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The shadow spots which are obtained in using the optical method of caustics to experi­
mentally determine dynamic stress-intensity factors are usually interpreted on the basis 
of a static elastic crack model. In this paper, an attempt is made to include both crack-tip 
plasticity and inertial effects in the analysis underlying the use of the method in reflec­
tion. For dynamic crack propagation in the two-dimensional tensile mode which is accom­
panied by a Dugdale-Barenblatt line plastic zone, the predicted caustic curves and corre­
sponding initial curves are studied within the framework of plane stress and small scale 
yielding conditions. These curves are found to have geometrical features which are quite 
different from those for purely elastic crack growth. Estimates are made of the range of 
system parameters for which plasticity and inertia effects should be included in data 
analysis when using the method of caustics. For example, it is found that the error intro­
duced through the neglect of plasticity effects in the analysis of data will be small as long 
as the distance from the crack tip to the initial curve ahead of the tip is more than about 
twice the plastic zone size. Also, it is found that the error introduced through the neglect 
of inertial effects will be small as long as the crack speed is less than about 20 percent of 
the longitudinal wave speed. 

1 Introduction 
Progress toward understanding the phenomenon of dynamic crack 

propagation in solids has been impeded by several complicating fea­
tures which are encountered in both analytical and experimental 
approaches. Prom the experimental viewpoint, the inherent time 
dependence of the process requires that many sequential measure­
ments of field quantities be made in an extremely short time in a way 
which does not interfere with the process itself. Furthermore, the place 
at which field quantities are to be measured varies, often in a non­
uniform way, during the course of the process. Because of this com­
plexity, most experimental techniques for measuring crack-tip stress 
and deformation fields during rapid fracture are based on optics. Such 
methods have three main advantages: 

(i) The techniques are full-field methods, i.e., the entire specimen 
is observed continuously and crack paths need not be known a 
priori. 
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(ii) There is no coupling between the optical and mechanical 
processes, i.e., the method of measurement does not interfere with 
the process being examined. 

(Hi) The response of an optical system is essentially instantaneous 
on the time scale of mechanical rapid fracture events. 

Several optical methods have been used during the past 50 years 
to measure deformations in nominally elastic materials, and thereby 
to determine stress fields. Most of the methods are based on light wave 
interference principles, and their application has been confined to 
transparent materials, or to opaque materials coated with transparent 
materials. 

Recently, the optical method of caustics, or the shadow spot 
method, was developed and applied in the investigation of nonuniform 
surface deformations due to stress concentrations in deformed solids 
[1,2]. Details of the stress field may then be inferred from shadow spot 
measurements on the basis of an analytical model. The method of 
caustics is an exceptional method because it is based on the principles 
of geometrical optics, rather than light interference, and it has been 
successfully applied to cases of both opaque and transparent mate­
rials. The method was first used in a reflection arrangement by The-
ocaris [2], who studied the stress singularity in the vicinity of a sta­
tionary crack tip. Later, Theocaris and Gdoutos [3, 4] applied the 
method of caustics in reflection to experimentally examine the de-
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SPECIMEN 

Fig. 1 Schematic of the formation of the three-dimensional caustic envelope 
obtained by reflection 

formation fields near the tips of stationary cracks in metal plates. In 
this case, which apparently was the first application of the method 
to metal specimens, plastic deformation occurred locally and the 
optical data were analyzed by assuming a plane stress Dugdale-Bar-
enblatt model for the crack-tip plastic zones. 

The method was first used in experiments involving very rapid 
crack propagation and stress wave loading by Kalthoff and coworkers 
[5] and Theocaris and coworkers [6, 7], and more recently by Gold­
smith [8]. In each case, it was assumed that the elastic stress field near 
the tip of a rapidly growing crack in a brittle solid has precisely the 
same spatial variation as the elastic stress field near the tip of a sta­
tionary crack. That is, the influence of inertial effects on the spatial 
dependence of the crack-tip field was not taken into account. More 
recently, several investigators have reanalyzed the method of caustics 
as applied to rapid crack propagation in brittle materials, including 
the effect of inertia on the spatial variation of the elastic crack-tip 
stress field. Kalthoff, et al. [9], introduced an approximate correction 
factor to account for the potentially large error introduced when the 
static local field is used in data analysis. The exact equations of the 
caustic envelope formed by the reflection of parallel incident light 
from the surface of a specimen containing a rapidly growing crack were 
recently obtained by Rosakis [10] for mixed mode plane-stress crack 
growth. It was found that, for some typical laboratory materials used 
in crack propagation studies, the neglect of the influence of inertia 
on the crack-tip stress field could lead to errors of up to 30 to 40 per­
cent in the value of the elastic stress-intensity factor inferred from 
the measured caustic diameter. A similar analysis has also been dis­
cussed by Theocaris, et al. [11]. 

specimen 

, As vo r, ,T 

P'(X,,X2) 

X, 

Fig. 2 Optical mapping of points P(x-i, x2) of the surface of an illuminated 
solid, to points P'iX-,, X2) on a screen 

In this paper, a first attempt is made at including plasticity effects 
in the analysis underlying the optical method of caustics as applied 
in dynamic crack propagation studies. The analysis is based on the 
one-dimensional line plastic zone model of Dugdale and Barenblatt. 
For dynamic crack propagation in the two-dimensional tensile mode 
which is accompanied by such a strip yield zone, the sizes and shapes 
of the predicted caustic curves are studied. The influence of material 
inertia and of the extent of the plastic zone on stress-intensity factor 
measurements are considered. The initial and caustic curves are found 
to have geometrical features quite different from those present for 
purely elastic crack growth, and the dependence of these features on 
crack speed and plastic zone size is investigated. 

2 Formation of Caustics in Reflection 
Consider a family of parallel light rays incident on the reflective 

surface x% = —f(x\, x2) of an opaque material; see Pig. 1. Upon re­
flection from the surface, the light rays will deviate from parallelism. 
(In practice, the intensity of the reflected ray will be less than the 
intensity of the incident ray due to random scattering.) If certain 
geometrical conditions are met by the reflecting surface, then the 
family of reflected rays will have an envelope in the form of a three-
dimensional surface in space. A section of such a surface is shown as 
the dashed curve in Pig. 1. This surface, which is called the caustic 
surface, is the locus of points of maximum luminosity (i.e., highest 
density of rays) in the reflected field. The reflected rays are tangent 
to the caustic surface. If a screen is positioned parallel to the (x\, x2)-
plane and so that it intersects the caustic surface, then a cross section 
of the caustic surface can be observed as a bright curve (the so-called 
caustic curve) bordering a relatively dark region (the shadow spot) 
on the screen. 

Suppose that the incident ray which is reflected from the point 
P(xi, xi) on the reflecting surface will intersect the screen at the image 
point P'(X\, X2); see Pig. 2. The (Xi, X2) coordinate system is 
identical to the (xi, x2) system, except that the origin of the former 
has been translated to the screen. The position of the image point P' 
will depend on the slope of the reflecting surface at P and on the 
normal distance zo between the screen and the reflecting surface. It 
has been shown elsewhere [12] that the position of the image point 
P' on the screen has coordinates 

Xi=Xi± 2z0(i>f/dxi) (1) 

where zo » | / | . Equation (1) represents a mapping of points P of the 
reflecting surface onto points P' of the screen. The choice of sign in 
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(1) depends on whether the image point is a real image in front of the 
reflecting surface (+ sign) as is the case in Fig. 2 or a virtual image 
behind the reflecting surface (— sign). The use of the virtual image 
has certain advantages in experimental fracture mechanics, and the 
subsequent analysis will be based on the choice of the negative sign 
in (1). 

If the screen intersects a caustic surface, then the resulting caustic 
curve on the screen is a locus of points of multiple reflection. That is, 
for those points on the caustic curve, the mapping (1) is not invertible 
and the Jacobian of the transformation must vanish, i.e., 

The vanishing of the Jacobian is the necessary and sufficient condition 
for the existence of a caustic curve. The points on the reflecting surface 
for which J (x i, * 2) = 0 are the points from which the rays forming the 
caustic curve are reflected. The locus of these points on the reflecting 
surface is the so-called initial curve. 

3 Application of Caustics to Plane-Stress 
Elastodynamics 

Consider a two-dimensional elastic solid occupying a region of the 
*i> *2-plane. The outer boundary is subjected to traction and/or 
displacement boundary conditions of a type to ensure uniqueness of 
solution. Suppose that a planar crack grows through the body, with 
the crack tip speed being v. Within the framework of the theory of 
plane stress, the two-dimensional displacement vector u is governed 
by the equation 

c 2V(V • u) - c2V X V X u = u (3) 

where V is the two-dimensional gradient operator and the superposed 
dot denotes time derivative. In terms of the elastic modulus E and 
Poisson's ratio v, the longitudinal and shear wave speeds for plane 
stress are ci = [E/(l - v2)p]1/2 and cs = [B/2(l + v)p]1/2, respec­
tively. 

Any displacement vector which is derived from the longitudinal 
and shear wave potentials 0 and ̂  according to 

u = V0 + VXiJ<; c ? V 2 0 - 0 = O; c2V2^ - $ = 0 (4) 

satisfies (3). In plane stress, \p has a single nonzero component which 
is here denoted by \p. 

Suppose now that the (x\, x2) coordinate system is fixed with its 
origin at the moving crack tip and that it is oriented so that crack 
growth is in the xi-direction. Furthermore, suppose that the crack 
grows with constant speed, and that the geometry and applied loading 
are steady (i.e., independent of time) as seen by an observer moving 
with the crack tip. Under these circumstances, it is expected that the 
complete elastodynamic field is steady, so that 0 and \p depend only 
on xi, x2 and ( ) = — vi>( )/i>x\. Under steady conditions, the wave 
equations in (4) reduce to 

d 2 0 / v2\ d 20 d2\b( v2\ d2\b 

i s 1 " i + r r - ° Tin 1 - -+72 ° (5) 

dx\\ cfj dx\ bx\\ ell dxl 
But each of the reduced wave equations is clearly equivalent to La­
place's equation with the X2 coordinates scaled by the factor ai = (1 
— i>2/c2)1''2 in the first case and as = (1 — i>2/c2)1/2 in the second case. 
General solutions of (5) may be written immediately in the form 

0 = Re[F(z,)], ip = Im[G(zs)] (6) 

where z\ = x\ + iaix2, zs = x\ + iasx2, and F and G are each an ana­
lytic function of its complex argument in the region occupied by the 
body. In any given problem, the analytic functions are determined 
by the boundary conditions. Although (5)-(6) have been established 
with reference to crack growth, it should be noted that these equations 
are valid for any steady plane-stress elastodynamic field. 

Generally, for plane-stress crack propagation in a body which is 
symmetric about the crack plane, the deformation fields are a com­
bination of two modes. The tensile mode, or Mode I, exhibits reflective 
symmetry with respect to the crack plane, while the shearing mode, 

or Mode II, is antisymmetric with respect to the crack plane. For these 
cases 

F(zi) = ±Fjz7), G(zs) = ± G f e ) (7) 

where the upper signs apply for Mode I and the lower signs for Mode 
II. The bar denotes complex conjugate. 

Consider now a plate which has uniform thickness d in the unde-
formed state. If the plate is subjected to edge loading which results 
in a nonuniform state of plane stress, then the thickness of the de­
formed plate is also nonuniform. In terms of the in-plane stress 
components the lateral contraction is 

f(xi, x2 ) = -u3{xi, x2) = vd(an + o22)l2E (8) 

Clearly, the function / here is identified with the function / describing 
the reflecting surface in Section 2. It represents the shape of the 
originally plane surface which is the reflecting surface. 

In terms of the stress distribution, the equations of the mapping 
(1) based on geometrical optics become 

Xi =xi- Cd( (7n + (T22)/dXi (9) 

where C = zovd/E. Thus determination of the first invariant of stress 
establishes the mapping, even for dynamic problems. 

In terms of the displacement potential 0, the first stress invariant 
is 

<Tii + ff22 = - : V 2 0 (10) 
( 1 - W 

For a steady-state deformation field translating in the xi-direction 
with speed v, (5) may be employed to reduce (10) to 

<ru + a22 = (1 + v)pv2d24>/dx\ (11) 

or, in terms of the analytic function F appearing in the general solution 
(6), 

a n + a22 = (1 + v)pv2 Re [F»(zi)} (12) 

If the differentiation indicated in (9) is performed and the result is 
expressed in terms of the complex variables Z = X\ + iX2, z = x\ + 
ix2 then the mapping is 

Z = 2 - K |Re [F'"(z,)] - ia, Im [F'"(zi)]} (13) 

where K = (1 + v) pv2C. 
As noted in the preceding section, the condition for the existence 

of a caustic curve on the screen at X3 = —z$ is the vanishing of the 
Jacobian of the transformation (13). With reference to (2), the con­
dition 3(x\, x2) = 0 specifies the initial curve on the plane of the 
specimen, and the corresponding caustic curve on the screen is the 
map of the initial curve according to (13) onto the place of the screen. 
The condition that the determinant of the Jacobian matrix must 
vanish is 

J = 1 + K(1 - a?) Re [F*(zi)] - aU2\FHzt)\
2 = 0 (14) 

where F4 is the fourth derivative of F with respect to its argument. 
The equations (13) and (14) together describe the caustic curves 

formed by reflection of parallel light from the surface of any planar 
elastic solid in which the elastodynamic stress distribution is steady. 
For any particular case, the analytic function F which appears in these 
equations must be determined from the geometrical configuration 
of the body and the boundary conditions. 

In the case of elastic crack propagation, the stress field has universal 
spatial dependence in the vicinity of the crack tip. The only quantity 
which varies from one specific case to another is a scalar amplitude, 
the so-called elastic stress-intensity factor, which is often the pa­
rameter of fundamental interest in laboratory testing. In the context 
of equations (13) and (14), the function F will be known up to a scalar 
multiplier, the stress-intensity factor. If the crack speed, geometrical 
parameters, and bulk material parameters are known, the equations 
(13) and (14) then provide a relationship between a characteristic 
dimension of the caustic curve and the corresponding value of the 
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stress-intensity factor. Experimental measurement of this charac­
teristic dimension provides the instantaneous value of the stress-
intensity factor. The tremendous appeal of the method is due to the 
fact that it povides a direct measure of the stress-intensity factor in 
nominally elastic fracture. No measurement of boundary conditions 
or field quantities is required. The optical singularity on the screen 
provides the information necessary to determine the strength of the 
mechanical singularity in the specimen (under the assumption that 
the theory of plane stress provides an accurate picture of the three-
dimensional deformation field). 

4 Caust ic C u r v e s for the L ine P l a s t i c Zone Mode l 
Analytical crack-tip models of a one-dimensional zone of nonlinear 

material response extending ahead of the tip have been proposed for 
plane-stress fracture of ductile sheets by Dugdale [13] and for the case 
of pure cleavage tensile fracture by Barenblatt, et al. [14]. The 
Dugdale-Barenblatt model is analyzed as an elastic crack problem 
in which the crack is made effectively longer by an amount R, the 
plastic zone size, with cohesive forces in the plastic zone acting on the 
prospective crack surfaces so as to restrain the opening. If small scale 
yielding conditions prevail then the applied loading is completely 
specified by an equivalent elastic stress-intensity factor, which is 
denoted by K\ for the plane tensile fracture model. 

The analysis of the strip yield model is outlined in [15]. The (x\, x%) 
coordinate system is fixed at the tip which is moving with constant 
speed v in the x\-direction. The plastic zone extends over the interval 
0 < x i < R. The derivation of the analytic function F, which is re­
quired to determine the caustic curves, follows closely the work of 
Willis [16] and employs the asymptotic result of Freund and Clifton 
[17]. For the case of small scale yielding and ideal plasticity, in which 
the cohesive tractions which resist crack opening in the plastic zone 
have the constant magnitude do, the analytic function F is given 
by 

F"(z) 
2<r0(l + a2) 

liirQ 
• tan" 

R 1/2 

where 

•KK\ 

* 8<rl' 
Q = Aaias - (1 + a2,)2 

(15) 

(16) 

The quantity <TO is identified as the uniaxial tensile flow stress of the 
material. The branch of (z - R)1/2 which is positive as z ->- <= along 
the positive real axis of the z-plane is assumed. Note that the rela­
tionship (16) between the plastic zone size and the remote stress-
intensity factor is identical to the corresponding result for quasi-static 
deformations [18]. However, the function F is different from the 
corresponding quasi-static result. 

Suppose now that a tensile crack is propagating in a polished plate 
specimen, and that the specimen is illuminated by a beam of parallel 
light as indicated in Fig. 1. The light will be reflected from the speci­
men surface and, under suitable conditions, will form a caustic curve 
on a screen placed at a distance zo from the midsurface of the speci­
men. The size and shape of the caustic curve will be related to the 
functional form of F in (15), and will depend on the parameters v, (To, 
and K\. In what follows, the nature of the caustic curves corresponding 
to dynamic crack growth accompanied by a strip yield plastic zone 
under small scale yielding conditions is investigated. The investigation 
is based on the analytic function F given in (15) and (16), on the 
equation of the initial curve (14), and on the equation of the optical 
mapping (13). 

Next, all lengths are normalized with respect to the plastic zone size 
R, and a superposed caret is used to denote normalized values of the 
length parameters, e.g., z; = zi/R = n exp (idi). If F is differentiated 
and is substituted into the equation for the initial curve (14), then the 
result in nondimensional form is 

J (n , 6i) = 1 - A(l - «f) Re [Gizd] - a2, A2 | [G(z,) |2 = 0 (17) 

where J is now viewed as a function of the distorted polar coordinates. 
In (17) 

Fig. 3 Initial curves at the tips of steadily propagating cracks for five values 
of r/R 

G(Z)-
(3z /2- l ) 

' Z 2 ( Z - 1)3/2 
A _ (* + " W U + °%) COZCd , l g . 

TTQ ER2 

The mapping, which defines the caustic curves corresponding to the 
solution of (17), is 

.&1 = fi cos 8i + 

cti%2 = ti sin 8i + 

ri(f2-2ficosd,+ l)Ui 

X cos 

a2 A 

0, + ltan-if ' ' 8 i n 9 ' ) 
2 \fi cos 6t - l/. 

Mr? ~ 2 n cos 8i + l)i/* 

X sin r\ sin ( ! + - tan i , 
2 Vl cos Oi - 1J 

(19a) 

(19b) 

The limiting behavior of the foregoing equations as R —>- 0 and 
v -* 0 may be checked against the previously derived results for 
R = 0 and v = 0. It is easily shown that if R —>• 0 then (19) reduce to 
the equations (2.9) of [10] which represent the caustic envelope for 
a dynamic Mode I crack propagating in a linear elastic solid. For 
R —- 0 and u —• 0, (19) reduce to the equation of a generalized epicy­
cloid as predicted by the analysis of a stationary crack in a linear 
elastic material [2]. 

5 R e s u l t s and D i s c u s s i o n 
Two parameters which seem to have fundamental significance in 

analyzing the initial curves (17) and caustic curves (19) are the ratio 
of crack-tip speed to characteristic speed of the material and the ratio 
of initial curve "size" to plastic zone size. The former parameter 
represents a measure of the inertial effects, while the latter parameter 
represents a measure of the influence of the crack-tip plastic zone. 
Furthermore, the two parameters are independent of each other, in 
the sense that either may be varied without influencing the other. 
Specifically, the inertial parameter is u/ci and the plasticity pa­
rameter is r/R, which is understood to be the solution of (17) for 8i 
= 0. Thus r/R is the quotient of the distance from the crack tip to the 
extremity of the initial curve directly ahead of the crack tip and the 
length of the plastic zone R. 

The equation of the initial curve (17) was solved numerically by 
means of the Newton-Raphson procedure. First, the value of 8i was 
fixed, and then all values of fi satisfying the resulting equation were 
determined by Newton-Raphson iteration. This was done for a 
number of values of 8i sufficient to generate the initial curves. 

The computed initial curves for the case of u/cj =0.2 are shown in 
Fig. 3 for a range of values of r/R. The geometrical features of the 
initial curves are strikingly different from the features of an initial 
curve for an elastic crack. For values of r/R near to unity (e.g., r/R = 

Journal of Applied Mechanics JUNE 1981, VOL. 48 / 305 

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/appliedm

echanics/article-pdf/48/2/302/5878993/302_1.pdf by C
alifornia Institute of Technology, D

onna M
ojahedi on 18 July 2022



* 

Fig. 4 Caustic curves formed by reflection from the near tip region of steadily 
propagating cracks corresponding to the initial curves of Fig. 3 

1.2), the individual singularities in the deformation field at the crack 
tip and the plastic zone tip dominate. The initial curve consists of two 
disjoint lobes, each roughly circular and centered at these two 
singularities. As r/R becomes larger, the shape of two lobes is distorted 
and they tend to approach each other. As seen in Fig. 3, the two lobes 
are almost in contact for r/R = 1.32. When r/R has increased to about 
1.34, the two lobes have two common points. As r/R increases beyond 
this critical value (e.g., to r/R = 1.35), the initial curve again splits into 
two lobes. However, whereas the lobes are disjoint for r/R < 1.34, they 
are nested for r/R > 1.34. This nested structure is maintained as r/R 
is increased. For values of r/R large compared to one, the shape of the 
outer lobe is essentially the correct shape for a dynamic elastic crack. 
The inner lobe becomes very small compared to R as r/R becomes 
large, and is finally reduced to a point as r/R —•- °°. 

It is a simple matter to prove that the initial curve (17) intersects 
the plastic zone at two points for any value of r/R in the range 1 < r/R 
< •». On Im (it) = 0 and 0 < Re Hi) < 1, it is clear from (18) that 
Re (G) = 0, and (17) takes on the simple form 

(OLlAY \G(zt)\ (20) 

The left side of (20) is, in general, a bounded positive real number. 
From (18), it can be seen that the right side of (20) equals zero if 
Re (z() = | . Furthermore, the right side of (20) increases monotonically 
from zero to arbitrarily large values either as Re (z;) increases from 
f to 1 or as Re (zj) decreases from | to 0. Thus (20) always has one, and 
only one, root in the range 0 < Re (ii) < §, and one, and only one, root 
in the range | < Re (z;) < 1. As r/R -* «>, these two roots coalesce at 
ii = | The coalescence of the two roots as r/R -> °° corresponds to the 
reduction of the inner loop of the initial curve to a single point as the 
effects of plasticity disappear. 

The caustic curves corresponding to the initial curves in Fig. 3 are 
shown in Fig. 4. If the initial curve consists of disjoint lobes, then the 
resulting caustic consists of open curves (e.g., r/R = 1.2 in Fig. 4). As 
r/R approaches the transition value of 1.34, cusps are formed near the 
ends of the open curves. When r/R reaches the critical value of 1.34, 
the gap between the open curves which form the caustic closes, and 
as r/R increases beyond the critical value (e.g., for r/R = 1.35), the 
cusped portion of the curve splits off from the main caustic curve. A 
detailed view of these cusps for r/R = 1.35 is shown in Fig. 5, where 
the corresponding angle on the initial curve is identified for several 
points on the caustic. Note that the ends of the caustic seem to cor­
respond to the points where the initial curve intersects the plastic 

Fig. 5 A detailed view of the cusped portion of the caustic curve for r/R •• 
1.35, v = 0.20 c(, shown in Fig. 4 

K i 
l^oi cr„(z0l'd) 

Fig. 6 Variation of the dimensionless maximum transverse diameter of the 
caustic curve, versus the normalized remote elastic stress-intensity factor, 
presented for a range of crack velocities 

zone. For r/R > 1.34, the cusped segment of the caustic arises from 
the small inner loop of the initial curve, and the larger smooth portion 
of the caustic arises from the outer loop of the initial curve. As r/R 
increases, the small cusped segment of the caustic curve becomes 
smaller and separates further from the main part of the caustic 
curve. 

6 I n t e r p r e t a t i o n of E x p e r i m e n t s 
The following discussion is based on the assumption that, in the 

interpretation of experimental data, the size of the caustic curve is 
determined by the distance between the two points on the curve which 
are furthest from the Xi-axis on the screen. This distance will be 
denoted by D. For a purely elastic Mode I crack under quasi-static 
conditions, the relationship 

( — I 1 
D •• 2 . 5 9 2 8 

E y/iKi 
\oQVZ<jd} (To 

2/5 
(21) 

between D and the Mode I stress-intensity factor K\ is well known. 
Although the plastic flow stress <JQ appears in (21), it does so only 
through a factor common to both sides of the equation. The form of 
(21) was chosen because the results with plasticity effects included 
could be expressed best in terms of the dimensionless quantities in 
square brackets in (21). 

For a given crack-tip speed u/cj, both of the dimensionless quan­
tities D(E/a0v zdd)1/2 and (Ki/oa)(E/oo vz0d)w can be determined 
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Fig. 7 Error Introduced In the inferred value of K through neglect of both
material Inertia and plastlcily effects in Ihe analysis of experimental data Fig. 8 Caustic formed In reflection at the tip of a propagating crack In a

metallic specimen using single phase, monochromatic light

Fig. 9 Caustic lormed In reflection at the lip 01 a prop~gatlng crack In a
metallic specimen using while light

ro'

Fig. 10 Causllc at a stationary crack tip In the form of an eplcyclold as
predicted by elastic static analysis

be for an elastic crack as in Fig. 10. The long tail behind the main
caustic curves is apparently due to the permanently deformed wake
left behind as the active plastic zone passes by a material point. The
Dugdale-Barenblatt crack-tip plastic zone model does not include a
plastic wake effect, and no quantitative estimate of the relative size
of the caustic associated with the wake region is yet available. The
fringes in the optical pattern of Figs. 8 and 10 seem to be due to phase

in terms of the parameter r IR, which is thus a parametric represen­
tation of the D versus Kr relationship. If the parameter rlR is elimi­
nated (a process which can only be done numerically), then the rela­
tionship shown in Fig. 6 for four crack speeds is established. It is im­
portant to note that rlR varies alone each curve in Fig. 6, in general
decreasing from left to right. The dashed curve in Fig. 6 is simply a
graph of (21) which is valid for vlcl = 0 and rlR ---+ "'. As can be seen,
it fits very well with the computed result for viC/ = O. It should perhaps
be restated here that D is assumed to be the observed caustic size, Kr
is the remote elastic stress-intensity factor within small scale yielding
theory, and the relationship shown in Fig. 6 is that predicted on the
basis of plane-stress theory, small scale yielding, and the Dugdale­
Barenblatt one-dimensional plastic zone model. It would appear from
Fig. 6 that if experimental observations are confined to cases for which
(Kr/uo)(Eluo v Zo d)l/4 is less than about 1.0, then plasticity effects
need not be taken into account in the interpretation of the observa­
tions. The possibility of adjusting the value of this nondimensional
parameter simply by changing Zo is only apparent because the value
of this distance is not completely arbitrary. In any experimental setup
for measuring stress-intensity factors by the method of caustics, the
distance Zo must be chosen so that the initial curve lies in a region of
the specimen near the crack tip where the K-dominated small scale
yielding solution accurately represents the stress field. It is also ob­
served that the influence of inertia on the D versus Kr relationship
is not large if vlcl is less than about 0.2.

Suppose now that an observed caustic of size D is interpreted in two
ways. First, it is interpreted on the basis of an elastic crack model and
quasi-static conditions, and the inferred value of Mode I stress-in­
tensity factor is K e • Alternatively, the caustic is interpreted on the
basis of a dynamic line plastic zone model, and the inferred value of
the Mode I stress-intensity factor in this case is simply K. The ratio
KIKe as a function of rlR is shown in Fig. 7. This result suggests that,
as long as the extent of the initial curve ahead of the crack tip is at least
about twice the plastic zone size, the error introduced through neglect
of plasticity effects in the analysis of the data will be small. Again, this
observation is based on the condition that the initial curve lies in a
region of the specimen in which the K-dominated small scale yielding
solution accurately represents the stress field. A qualitative discussion
of this oint is included in [19]. For any extent of the plastic zone, in­
ertial effects seem to be important only for crack speeds in excess of
0.2 C/.

Finally, two photographs of caustic curves obtained in reflection
for running fractures in steel specimens are shown in Figs. 8 and 9.
These are preliminary photographs taken in the process of developing
an experimental apparatus, and a full quantitative interpretation is
not yet available. However, it does seem that the caustics are elongated
in the direction of crack growth, rather than circular as they would
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interference. The light source used to produce the photographs shown 
in Figs. 8 and 10 was a laser which emits monochromatic, single phase 
light. The illumination outside the caustic curve results from a double 
reflection or mapping. That is, light waves reflected from both inside 
and outside the initial curve on the specimen strike the screen outside 
the caustic. Because of the deformation of the specimen surface, 
however, the light rays reflected from inside the initial curve travel 
a distance different from that traveled by the rays reflected from 
outside the initial curve. This difference in path length leads to a 
difference in phase at the screen which results in the observed phase 
interference pattern. Unlike Figs. 8 and 10, no fringes appear in the 
photograph in Fig. 9 because the incident light in this case was not 
single phase and no regular phase interference pattern could be 
formed. 

7 S u m m a r y of C o n c l u s i o n s 
For the line plastic zone model, the geometrical features of the 

initial and caustic curves are found to be strikingly different from the 
curves corresponding to an elastic crack. In terms of the fundamental 
parameters r/R and v/c, which were defined at the beginning of Sec­
tion 5, the following observations are made: 

1 With reference to the initial curve for v/c = 0.2, 
(i) For r/R near unit, two disjoint lobes centered at X\ = 0 and 

*i = R are found. 
(ii) As r/R increases from 1 to 1.34, the two lobes distort and 

approach each other. 
(Hi) The two lobes make contact when r/R = 1.34 and as r/R 

increases beyond 1.34, the initial curve takes the form of two nested 
closed curves. 

(iv) As r/R ->• °°, the outer branch of the initial curve ap­
proaches the shape appropriate for a dynamic elastic crack and the 
inner branch shrinks to a single point on the line plastic zone. 

2 With reference to the caustic curve for u/c; = 0.2, 
(i) For 1 < r/R < 1.34, the caustic consists of two open 

curves. 
(ii) As r/R increases toward 1.34, cusps are formed at the ends 

of the open curves and the separation distance between the two open 
curves decreases. The separation distance vanishes when r/R = 
1.34. 

(Hi) For r/R > 1.34, the main part of the caustic is an oval curve 
with its longer axis in the direction of crack growth. A small secondary 
caustic, arising from the inner loop of the nested initial curve, splits 
off from the main caustic. 

(iv) As r/R -* °°, the main part of the caustic approaches the 
shape appropriate for a dynamic elastic crack and the secondary 
caustic vanishes. 

3 On the basis of the line plastic zone model, plasticity effects need 
not be taken into account in analyzing experimental data for which 
(E/o-ovzod)1'* (Ki/o-0) is less than about 1.0. 

4 The error introduced through the neglect of plasticity effects 
in the analysis of data will be small as long as the extent of the initial 
curve ahead of the crack tip is more than twice the plastic zone 
size. 

5 Inertial effects appear to be significant for crack speeds ex­
ceeding approximately 0.2 c;. 
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