
itoeeriw Fracture Mechanics Vol. 13. pp, 331-347 
igsmon Press Ltd., 1980. Printed in Great Britain

ANALYSIS OF THE OPTICAL METHOD OF 
CAUSTICS FOR DYNAMIC CRACK PROPAGATION

ARES J. ROSAKIS
Division of Engineering, Brown University, Providence, RI02912, U.S.A.

Abstract—In the interpretation of experimental data on dynamic crack propagation in solids 
obtained by means of the optical method of caustics, it has been customary to neglect the effect of 
material inertia on the stress distribution in the vicinity of the crack tip. In this papier, the 
elastodynamic crack tip stress field is used to establish the exact equations of the caustic envelope 
formed by the reflection of light rays from the surface of a planar solid near the tip of a propagating 
crack. These equations involve the instantaneous crack tip speed, the material parameters and the 
instantaneous dynamic stress intensity factor, and they can be used to determine the stress intensity 
faaor for given material parameters and crack tip speed. The influence of inertial effects on stress 
intensity factor measurements for system parameters typical of experiments with PMM A specimens is 
considered. It is found that the stress intensity factor v^ues inferred through a dynamic analysis may 
differ by as much as 30-40% from values based on a quasi-static analysis.
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longitudinal, shear wave speeds 
thickness of specimen 
transverse diameter of caustic curve 
Young’s modulus 
X + iY 
X + iy

mode I stress intensity factor for a stationary crack 
mode II stress intensity factor for a stationary crack 
stress intensity factor for a running crack, ev^uated using the static analysis 
stress intensity factor for a running crack, evaluated using the dynamic analysis 
mode I stress intensity factor for a running crack, evaluated using the dynamic analysis 
mode II stress intensity factor for a running crack, evaluated using the dynamic analysis 
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point on the actual specimen plane 
JT) the image of point P(x,y) on the plane of the screen 

X, + y, = X + ia^ 
specimen, plane 
optical path difference
deformation of the surface of the specimen along the z direction 
terminal velocity of crack

+ iM', Light ray deviation vector 
distance of the screen to the specimen

symbols

: = C K'{V,t)
(271)''^

Poisson’s ratio 
2a, K,Jty

Ll+«f KJt),

1 = radius of the approximated initial curve in the (x,,y,) plane,
principal stresses at a point

. .^11I'stan"* —
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^' = tan"’
(o~ region inside the initial curve
cw'*' region outside the initial curve
Q” region inside the caustic
n* region outside the caustic

INTRODUCTION
An optical method has been developed [1,2-5] for the study of the stress singularity in tl 
vicinity of a crack tip under conditions of plane stress. The method, known as the method t 
“caustics”, has been extensively applied for the analysis of stress fields near the tip 
stationary cracks [2-4], Recently Kalthoffera/. [9,10] and Theocaris eta/. [6-8]present 
work using the method of caustics for the study of propagating cracks. So far the method Y 
been used under the basic assumption of a static solution for the stress-strain field near 
crack tip. When dealing, however, with propagating cracks, an exact solution would requi 
the introduction of the dynamic stress-strain distribution ahead of the crack tip, as well as f 
use of the dynamic elastic moduli £, v, for cases of dynamic loading conditions.

Theocaris was the first to measure and use the dynamic moduli [7,8,11 ], instead of 1 
static ones, for the interpretation of caustic envelopes in cases of dynamic loading. The ne| 
step was that of Kalthoff et al. [9] who very recently introduced a correction factor* 
account for the error made by using the static analysis in cases of propagating cracks. T 
correction factor was obtained by using a series of simplifying assumptions based 
numerical calculations.

In this paper the equations of the caustic envelope are obtained in a very simple for 
Some approximations, based on analytical considerations are introduced without resortil 
to numerical arguments. A generalization of the results to include both opening and slidii 
mode propagating cracks is made in the Appendix.

I. CAUSTICS BY REFLECTION
An incident beam of parallel light rays is reflected from the near crack tip region of I 

specimen. Because of non-uniform contraction of the specimen in the thickness direction, i 
reflected rays deviate from parallelism and, under suitable conditions, generate a thr 
dimensional surface in space which separates an illuminated region from a dark region' 
Fig. 1). That surface, composed of points of maximum luminosity or thermal effect, is ca 
the “caustic” surface (Greek KauoxiKOs, burning). The rays are tangent to the caustic surfa 
and the cross-sections of the surface can be observed as bright curves on a screen paralldj 

the specimen.
Let M, = u^{x,y) be the normal displacement of the surface of the specimen due to 

stresses a\ the%icinity of the crack tip. Consider a parallel beam of light illuminafing 
surface. If a screen is placed at a distance Zq from the mid-surface of the specimen, a light i 
impinging on point P(x, y), will be reflected and recorded on the screen, giving an image r' 
P'{X, Y).

The deviation W = W^ + iW^ of P' from the projection of P on the screen, will depend^
du du^ f V j f

the angle of reflection and on z^.W will be a function of the slopes o* the delormt

surface, and of the distance of the screen to the specimen (see Fig. 2).

It has been shown [5] that

W = 2zograd,,, [u,(x,y)] ^ Z^. ^ J^ + W = + z^grad,,, [2u,(x,y)] (1

where Jp = x + iy and Zp. = X + iY. The quantity 2w,(x,y) = AS(x,y) represents theexj 
distance traveled by the ray because of the lateral deformation of the vicinity of the crack r 
AS is called the optical path difference.

Equation (1.1) is the governing equation of the mapping of points P(x, y) of the specif 
on to points P'(X, 7) on the screen.
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Fig. 1. Three dimensional caustic envelope formed by reflection (not in scale).

^What appears on the screen is a completely dark area around the crack tip, surrounded 
a bright region. The boundary between the bright and the dark regions is a highly 
linous curve, the caustic curve. Equation (1.1) is a definite relation connecting points on 
(X, y) plane of the screen to generic points on the specimen plane Experiment 
iies that there is a region in the {X, 7) plane on which no point of the (x,);) plane is 
pped (shadow region). The whole (x, y) plane will therefore map in only part of the {X, Y)

Fig. 1 The mapping of points P{x,y) of the specimen, to points P'(X, T) on the screen.

13/2-0
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l(x.y) Cj
Fig. 3. Left: the initial curve; Right: the caustic curve.

It has been shown that there is a curve dco in the (x, y) plane with the following properti
(i) every point outside dw maps outside a specific curve dQ. in the {X, Y) plane, (ii) every po 
inside dco, maps again outside or on the same curve (iii) points on dco will map on 5Q (; 
Fig. 3) or in standard mathematical notation:

or equivalently:

V{x,3;)€m =>/(x,y)Efi'^uan 

'iix,y)edco=>f{8co)gdCl (see Fig. 3)

^ (x, y) e 3 fix, y)ei2“=>/'^(fi“)=0.

The above statements imply that there are no points in the (x, y) plane (of the specimen) 
are mapped into region Q“.

One can identify the fi " as the shadow region and Q + as the bright one. The boundary i 
between the bright and the shadow regions is, as we know from experiment, a hij 
luminous curve, the “caustic”. High luminosity implies multiple mapping coming from . 
dco and co ~, and therefore the Jacobian of the transformation of points (x, y) on the specii

on to points (X, 7) on the image plane must vanish there.The condition J =

provides the locus of points dco which correspond to the luminous curve where multi] 
mapping occurs, dco is called the “initial curve”.

2. THE CAUSTIC CURVE OBTAINED BY A DYNAMIC FIELD AT 
THE VICINITY OF A PROPAGATING CRACK TIP 

As we have seen in the previous section, the deviation from parallelism of a reflected lij 
ray at a distance Zq from the middle surface of the specimen, can be expressed by:

[AS(x,y)]

where AS is the difference in the optical path of the ray corresponding to a generic po:
For the case of plane stress for caustics obtained by reflecti< 

dv
AS = 2u^ ~ —(<Ti + (T2). Substituting above:

hi

. dv
= + <^yy) (2

where

c=^
E

Making use now of the expression for and Cyy established by Freund [12-14] whi 
represent the stress components in the vicinity of the tip of a crack propagating with varial
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Velocity F(f), we have:

khere:

O'.,,. =
KAt) cos (0,/2) _ 4a,

’ 0 +4/2 + a, cos (0^2)1
«?) J
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^ I V ^2xCOs(0,/2) 4a,a, cos(0y2)1

(2.3)

r, e‘®' = Xi + iy, - X + ja^y

*-=L‘-d ■ “'=L'-d •

B,{V) =
(1 +oc!)

[4a,a,-(l+a2)2]

ibscripts / and s referring to the longitudinal and shear way speeds, C, and C^, in the 
limen material. It is worth noting that the above expressions were derived under the 

sumptions of elastic fracture behavior with ^representing the instantaneous crack tip speed 
ff non-uniform rates of crack growth. Adding (2.2) and (2.3) we obtain:

+ ^y =
o.2.cos(0,/2)

■'(2af - 2a,^)- 4/2

■[J^i(t)(l + )(°tt -
[4a,a,-(l+a?)^] J

Cos (di/2)

^K'{V,t)- —•cos{9J2) (2.4)
nr

lere r, e'®' = x, -I- iy, = x -I- ia^y. Equation (2.4) gives the dynamic stress field + Oyy at 
ch point (x,y) as a fimction of the parameters (x„y,) where x, = x, y, = a^y. It is worth 

bserving that the dynamic expression (2.4) is of the same functional form as the static

jrmula, <t + a = —cos{6/2) with two main differences: first, the existence of a « yy

lultiplying factor

(1 + a,^)(af - 

4a,a, - (1 + aj)^

id second, the fact that the dynamic field has been scaled in the y direction only, by a factor 
One should note that (2.4) which gives the + <7^, for a running crack reduces to the 

ationary for V = 0.
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(i) The Equations of the mapping
For the case of a propagating crack the deviation W corresponding to the generic point 

(x,^) is given by:

W = CV^.J,[K, + CTyy)(Xj,y,)]

=>W = C— [{a^^ + ffy,)(x„y,)] + iC— [{a^^ + ffyy)(x„y,)]a,.

The image P'{X, Y) on the screen of the point p(x,y) of the specimen will be given by:

X =x + C-^ [{(7^^ + CTyy)(x„y,)] 

Y =y + + <7j(x„y,)]
(2.5)

using now eqn (2.4) for the stresses and the fact that x = r, cos 6, and y =
r, sin 6,

, we get:

where

3a
X = rjCOS0, + ■’'•‘cos —

,, r.sina . 30,
Y = ------- - + oitpr, sm^

a, 2 .

K'iVj)

(2.6)^

Equations (2.6) are the governing equations for the mapping of a generic point P(x, y) of the 
specimen on to a point P'iX, Y) of the screen. They are expressed with respect to the 
parameters (rj,0,) which are connected to (x,y)by the relation r,e'^' = x + la^ = x, + (yj. It 
will become obvious from the following that by using (r^, 0,) as the parameters instead of (r, 0X 
the equations of the caustic will result in a very convenient form to work with.

It is worth noting that points F(x,y) lying on a member of the family of ellipses 
x^ + afy^ = on the (x,y) plane, map on to points on the parameter plane (x,,y,) lying on 
the circle xf + yf = p^ = r^. Those points will in turn map through the transformation eqn
(2.6) on to points P'iX, Y) lying on the curve:

30,
X=pcosdi+pp ^^^cos-^

-3/2 • 30,

+ 1X1PP
0 < 0, < 47c. (2.7)

Thus a member of the family of ellipses x^ + afy^ = p^ defined on the actual plane of the 
specimen, will map on a member of the family of curves (2.7) defined on the plane of the 
specimen.

(ii) The equations of the caustic
The condition for the existence of a caustic curve surrounding the shadow region is the

vanishing of the Jacobian of the transformation [3]. The condition J = = 0 in
^(x,y)

general will give a curve on the (x,y) plane. Points both inside and outside this curve will
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always map on or outside the caustic envelope. Points on this curve will map upon the causdc 
envelope. The curve obtained by setting J = 0, lying on the (x,y) plane is called the initial 
curve”.

Analysis of the optical method of caustics for dynamic crack propagation

d^)

d{x,y)

Jsing now eqn (2.6) and the polar form of the Jacobian we get.

a(x[r„e,]y[r„a,])_^
a(r„0,)

CO

=> rf + - l)cos^ =0 (2.8)

Since we have chosen to work with (r„0,) as parameters instead of the actual coordinates 
(r.0), the condition J = 0 gives a curve with respect to which is the equation of the
imageofthe “initial curve” in the {r„ 0,) plane. Equation (2.8) gives the region in the (r„ 6,) plane 
whose points map on to the caustic curve.

The exact equations of the caustic envelope are therefore given by:

3^1 1
X =r, cos 0, + fiVi cos —

if 301Y = -I r, sin 0, + af/ir," sin J

under the constraint:

The curve described by eqn (2.8) has a very weak 0, dependence, especially for low or 
medium values of V. Although the analytic expressions presented above are not unduly 
cumbersome, it is advantageous nonetheless to simplify them somewhat in order not to have 
to resort to numerical schemes. As it turns out, a very close approximation can be made

regardless of the value of a,. . r u- u
The method of approximation adopted here is to find a set of circles each ol which

constitutes a best fit to (2.8) for each value of a,. The procedure for finding the best fit circles is 
as follows: As shown above, a family of circles, on the (r„ 0d plane, map on to a family of image 
curves given by eqn (2.6) (for different r,) lying in the {X, Y) plane.

The circle which gives the closest fit to the curve represented by eqn (2.8), will be the one 
corresponding to that particular member of the (2.6) image family with the smallest enclosed
area. This can be demonstrated as follows:

Let r, = pQbQ the radius of the circle corresponding to the minimum area member of the
(2.6) family (see Fig. 4). Let the dotted curve in the (x„y,) plane correspond to curve (2.8), and 
the dotted curve in the (X, Y) plane to its image. Any point on r, = Po, whether inside or 
outside the dotted curve (2.8), will map outside the doUed image curve m the (X, Y) plane, 
except at those points where the curves touch (solid line).

Since the circle r, = Pq by hypothesis maps on to the minimum area member of the (2.6) 
family, every circle of smaller or larger radius than p^ will map on to a member of the (2.6) 
family having a greater area than the curve corresponding to r, = po- Consequently, the 

1 image of any other circle will lie further away from the dotted curve than the image of r, = po
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Xj.yj plane X.Y plane

f(xy.yy)

Fig. 4. Left: the image of the initial curve on the (*,,>'() plane (dotted), and its best circle 
approximation; Right: the caustic (dotted) and its best approximation curve.

does. The dotted curve in the (AT, 7) plane is the caustic, and r, = is the closest circle 
approximation to the (2.8) curve, since it gives an image which is the closest curve possible to 
the caustic.

3. EVALUATION OF po
In order to find po let us consider the area of a random member of the family of images:

E=~jyxYi,-YX',,)de,.

Substituting the expressions for X,Xgj, Y, Y'g^ from (2.4) we get:

£ = — ['■?

The condition for an extremum gives:

~ =0=>po = i^pa,)^'^ (3.1)
r,=pO

which corresponds to a minimum, since
eE^
d^r,

> 0. Thus r, = Po gives the minimum area
r, = p<i

member of the image (2.6) family.
Using the results ofthe above section, we conclude that rj = Po = (fpflj)^'^^ corresponds to 

the closest circle approximation to the curve represented by eqn (2.8). To find where the circle 
and the (2.8) curve touch, one can solve equations = po and eqn (2.8) simultaneously. One 
can thus see that the two curves touch at a total of 5 points. The coordinates of these 5 poihts in

56,
the {r,,6i) plane are given by r, = po and by: cos— = 0. The latter provides 5 values of 0,,

n 3n In 9n 
namely, d, = y ’ y •

Since r, = po and the curve represented by eqn (2.8) touch in 5 points, their corresponding 
images in the {X, Y) plane will touch in 5 points as well.

4. (i) BEST APPROXIMATION OF THE INITIAL CURVE 
Up to this point we have almost totally worked in the (r,, 0,) plane, investigating the best 

circle estimate to the (2.8) curve.
As we have seen above, the (2.8) curve is just the image of the initial curve on the 

parametric plane (Xj,>'j) and it has no physical meaning. Although it is easier to work in the
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(r„ 0,) plane, it is instructive to investigate which is the best fit curve to the initial curve in the

actual (x,y) specimen plane.
As shown above, the equation of the best circle approximation to the (2.8) curve (image of 

the initial curve in the (x„y,) plane) is given by rf = pj = xf + y, = (zpa,) -In ^ct“^ 
(x y) plane, the corresponding points (r,0) lie on the ellipse x + a,y - (2^) , since 
X ’= X y, = a^y. This eUipse is therefore the best approximabon of the initial curve.

* Thus we have seen that the initial curve in the (x,y) (specimen plane) for a propagating 
crack can be approximated by the ellipse:

Analysis of the optical method of caustics for dynamic crack propagation

x^ + afy^ = (i/ia,y for all values of v and a„a. (4.1)

which reduces to:

x^ + [2l4oc,a,-(l 

when the values of p and C are substituted in (4.1).

K,(t)dvzoT'*
£(27r)'/^ J

(u) The behavior of the approximation curve as V-^0 . . , . «
As a check to the approximation curve (4.1) one could examine its behavior as K -»■ 0, a,, ot, 
1. Taking the limit as a,, a, -»1, eqn (4.1) reduces to:

x^ + y2 3 ^ dzo^T'* 
2 E (27i)^/2 J = P«

which is the known equation of the initial curve obtained by usmg the stress field of a 
stationary crack [4]. Thus our approximation curve (4.1) reduced to the exact equation of

the initial curve as 0.

5. (i) THE APPROXIMATE EQUATIONS OF THE CAUSTIC CURVE 

After the approximation is made, the eqn (2.9) of the caustic become.

3/2 30,
X = r,cos0,+ pr, ^^^cos-y 

y = ij^r, sin 0, + otffir;' sin ^ J

where

ri=Po =

(5.1)

Equations (5.1) can be expressed as follows:

X=po[^cos0,+far'cos^]

y = ^l^sin 0, + |a, sin y J
(5.2)

where

0 < 0, < 4jr.

Equations (5.2) are the parametric equations of the caustic curve. As P 0, a„ a, 1, Po 
p,, the above equations become the equations of a generalized epicycloid as predicted by

the analysis of stationary cracks.
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Fig. 5. Evaluation of the dynamic stress intensity factor Xj(r) by measurement of D,.

The parameter of the eqn (5.2) is a function of the elastic moduli E and v. For 
propagating cracks under dynamic loading conditions, the dynamic values of the moduli E 
and V must be calculated and used for the evaluation of p^, as suggested by Theocaris et al. 
[7,8,11].

(ii) Evaluation of Kj{t)
By employing eqn (5.2) the geometric properties of the curve can be investigated (see Fig. 

5). The transverse diameter D, of the curve can be evaluated with respect to Kj{t) at a given 
value of a,. By setting A" = 0 one obtains values of 0, and hence values of the Y intercepts and 
£>, with respect to Hence by measuring D„ the stress intensity factor can be calculated.

(hi) Concluding remarks
Expressing the equations of the caustic envelope with respect to the parametric (r,,0,) 

plane, one obtains more convenient and shorter forms than one would do expressing them 
with respect to the (r, 0) physical plane of the specimen.

The resulting equations are simplified further by using the approximation scheme 
described above. The approximations lead to an elliptical initial curve in the (r, 0) plane This 
does not contradict intuition. It is known that for the cases of propagating cracks the 
^xx + ^yy stress field is scaled in the y direction, thus deforming the circular initial curve, 
corresponding to a static crack, to an ellipse as the velocity becomes finite.

The resulting equations are not limited to a certain range of velocities since the 
approximation curves depend each time on a, and The method is therefore quite a general 
one, without the generality implying complications in the resulting equations. The simple 
form of the equations together with the lack of restrictions in the range of y justifies the use of 
the corrected formulae for cases of propagating cracks.

6. (i) CORRECTION DUE TO DYNAMIC EFFECTS
It is very instructive to calculate the error introduced in the evaluation of the dynamic stress 

intensity factor by using the static equations of the caustic curve, instead of the dynamic ones. 
Such a calculation will show if the use of the static analysis gives accurate enough results, and, if 
so, in which range of crack velocities.

For calculating the error, eqns (5.2) were used to evaluate the dynamic stress intensity 
factor for different velocities of a crack at a given material. The ratio of the calculated values 
over the ones corresponding to the same velocity, and obtained by the static analysis, were 
subsequently plotted against the velocity of the propagating crack.

The material for which the calculations were performed was PMMA (polymethyl­
methacrylate). PMMA was chosen since it behaves in close approximation to an ideally
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brittle material, that is, its behavior is well described by linear elastic fracture mechanics.
In addition to the above, PMMA has been used by a considerable number of 

investigators and therefore large numbers of experimental data are available in the literature 
concerning its material properties and fracture behavior (elastic moduli, limiting crack 
velocities, etc.).

The material parameters for PMMA in cases of experiments performed under conditions 
of low loading rates were taken to be the following:

p = 1200kgm"^ Density

V = 0.34 Poisson’s ratio

E = 3200 MN m ■ ^ Young’s modulus

for which the values of the shear and longitudinal wave speeds were found to be equal to:

C, = 2025 m s~ ^ Longitudinal wave speed

Cj = 997.5 m s" ‘ Shear wave speed.

K (t)The ratio —^ was plotted v crack velocity (see Fig. 6i,ii).
^5l(0

(ii) The error
It can be seen from Fig. 6(i) that for low values of velocities, ranging between 

(0-200)ms-‘, the error is small, lying between 0% to 2.0%. For medium velocities in the 
range of (250-350) ms“^ it becomes significantly large, lying between 3.2 and 6.2%.

Finally, for velocities in the range of 400-700ms" ‘ (the terminal velocity of cracks in 
PMMA), the error becomes very large, ranging from 8.4 to 45.6%.

The range of velocities considered in Fig. 6(i) was dictated by a theoretical estimate of the 
maximum terminal velocity of Mode I cracks in PMMA. The theoretical estimate of the 
terminal velocity was in agreement with experimental results obtained by a number of 
investigators.

(iii) The terminal velocity
A number of attempts, based on energy arguments, have been made to predict the 

maximum velocity of cracks propagating in brittle materials. In 1972 Bergvist [15] using the 
experimental- results of Paxson and Lucas [16] for PMMA, arrived at an approximate 
expression for the terminal velocity in PMMA which was given by:

/ r\ 1/2

Ft = 0.69C, = 0.42 - . (6.3)

Analysis of the optical method of caustics for dynamic crack propagation

K (f)Fig. 6. The ratio —^ v crack velocity in PMMA.
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From (6.3) one can get a value for the maximum terminal velocity of the crack in PMMA. In 
our case the estimated velocity was found to be 686 m s “ ^. The highest velocities in PMMA 
reported in the literature do not deviate much from this value. Schardin [17] reported the 
value of655ms“^ Dulaney and Brace [18],670ms"SCotterel [19]670ms"\Theocariset 
al. [22] 670ms-* and Dahlberg [20] 700ms-*.

From the above one can see that for PMMA under conditions of static loading (low 
loading rates), the range of possible crack velocities is between Oms"* and 700ms-*. The 
above estimated upper limit of crack tip velocities in PMMA, combined with the results of 
Fig. 6, show that there is a substantial range of velocities, between SSOms"* and 700ms-* 
corresponding to an error between 6.5 and 45.6%.

(ii) Dynamic loading rates
The results obtained above hold for cases of experi’nents performed under static loading 

conditions (low loading rates). Since PMMA is a viscoelastic material, the elastic moduli 
increase considerably at very high loading rates. To describe therefore the fracture behavior 
of PMMA for cases of high loading rates, one requires the knowledge of the elastic 
parameters corresponding to the loading rates used. In experimental investigations of the 
dynamic behavior of solids, a large number of devices have been used. These range from 
direct modification of conventional testing machines, resulting in higher rates of loading, to 
the use of impact testing, ultrasonic or high explosive techniques.

For cases of explosive loading, the dynamic value of Young’s modulus was found to be 
almost double its static value. From experiments performed by Davies et al. [21 ] in PMMA, 
it was shown that the dynamic Young’s modulus can reach a value as high as 6000 MN m"^. 
The above value was obtained from experiments performed using a split Hopkinson bar, the 
specimen being loaded explosively. The compressive loading cycles were of 30 ^s duration.

In relation to the method of caustics, Theocaris et al. calculated the dynamic values of the 
Young’s modulus and Poisson’s ratio by comparing the sizes of the caustics formed at the tips 
of stationary notches in PMMA imder conditions of static or dynamic loading. His 
experiments showed that for loading rates of 0.35 s" *, the Poisson’s ratio of the material 
remained the same, whereas the Yoimg’s modulus increased to a value of £ = 4300 Nm^ 
[22 ]. He was the first to measure and introduce the dynamic moduli in the equations of the 
caustics used for the study of rimning cracks under conditions of impact loading [11].

Since the Young’s modulus increases under conditions of dynamic loading, the Poisson’s 
ratio remaining constant, the wave speeds must increase as well, resulting in a higher terminal 
velocity of the propagating crack. The error in cases of very high loading rates (higher values 
of Ci.s, lower values of aj.*) is expected to be less pronounced for small or moderate values of 
velocity, than the equivalent error obtained for cases of static loading. The range of 
obtainable velocities, however, will be increased (Vj going up with loading rate), still giving a 
considerable error at high velocities. To investigate the effect of loading rate on the difference

between the static and dynamic analysis, values of
KAt)

KAt}
were plotted vs crack tip velocity

for case of experiments performed under conditions of impact loading. See Fig. 6(ii). The 
dynamic values of the parameters used were as follows:

p = 1200 Kgm“^ 

£ = 5600MNm-2 

V = 0.34

Density

Dynamic Young’s modulus 

Poisson’s ratio

for which the shear and longitudinal wave speeds were found to be equal to

C, = 2678.4ms“* C, = 1319ms-*.

For the case considered, the limiting velocity would be around 900ms-*. This value is 
verified by the experiments performed by Theocaris [11] who reported velocities up to 
850ms-*.
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(iii) The error in cases of impact loading
From comparison between curves (i)-(ii) in Fig. 6 one can see that the error is more 

pronounced for cases of low loading rates than for cases of higher rates. Figure 6(ii) shows 
that for low values of the crack velocity ranging between (0-250) m s " ‘, the error is negligible, 
lying between 0 and 1.5%.

For medium velocities in the range of (300-500 m s " ^) it is small, ranging between 2 and 
7.8 %. Finally, for velocities in the range of 550-900 m s ’ ‘ (the terminal velocity for impact 
loading rates), the error becomes considerably larger, ranging from 9.6 to 38.0%.

Analysis of the optical method of caustics for dynamic crack propagation

7. THE EXACT EQUATIONS
The calculations described in the foregoing section were repeated using the exact dynamic 

equations of the caustic curve, given in (2.9). An IBM 360 computer was employed for the 
calculation. The results obtained were almost exactly coincident with the values shown in

K (t)Fig. 6(i) and (ii). The values ofwere found to differ by less than 0.002 for every value of
^st(0

V.
The agreement in the results of the two cases is very close, indicating that the theoretically 

obtained approximation to eqn (2.9), described in Section 2(ii), is indeed justifiable.

CONCLUSIONS AND SUMMARY
I The exact equations of the caustic curve for the case of a running crack were obtained in a
I simple form with respect to the (r„0,) parametric plane. These were further simplified by 
I employing a theoretical argument. The error introduced by using the static analysis was then 
} calculated by making use of both the exact and simplified dynamic formulae.
I The numerical results obtained showed that the use of the approximate dynamic 
^ formulae is indeed justifiable. At the same time, it was shown that there is a considerably large 
I range of velocities lying between Vr/2 and Vj corresponding to errors between 6.5 and 45.6 %.
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APPENDIX
Al. (i) Mixed mode propagating cracks

As we have seen in Section 1 the deviation from parallelism of a reflected light ray at a distance from the middle 
surface of the specimen, can be expressed as:

W = C grad,,, ((7„ + where C =

When the crack tip deformation is a combination of the plane Modes I and II, the expressions for and c„ 
developed by Freund [23] following the procedure of [12] are given by:

<r. K„{t)B,(n (1 +2af-a,^)
cos (0,/2) 4a,a, cos (tl,/2)1

(1 +«f)ry' J
(1 + 2a^ ~ ocj) sin(0,/2) -a + a,') sin(g./2)]

J
and

where

and

11 I ^ 4«,«, cos{0,/2)1

Ka,{t)B.,(n - sin {6J2)
-1/2 (1 +«*) +

sin (dJ2)
(1 +

BiiV) = (1 + «/)
[4a,«. - (1 + «f)^]

(AI.l)

(A1.2)

Rn(V) =
2a,

[4a,a.-(l +afyy

The above expressions were derived under the assumption of elastic fracture behaviour with V representing the 
instantaneous crack tip speed for nonuniform rates of crack growth. Adding (Al.l) and (A1.2) we obtain:

+ <7„ = (af - al)Ku{t)B, — cos(0,/2) 
nr,

-(a-‘-af)K,„(t)B„. — sin(0,/2). 
jrr,

Setting now
B,KJt)(af - a^) = K{

and ~ = A|'|

we have:

—cos(0,/2) - K,', /—sin{0,/2). 
V ttr, V jrr, (A1.4)
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It is worth observing that the above expression describing the first stress invariant near the tip of the propagating 
crack is of the same functional form as the equivalent static one.

(ii) The equations of the mapping. The coordinates of a point P'{X, T) on the saeen which is the image of a point 
P(x,y) of the specimen are given by eqns (2.5) with respect to the first stress invariant, as follows:

■I

Y = y + a,C^ [(<J„ + (r„)(x„y,)]

(A1.5)

where A =
Equations Ul-5) are the governing equations for the mapping of a generic point P(x,y) of the specimen on to a 

point P'{X, y) of the screen.
(iii) The equations of the initial curve. The condition for the existence of a caustic curve is the vanishing of the 

Jacobian of the transformation (A1.5).
Performing a calculation similar to the one described in Section 2(ii) for the case of an opening mode crack we get 

acurve with respect to the {r„ 6,) parameters which is the image of the “initial curve” in the (r„ 9,) plane. This curve is

obtained by setting J = ^ = a, ^ — = 0. and in polar form it is given as:

]JV, JvjX'iCOSY-K,',stnyJ=0. (A1.6)r'

The above equations can be expressed in the following form:

r* - + K'f) + - l)(Ki^ + cos|(fl, +x)=0 (A1.7)

where

for = 0 the above reduces to eqn (2.8) in Section 2{ii). The exact equations of the caustic envelope are therefore
given by:

(
JUi

Xj'cosy - K,',siny

(A1.8)

under the constraint:

]JO, JO, ^
K[cos— - K,',siny = 0r,

using the same approximation scheme as the one adopted in Section 3, we will try to find a set of circles each of which 
constitutes the best fit to (A1.6) for each value of a,. To do so the area of a random member of the family of images 
(Al.5) is calculated with respect to r,. The expression is subsequently differentiated, giving the critical radius r, = 
corresponding to the minimum area image. The area of a member is given by:

Using expressions (Al.5) we can show that
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The conditions for the minimum gives

= (A1.9)
ri = po

Thus Pq = + Kj^ corresponds to the closest circle approximation to the curve represented by
equation (AI.6). One can see that the two curves touch at a total of five points. The coordinates of these five points in 
the (r,, 6,) plane depend on the value of the ratio

8E
dr,

and will be given by substituting

in {A1.6). The substitution gives;

iC,',

r,'=po= [§>!«,

cot
2

K'
= ^. (ALIO)

For the special case of = 0 => K,', = 0, we have seen in Section 3, that 0, takes the values of 7t/5,37t/4, n, InjS, 
97t/5 which are independent of the velocity of the crack.

For non-zero ,w(r), the coordinates of the five common points will be functions of both K„j{r) and a as shown in 
(Al.lO).

Figure 7 shows the effect of a finite K,„(t). The axis of symmetry of the curve described by (A1.6) (dotted line) in 

the (x:,,^,) plane, will be rotated through an angle y = f tan"‘ * 2\ respect to thex, axis, which

coincides with the tangent to the crack tip.

(iv) Best approximation of the initial curve in the (x,y) plane. As shown above, the equation of the best circle 
approximation to the curve (A1.6) (image of the initial curve in the (X(,y,) plane) is given by:

xf +yf =

In the (x,y) specimen plane, the corresponding points {r,9) lie on the ellipse

x^ + afy^ = = pi (Al.ll)

which can be expressed as:

x^ + afy^ = 3
2

(1 -H - ctl)
4a,a, - (1 + a,^)^ “i

dvzp
E{2nk^ il+e)^^^=pl.

For Knrf(t) = Os. = 0, the above reduces to eqn (4.1) obtained for a mode I crack.
(v) The behavior of the initial curve as V -*Q. Letting K-* 0, both a,,aj -* 1 and K[ -» Ki,K'ii -* K,,. Equation 

(Al.ll) therefore reduces to

x^+y^ = [UVKfTkf,r^=pl

which is the known equation of the initial curve obtained using the stress field of a stationary crack [4],

FOR Knd(t)«0 
X*0 vv

FOR Kiid(t)>0 FOR Knc<t)<0
X<0 X”*^

THE x^.yy PLANE

Fig. 7. The effect of a finite X,^,(r); Dotted line: the image of the initial curve in the (x,,y,) plane; SoUd
line: its best circle approximation.
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A2. (i) The approximate equations of the caustic curve 
After the approximation is made, eqn (A1.8) become:

(
3B 30 \Ki cos - K'„ sin |

1 / 30 30 \Y = —(r,sin0, + o:,J.r,“^'^|K:|'sin-y + K,',cos-^J

where

Equation (A2.1) can be expressed as follows:

r . 2 1 1 30, 2 ^ 1 . 30T
^ +5 - 3 (TTW^ ^-""tJ

= —fcos^,
«iL

. 30, 2 I
-a.sm— + -

where

3(1+^''^ ' 2 "3(l+n‘'"

^ k;

30,1
ajCOSyl

Setting now { = tan(^' the equations of the caustic curve can be finally expressed as:

'30,
X^Po

Y

cos 0, + fa, ‘ cos

, 130,
Sin 0, + fa, sin (—

U.)]l

where

= tan ‘—== tan
.T 2a, K,„(0]

Ll+a* K„(r)i

(A2.1)

(A2.2)

The above equations are the parametric equations of the caustic curve for a case of a mixed mode propagating crack.
(ii) Be/wDior os K-*0. As K->0and a,,,-* 1, to'-»tan"^ j^j = 0, ^ 0, poand the above equations

become:

X =p«|^cos0 +^cosjy + <^«j1 

y=p„[^sin0+^sinjy + <^JJ

which, as expected, are the equations of the caustic curve for the case of a stationary mixed mode crack [4].

(A2.3)


