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Introduction

The theory of straight dislocation lines of infinite length can be applied only to a
very limited class of problems, where the assumptions concerning the form of the dislocation
are valid. However, in most situations of interest dislocations have geometries which do
not allow the direct use of the results obtained for infinite lines. A relatively new geo-
metrical approach to the problem was suggested by the results of Lothe (1) who deduced a
simple expression for the force exerted at a point on one ray of an angular dislocation by
the other ray. Brown (2) then gave a proof of Lothe's result and in doing so expressed the
field of an arbitrary planar loop as a line integral along the loop considered. For an
arbitrary planar loop or line segment, the field was shown to be a function of the zeroth
and second derivatives of fields of infinitely straight dislocations lying in the same plane.
Asaro and Barnett (3) reconsidered Brown's representation for the in-plane fields of planar
dislocation loops. They showed that the Brown line integral can be partially integrated to
yield expressions independent of the derivatives of the stress fields of infinitely straight
dislocations. These expressions are particularly important for numerical computations since
the infinite dislocation fields can be obtained to a much higher accuracy than those of the
first and second derivatives, from the same steps in the numerical integration (4).

In this note the results of Asaro and Barnett are reconsidered with the inteantion of
clarifying the nature of some apparent discontinuitfes that appear in the integrands of the
line integrals involved, if certain assumptions concerning the features of the paths of
integration are made. The uniqueness of representation of the stress field is thus established.
Subsequently, the limitations of the resulting expressions are investigated. It is found
that no complications arise with the existence of potential singularities and that the solution
is well behaved regardless of the position of field points. Thus it is observed that for
the case of "sharp” cornered polygonal paths of integration, the first partial integration
of the Brown line integral gives rise to integrands that are discontinuous at the sharp
corners. To avoid the discontinuities, the line integral is split into a finite sum of
integrals, each of which is evaluated along each side of the polygon. The same problem is
subsequently reanalyzed as a limiting case of a “smooth" cornered curve, at the corners of
which the radius of curvature tends to zero. In the "smooth" corner approach no discontin-~
uities appear in the line integrals involved. The two approaches are shown to yield the
same result. The special features of the stress field that depend on the position of the
field points are subsequently analyzed showing that the solution is well behaved at all
limits.

Plane Polygonal Loops

A. "Sharp” corner approach:

The Brown (2) line integral representation for the stress field at a point x due to
the existence of a dislocation loop L 1s given by:

L
T (x) = 1/2&L - de W
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where x' denotes any point on L. Z(8) 1is the angular stress factor tensor for a straight
dislocation lying along the direction x-x' 1in the plane of L, whose Burger's vector is
the same as the one of the loop. Let t "be the unit tangent vector to L at x'. Assume
that L is a planar loop and that the Field points under consideration lie in the same
plane. Let angles o and 6 be measured counterclockwise from a fixed datum to t and
x-x' respectively (see Fig. 1), Consider now the case of a closed polygonal loop L with
N vertices. Let R, denote the distance from x to the n™® vertex and let 8, denote
the direction of |x-x' In relative to the fixed datum in the plane (see Fig. 2). The corners
of the polygon are assumed to be perfectly * ‘sharp”. This is equivalent to saying that across
the nth vertex, the angle between the fixed datum and the tangent to the polygon changes

discontinuously from ap to af.

The integrand of Eq. (1) varies continuously along the loop. Thus by integration by
parts and use of the fact that

dlecut] = = t -
a..é.lzc_i | |x—x'| cot (8-a) , (2)

Eq. (1) gives:

4, I0) gp = |-2OVL @ L) orgo - o) ao
L [x-x'] lx-x' | 7L jx-x'| (3)
L

The first term of Eq. (3) vanishes. The integrand of the second term varies discontinuously
across .the vertices of the polygon since a changes discontinuously as each vertex is tra-
versed. At this point, before a second partial integration is considered, the integral must
be expressed in such a way that its integrand varies continuously along the integration
path. To that effect the integral is considered as a finite sum of integrals each evaluated
along each side of the polygon. Letting P, and P: be pointe just to the right and left
of the vertex n, Expression (3) can be written as:

4 1"(8)de _ nEN Ipn I'(8)cot(p-a)de _ Jpl L' (8)cot(8-0)de

L |x-x'] n=2 /Pt x-x'| Py lx-x'|

The integrands of the above N integrals are continuous and integration by parts can now be
used giving:

_ P P]
é g'(e)de _ “i" L(®cot(e-a)| ® | z(e)cot(e-a) | 1
L |x-x'] n=2 | |x-x'| Ppy | x| PN

. nEN [Pn £(6) d for(e-w)\ Jpl £(8) d cot (8-a)
n=2 ‘P |x-x'| Py |x-x'|

Rearranging terms in the above and using Eq. (2), expression (4) can be written as:

N
4# £(8)45"(0) 4o . . 1 i L(én)cot (8 -a ) ; mn=N+1 L(8, _y)cot(8 ;-e )
T2 - ~z
|x-x'| n=l |x-x'| n=2 |x=x']
. *
1 nEN fp; L(6)da . _l_rl £(6)da
TT 5 dpt lxextlsin?(e-a) % IRy |x-x|sin®(0-a)
n-1 =7
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Observing that da = 0 along any side of the polygon, the two integral terms along the
sides drop out. Setting a = n + 1 in the second of the sums of Eq. (4) the stress field
is given by:

a=a
N I(8 )cot(s -a) %n

gL(_:g) =1/2 (s

n=l !“x‘-‘{. ln a = 0-
n

B. "Smooth” Corner approach:

For the case of a smooth planar loop L, Asaro and Barnett (3) showed that the stress
field given in Eq. (1) can be reduced to:

ol(x) = 1/2# _L(8)da 6)

|§;§']sin2(e-a}

The above formula was obtained after two successive partial integrations of the Brown integral.
For smooth loops, a varles continuously along the line of integration and the problems of
discontinuity encountered in the previous section are no longer present.

Asgume now that the corners of the polygonal loop treated in the previous section are
replaced by segments of circles (see dotted lines, Fig. 2). In this case, expression (6),
which is valid for smooth curves, holds. Consider now the limit as the curvature of these
circles tends to infinity. The contribution to Eq. (6) coming from the straight line parts
of the sides will be zero since da = 0 along straight segments. Near each corner however,
there will be a contribution to the field, because of the existence of the circular arcs.
This will be given by:

n=N a+
dx) = § 172 Jn z(08)da )
n=1 ar liii'lsinz(e-a)

As the curvature of the arcs is increased (R + 0), the values of 6 and IIIE'I along the
arc approach 6, and |§f§in respectively. Thus Eq. (7) tends to:

+
N E(Bn) Jan da

ol(x) = - . T3 which is equal to
n=1 2|x-x In ap  sin“(8y-a)
Q+
N EI(8_)cot(6_-a)
E.L _% Z n n (8)

=1 |x-x'[, ap

Expressions (5) and (8) are as expected identical. Uniqueness of representation of the
stress fleld is thus established.

Special Features of the Solution

In the previous sections, two different approaches were used to derive the expression
for the stress field created by a planar polygonal loop. The result was obtained in the
form of a finite sum of terms evaluated at the vertices. Examination of the solutjon shows that
somwe of the terms of the sum might tend to infinity for certain values of (8- ap). In
particular, if the field point E_lies in the extension of the straight line joining the s
and s+l vertices, then.

B 8_ =7 and a Bs+1 L

In such a case, each of tge foliowing two terms o? the sum become infinite.

+ -
Llpglcot(d -a ) ] 5(95+9c°t(es+1_°s+1)

(9
|x-x' '

et
IEE':-I:!+1 —'54'1
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In the present section the behaviour of the solution at points collinear to the sides of the
polygon will be investigated. In doing so, a field point x lying at a distance d from
the extension of the side connecting vertices s and s+l will be considered (see Fig. 3).
From the geometry of the figure:
] ]
oy o _Iffl.ls _# - |x-x g+1 -
cot (0 -ay) —_—0 cos(8g-a.),  cot( Gl %) = - cos(8 ;-a.,)

Using the above, expression (9) can be written as:

é-[§(55+1)c05(65+1-u;+1) - Ejas)cos(as-u;)]

(10)
) (Byl-w)-(es_w) [‘a[asﬂ)cos(es+1-u;+1)-§(es)c°5(as'“;J]
d 2] -8
s+1 s
where = of -m . (05@) 1 (o)
Taking the limit as d + 0, cos(6, -a.) +-1, cos(® -a_ . }*-1 and + +
Thus (10) becomes: ’ 8 8 ’ s+l s+1 é Rse1 d R
1 1
- L'(8g) - == (11)
=8 [Rs+1 Rs]

Expression (ll)lis clearly nonsiﬁgglar. For points collinear to consecutive vertices of the
polygon, the field remains bounded, but the expression involves both the zeroth and first
derivatives of $(6). The expression for the stress field must now be modified as follows:

+
. o
L 1 ¥ ;(en)cot(an-a) n ;'(e') 1 1 z(as) [Eotcs coté .,
ag@® -3 _— i el el R S (12)
o=l |x-x'| - s+l 8 ‘- ] s+l
=='n a
ngs, s+l

where ¢s and ¢s+1 are the interior angles of the polygon at the sth and s+1th  vertices.

At this point it is worth noting that any smooth loop can be considered as the common
limit of a circumscribed and an inscribed polygonal loop whose number of sides tends to in-
finity. For such a case, Rg4) * Ry and the term of Eq. (12) involving the first derivative
vanishes. This is expected since, as we have seen in (6), the field of a smooth loop can be
expressed with respect to 1(8) only, whatever the position of the field point x may be.

In conclusion, it is observed that there are nc complications due to potential singu-
larities arising for the case of field points collinear to two consecutive vertices of the
polygonal loop. The stress field around a planar dislocation loop of any kind is found to be
well behaved regardless of the position of the field point.
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FIG. 1 Schematic of a smooth
planar dislocation loop.

FIG. 2 A polygonal dislocation loop.
Both the "smooth' and "sharp"
corner approaches shown.

FIG. 3 Limiting case of a field
point approaching the exten-
sion of a side of a poly-
gonal dislocation loop.
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