and discussion the photo-
graphs have been grouped according to the direc-
tion of the crack chord relative to the direction of
loading. In the case of parallel direction, equation
(10), the ratio EA/EC for B=96° is zero, since
EA=0 (Figs 6 and 10) and the sliding effect is not
present. As the angle decreases the ratio EA/EC
increases.

-+
28 2 HORMHL

Ay
ma
N

TANGENT

Fig 10. Caustics of an arc 192° the chord of which is paralle/
to the direction of load: (i) photographed; (ii) plotted
by computer. In this case EA equals zero, consequently
p=0 (cf. Fig 5).
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Fig 6a. The optical system: (i) laser; (ii) shutter; (iii) 45°
plane mirror; (iv) diffuser; (v) lenses; (vi) tensile
machine with specimen; (vii) tension lever; (viii)
screen.

Fig 6b. The optical set-up; laser (i); shutter (ii); 45° plane
mirror (iii) ; diffuser (iv): lenses (v) and (V') ; tensile
machine with specimen (vi) ; tension lever with load
(vii) ; screen (viii).
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Fig 7. Inverse formation of caustics in arc cracks when: left

(i) the chord is perpendicular and right (ii) the chord is
parallel to the direction of loading.

Fig 8. The effect of ang/e on the ratio EA/EC. Chord perpen-
dicufar. Left (i) crack-arc 60°; right (ii) crack-arc 90°.

Fig 9. The effect of /oad on the size of caustic. Chord paralle/,
crack-arc 120°. Photographs of the same specimen show
that the caustic increases (a, b, ¢, d) as the load
increases, but the ratio EA/EC is the same.

|

.
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When the directions are perpendicular both the angie
and the ratio decrease. Thus in the case of 90° and
60° the increase of the sliding effect is conspicuous
(Fig 8).

Another set of photographs (Figs 9 a, b, ¢, and d)
show the increase in the area of the caustic as the
loading increases although the direction, the angle
and the ratio EA/EC remain the same.

Concluding remarks

1. The particular form of the crack tip under tension
reflects a caustic onto a screen. The variations of
the stress field cause infinitesimal elastic deforma-
tions of the tip surface which, in turn, vield
various caustics. The experimental method,
investigating the relation in the above, or the
reverse order, proves that caustics, surface topo-
graphy and stress field are causally connected.

2. The region of the elastic singularity at the crack
tip, where steep stress gradients vary, is rather
infinitesimal ; therefore not amenable to accurate
obsetvation by means of the old methods. By the
method of caustics the elastic singularity is
transformed into an optical singularity ; the latter
permits the study of the stress field by means of
the intensity factor ratio which is also important
as afracture- or crack propagation-criterion. Since
K* (and Ki/k;) is a function of the geometry of the
crack and of the way the loading is applied, for
certain values of these parameters K* reaches
values showing whether the material under con-
sideration will fail or not.

- 3. The experiments suggest a simple rule: no load-
ing, no caustic; more loading, larger caustic.

4. The general theory for determining stress intensity
factors in the case of straight cracks is alsc
applicable to arc type cracks.

5. The value of the intensity factors as predicted by
the theory, was found to depend on:

(i) the curvature of the crack
(i) the subtended angle, and

(iii) the inclination of the tangent relative to the
direction of the applied loading.

- 6. The Theocaris’ method of caustics permits
accurate measurements. The difference between
the theoretically predicted and the experimentally
obtained results does not exceed +0-67% for iR
—5:33% for |Ki| /5, and —5-6% for |Kii| / 5, which
could be attributed to usual measuring errors, to
the laser beam not being normal to the specimen
surface and to imperfections in the photographic
film.

7. The technique used in this paper could be
improved and extended to cover even more
complicated geometry of cracks and loads in
various materials such as metals. Crack propaga-
tion in shells and plates might be studied by the
application of a similar procedure using high-
speed cinematography to record the rapid change
of caustics along the crack-propagation path.

8. The method appears to be versatile and applic-
able not only to elastic plane-stress problems but
also to elastic-plastic cases and even to fully
plastic problems.14
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