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Abstract 

The method of caustics, as developed and applied to fracture mechanics over the last twenty years, contains 
several approximations which limit its applicability. In this paper the development of caustics is reviewed and 
the implicit assumptions made in the past are clarified and discussed. The exact equations are derived for 
caustics formed by the reflection of light from a general surface. In addition, the conditions for the formation 
of a caustic curve are derived and explained in detail. Numerically generated shadow spots are given for the 
case of light reflected from a surface deformed due to the presence of a plane stress, mode-l, elastic crack. 
Attention is focused on the near tip region where severe deformation gradients violate the assumptions made 
by previous approximate analyses. The results demonstrate significant deviation from the approximate 
analyses resulting in errors as large as 15% in the determination of the stress intensity factor from shadow 
spot measurements. 

1. Introduction 

In  the pas t  few decades ,  a n u m b e r  of  opt ica l  me thods  based  on  the pr inc ip les  of  l ight  

wave  in ter ference  have been  in t roduced  for  the s tudy  of  stress and  s t ra in  f ields in 

e las t ic  t r anspa ren t  mater ia ls .  By their  app l i ca t ion  a n u m b e r  of  i m p o r t a n t  advances  in 

the  s tudy  of  the de fo rma t ion  of  sol ids have been  achieved [1,2,3]. However  these 

m e t hods  are  res t r ic ted  genera l ly  to  t r anspa ren t  mate r ia l s  or  to o p a q u e  mate r ia l s  wi th  

t r a n s p a r e n t  coat ings  [4]. M o r e  recent ly  the opt ica l  m e t h o d  of  caust ics,  a technique  

based  on  geometr ica l  optics,  was the first  one  to be  successful ly app l i ed  to the s tudy  of  

d e f o r m a t i o n  f ields in  opaque  solids.  The  advan tage  of  caust ics  re la t ive  to o the r  op t ica l  

exper imen ta l  techniques  is tha t  the m e t h o d  can  be  used  in e i ther  a ref lec t ion or  a 

t r ansmiss ion  a r r angemen t  and  thus can  be  app l i ed  to  the inves t iga t ion  of  bo th  

t r anspa ren t  or  o p a q u e  mater ia ls .  

In  t r ansmiss ion  the technique  can be  used  to record  changes  in the  refract ive  index  

caused  by  the presence  of  stress or  dens i ty  fields. T r a n s m i t t e d  caust ics  can  therefore  

f i e l d  i n fo rma t ion  regard ing  the stress or  dens i ty  fields, p rov ided  tha t  these f ields can  be  

re la ted  to the changes  in the  refract ive  index.  Similar ly,  caust ics  in ref lect ion can  be  

used  to  record  the  changes  in e levat ion  which  are i n t roduced  to an  in i t ia l ly  f lat  and  

reflect ive surface b y  the es tab l i shment  of  a stress field. Ref lec ted  caust ics  can  therefore  
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yield useful information regarding the stress state below the reflecting surface, provided 

that the surface deformation can be related to the existing stresses. 

In this paper, our attention is mainly focused on the study of caustics obtained by 

reflection of parallel light rays from the mirrored surface of a solid. However, a special 

effort has been made to keep the analysis as general as possible. As a result, the main 

concepts presented here, with minor adjustments, hold for both the cases of reflection 

(opaque solids) and transmission (transparent solids or fluids). 

In the fluid mechanics literature, transmission caustics are usually referred to as 

"shadowgraphs" and have been applied to a number of interesting applications, e.g. 

qualitative study of compressible flow [5]. In solid mechanics, the method is custom- 

arily referred to as either the shadow-spot technique, or the method of caustics. In 

solids, caustics have been initially introduced by Schardin [6] and Manogg [7] and in 

recent years have been applied to a number of interesting fracture mechanics problems 

by a variety of investigators [8,9,10,11,12]. 

Manogg, who was the first to apply the technique quantitatively, used caustics in a 

transmission arrangement. He was able to record changes in the optical path of rays 

traveling through transparent material at the vicinity of a crack tip, where the elastic 

stress field introduces changes in the refractive index as well  as changes of thickness. 

The resulting difference in optical path produces a causti c pattern on a screen placed 

behind the specimen. He showed that the geometrical ch~acteristics of the caustic 

depend on the nature and intensity of the crack tip singularity and was able to measure 

the intensity of the near-tip stress field. 

Manogg's result was later applied to the study of reflected caustics. His analysis, 

obtained on the basis of a transmission arrangement, was assumed to describe both 

transmission and reflection shadowgraphs. The adaptation of Manogg's equation for 

the reflection problem involved a number of simplifying assumptions [8,9] (to be 

discussed in detail later). These assumptions prove to be useful in cases involving small 

angles of incidence but limit the generality of the result and impede the complete 

understanding of the optical process. This seems to be particularly true at the vicinity 

of steep gradients in the reflector shape, areas that are usually of special interest to 

most investigators. Unfortunately, in spite of such limitations, no effort has been made 

to understand completely the mechanism of the optical mapping and in most of the 

applications of the method the approximate adaptations of Manogg's results were 

indiscriminately applied without examination of the validity of the assumptions under 

which they were initially derived. 

In the first part of this paper a three dimensional analysis is performed and the 

complete equations of the optical mapping are established for the first time. No 

assumptions regarding the nature of reflector or the optical set-up are made. For the 

cases of light reflected from regions of abrupt changes in optical path created by 

singularities such as point force, stress waves, or singular crack tip displacement fields, 

the notion of an interruption curve is introduced. The interruption curve is defined as 

the locus of points surrounding the singularity and including an area which will not 

contribute to the formation of an optical image. The curve represents an upper limit to 

how close one can "approach" the singularity using the optical method of caustics, 

since the information obtained by reflection from points within this curve is lost. 

In the second part of this paper, the condition for the formation of a caustic curve is 

re-examined. The accepted condition, which seems to appear again and again in the 
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literature is never adequately explained [8,9]. An explanation in terms of the intensity 

of light reaching the image plane (screen) and producing the optical pattern is provided 

here. It is shown that the intensity of light reaching the "screen" at a point P, is 

inversely proportional to the Jacobian determinant of the mapping equations derived in 

the first part of the section. The caustic curve thus corresponds to reflections from 

points on the specimen for which the Jacobian vanishes. The vanishing of the Jacobian 

produces infinite intensity in the screen plane and the existence of bright curves (the 

caustics) is thus predicted. More generally, it is noted that once the equation of the 

reflecting surface is given, the value of the Jacobian is completely determined and it can 

be used to provide the intensity of light at any point on the screen. 

In the third part of this paper, shadow patterns are produced numerically using the 

complete equations of the optical mapping. The shadow patterns are then compared to 

the patterns obtained using the approximate mappings. Through this comparison, the 

errors involved in using the approximate mappings for fracture mechanics applications 

are investigated. Of particular interest is the region very near to a plane-stress crack tip 

where the steep out of plane displacement gradients result in large deviations from the 

customarily used simplified caustic equations. 

2. Discussion of previous work on caustics 

In the original work on transmitted caustics [7] there are implicit assumptions which 

limit the applicability of the results. These assumptions have been carried through in 

most of the subsequent applications of caustics [8,9,10] with very little or no explana- 

tion. In this section the approximations that appear in the caustics literature are 
discussed in detail. 

Consider a planar medium lying in the x 1, x 2 plane at x 3 = 0. The medium is such 

that it causes a non-uniform change in the optical path of light transmitted through it, 

• or reflected from its surface. For  a transparent material the change in optical path is 

due to non-uniform changes in thickness of the medium and also due to to gradients in 

the index of refraction of the material. For  an opaque material the change in optical 

path is due to a non-uniform surface elevation of the medium. 

Consider further light travelling in the - x  3 direction normally incident on the 

medium at x 3 = 0, as illustrated in Fig. 1. This is equivalent to a family of plane waves 

incident on the medium. A light ray is parallel to the vector normal to a surface 

representing wave fronts of light. If S(Xl, x2, x3) represents the optical path of the 

light ray, then the wave front is given by S(x  1, x2, x3) -- Const. The vector WS(Xl, x2, 

x3), where V is the gradient operator, is then normal to S and thus parallel to the light 

ray passing through S at point (xl ,  x2, x3). For a transparent material, the plane 

waves travel through the material and are distorted due to the introduced variations in 

optical path. This causes light rays passing through the medium to be deflected. 

(Equivalently, waves reflected from the surface of an opaque solid are distorted due to 

nonuniform surface elevation.) If a screen is placed at a distance z 0 behind the 

medium, then the light ray intersecting it at the point x = (Xl, x2) will be mapped to a 

point X = (3(1, X 2) on the screen. The (X1, X 2) coordinate system is identical to the 

(x 1, x2) system, except that the origin of the former has been translated by x 3 = - z  0. 

Assuming that the medium is of infinitesimal thickness and using the geometry of Fig. 
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Figure 1. Deflection of light rays by specimen. 

2, we see that the mapping is given by 

(vs(xa'x2'O) ) (2.1) 
X = x - Z  0 (VS(x1 ' X2, 0), "3) -- e3 

where e 3 is the unit vector along the x 3 axis. 

In the original work by Manogg it was assumed that S is described by a family of 

self-similar surfaces translated in the - x  3 direction as in Fig. 3. Thus, according to his 
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Figure 2. General optical mapping. 
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Figure 3. Translating wavefronts. 

assumption, S is given by 

s(x, ,  x2, x3)= - x 3 -  a (xl, x:)--Const. (2.2) 

where AS(X1, X2) represents the change in optical path introduced by the medium. The 
limitations of this assumption become evident if a light ray is followed from a surface 
S a to another, S 2, as in Fig. 3. The light ray parallel to the vector normal to $1 at point 

/'1 intersects $2 at P2- However the normal at P2 is not parallel to the normal at P1 
and thus does not coincide with the direction of the fight ray. Only for very small 

angles of deflection, will the normal at /)2 be parallel to the normal at P1- Thus 
Manogg's assumption implicitly limits the applicability of his results to small ray 

deflections. As is evident from Fig. 4, the wave fronts are actually a family of 
expanding waves, resulting in light rays which are always normal to the surface. For 
very large radii of curvature, i.e. very small deflections, expanding and translating 
waves are coincident and S may be approximated by equation (2.2). 

With Manogg's assumptions and the further assumption of a medium of infinitesi- 
mal thickness, the mapping of light rays is found by substituting equation (2.2) into 

(2.1) and is given by 

x =  x - Z o V ( A s ( x l ,  x 2 ) ) ,  (2.3) 

which is Manogg's original result and is the equation used in the normal evaluation of 
transmitted caustics for fracture mechanics applications. 

The application of caustics to the study of opaque materials requires the reflection of 
light from the highly polished surface of a planar solid. Theocaris [9] applied Manogg's 
equation to caustics in reflection by assuming that the change in optical path is given 

by 

As(x], x2)=  2f (x l ,  x2), (2.4) 
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Figure 4. Expanding wavcfronts. 

where x 3 = -f(xl, X2) is the equation of the specimen surface. Substituting equation 

(2.4) into (2.3) yields 

X = x - 2Zogrf(x  1, x ) .  (2.5) 

Equation (2.4) introduces an additional approximation since the actual change in 

optical path is greater than 2f ,  due to the angular deflection undergone. 

In cases of severe gradient in optical path, the light rays reflected from or trans- 

mitted through the medium deflate strongly from parallelism. In such cases Manogg's 

and Theocaris' assumptions lose validity and a more accurate analysis is required. The 

exact analysis for reflected caustics is given in the following section. 

3. Reflected caustics: The mapping equations 

In this section, the particular example of caustics obtained by reflection will be 

considered. Shadowgraphs obtained by reflection are associated with changes in the 

optical path of the light rays, introduced due to the nonuniform elevation of the 

reflector surface. The equations describing the optical mapping of points of the 

reflector on to points of the image plane (shadowgraph plane), with minor modifica- 

tions, also describe the transmission shadowgraphs. The basic difference between 

reflection and transmission is in the nature of the optical path change, which in the 

latter case is caused by changes in the refractive index of the transparent medium. 

Consider a family of light rays, parallel to the x 3 axis, incident on the reflective 

surface x 3 = - f ( x l ,  x2) of an opaque material, see Fig. 5. The reflected light field is 

recorded by a camera positioned in the front of the reflecting surface. The focal plane 

of this camera, which shall be called the "screen" for convenience, is located behind the 

reflector and intersects the virtual extensions of the reflected rays at the plane x 3 = - z  0 

where z 0 is positive. In the most general case, z 0 is positive for a virtual image (focal 
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Figure 5. Optical mapping for reflected caustic. 

plane is located behind the reflector) and negative for a real image (focal plane is 

located in front of the reflector.). 

Consider further an incident light ray which intersects the reflecting surface at 

x 3 = - f .  After reflection from point p(xl ,  x2) on the polished surface, the ray will 

deviate from parallelism. The virtual extension of the resulting reflected ray will then 

intersect the screen at the virtual image point P(  X 1, X2) whose position will depend on 

the slopes of the reflecting surface at p(x  l, x2) and on the normal distance z o. The X 1, 

X 2 coordinate system is identical to the x 1, x 2 system, except that the origin of the 

former has been translated the distance z 0 to the screen. 

If ~p is the angle between the incident light ray and the normal to the reflector at 

p(x  1, x2) and p '  is the normal projection of p on the "screen", then the position vector 

of the image point P will be given by 

X = x + [ (% - f )  tan 2cp] u (3.1) 

where 

X = Xiei, x ~ "  xie i 
and u = p,---rff/ip,--- ff I is the unit vector along p ' /~.  

Also, if N is the unit normal to the surface x 3 = - f ( x l ,  x2) at the point p(x  l, x2), 

then N is equal to ~rF/I VFI where F(Xl, x2, x3)= x3 + f (x l ,  Xz). Further, if e 3 

denotes a unit vector in the x 3 direction (direction of light incidence), the plane which 

contains the incident light ray and the corresponding reflected ray will be defined by 

the normal unit vector n = N X e3/I N × e3l. The intersection of this plane with the 

plane of the "screen" is then the line which has a direction specified by the unit vector 

u given by 

00fl el + 0~2 e2 v f  (3.2) 

u=n×e3= -- [( Of l2+( Of )2] 1 / 2 [ ,  OXl ] , OX2 ' v ' f  ' " 
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Also, the tangent of the angle cp between the incident ray and the normal to the 
reflecting surface can be expressed as 

= [( ) [ ~f t211/2 tan cO = sin_______~ [e 3 × N [ a f  2 + = [ lTf[. (3.3) 
cos~p Je3, N I  ~ ~ ~-~x2 ] J 

By substituting equations (3.2) and (3.3) into (3.1), the position vector of the image 

point P of the "screen" can be written as 1 

X = x _ 2 ( z o _ f  ) v f  
1 - I v f l  2" (3.4) 

The above expression describes the optical mapping of points p (x  t, x2) of the 

reflector on to points P(x 1, x2) of the "screen". The choice of the sign of z 0 depends 

on whether the image is real or virtual. The use of a virtual image (positive z0) and a 

reflection arrangement, has certain advantages in experimental solid mechanics as 

discussed in [14,15]. 

Equation (3.4) can be simplified by introducing a number of assumptions based on 

the nature of the changes in optical path introduced by the medium studied. For z 0 

sufficiently large, it can be accurate and useful to assume that (Of/Oxi) 2 <,~ 1 and that 

f ( x  1, x2), the magnitude of the optical retardation introduced by the medium, is small 

compared to z 0. These assumptions reduce the equation of the mapping to the 

following form as indicated in equation (2.5) 

X = x - 2zoVf, 

which is the approximate expression given by Theocaris. 

Although equations (2.5) seem to give satisfactory results in many cases of practical 

interest, the complete understanding of the reflection process requires the introduction 

of the general form (3.4) of the mapping equations. This becomes obvious by consider- 

ing the second term in (3.4) which becomes singular for [ v f [  2 = 1. This singularity is 

artificially eliminated in the approximate form of the equations used so far. 

The condition 

I V f J 2 = l  (3.5) 

defines a curve on the plane of the medium considered whose points will map at oo on 

the reference plane screen. Points inside this curve will not be reflected back and will 

not contribute to the formation of the optical image on the "screen". 

The curve defined by the equation I ~rf 12 = 1 is introduced here for the first time, 

and will be referred to in this paper as the interruption curve. For cases in which 

singularities in the optical path difference introduced by a medium are present, the 

interruption curve places an upper limit to how close one can approach the singularity 

using the optical method of caustics, since information from points within the curve is 
lost or interrupted. 

The physical meaning of the condition can be understood by referring to equation 

(3.3). Setting I v f  12 = 1 in (3.3) is equivalent to setting tan ~p = + 1 or ~p = + ~r/4. An 

angle of incidence of + ~r/4 will result in a reflected ray parallel to the xl, x2 plane 

1 An early attempt to present the accurate optical mapping equation was given in [13]. Unfortunately this 
analysis was two-dimensional resulting in a term missing in the denominator of expressions (3.4). 
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Figure 6. Formation of caustic envelope upon reflection. 

whose virtual extension will not intersect the "screen". Similarly, slopes larger than one 

will produce reflections that will not contribute to the formation of an optical image. 

4. The formation of caustic curves and shadow spots 

Changes in optical path caused by reflection or refraction of parallel light will deflect 

the light from its original course. Depending on the nature of the optical retardation, 

regions of high intensity (caustic) or areas of low intensity (shadow spots) will be 

created on a "screen" placed perpendicular to the initial ray direction, see Fig. 6. 

In the following section, the conditions necessary for the formation of caustic curves 

are established. The analysis is carried out in reference to a reflection arrangement but 

the general results hold for both reflection and transmission as long as the appropriate 

mapping equations are used. (Equations (3.4) must be used for reflection and equations 

(2.3) for transmission.) 

Consider light of intensity ~(x 1, x2) incident on the reflective surface of an opaque 

solid. After reflection, the rays will deviate from parallelism and the reflection process 

will be described by the mapping equations (3.4) derived in the previous section. For 

perfect reflectivity, the light energy incident on an area D of the highly polished 

specimen is an invariant of the transformation. Let D be the image area on the 

transformed plane "screen" corresponding to reflections from the area D. Conservation 

of light energy requires that the total energy E incident onto the area D must be equal 

to the total light energy E ' ,  reaching the area D' of the transformed plane. Thus, 

e= f f, .(x dxldx2= e'= f f, ,ZCX)dXldX2 (4.1) 
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where ~'(X) represents the light intensity field on the "screen". 

Using the equations of the mapping (3.4) and changing variables in the right hand 

side of (4.1), we obtain 

E= f fo~(x)dxadx:=E'= f fj(X(x))lJ(x)ldx,dx: (4.2) 

where J ( x ) =  det(WX) is the Jacobian determinant of the transformation equation 

(3.4). 2 Since expression (4.2) is true for an arbitrary area D, the integrands involved 

can be equated, giving 

E ' (X(x,  f ) )  = ~ ( x ) l S ( x )  = ~(x) [de t  WX]- I .  (4.3) 

With the equations of the mapping, the Jacobian determinant can be written as 

2 [<ZO , ,2jj (4.4) 

where 1 is the identity tensor. 

Once the equation of the reflecting surface x 3 = - f ( x  1, X2) is given, the value of the 

Jacobian is completely determined and equation (4.3) can be used to provide the 

intensity of light at any point on the "screen". The entire image on the screen can thus 

be predicted. Since the intensity of light reaching the "screen" is inversely proportional 

to the Jacobian, the vanishing of J in (4.3) corresponds to infinite intensity of light on 

the "screen" plane and the existence of highly luminous curves (caustics) is thus 

predicted. 

The caustic curves therefore correspond to reflections from points on the reflecting 

surface for which the Jacobian determinant vanishes. The loci of points on the reflector 

on which J = 0 are called the initial curves and are characterized by the property that 

rays reflected from their immediate neighborhood are responsible for the generation of 

the caustic curves. The resulting caustics obtained on the screen are regions of multiple 

reflection, that is for those points on the caustic curve the mapping (3.4) is not 

invertible and the determinant of the Jacobian matrix is expected to vanish. 

Note that J in equation (4.4) depends parametrically on z 0 and thus the initial curve 

depends on z 0. In the discussion on the numerical work that follows, z 0 is varied thus 

varying the initial curve from a curve far from the crack tip to one very near the crack 

tip. 

As indicated earlier the method has potential for use in the study of abrupt changes 

in optical path introduced by singularities in stress, density, etc. It is of interest 

therefore to carry the investigation one step further and consider some general features 

of the reflection process in the vicinity of a singularity on the reflecting surface or more 

generally a singularity in the additional optical path introduced in a medium either by 

refraction or reflection. 

At points far away from such a singularity (as an example consider a crack tip) the 

reflector can be considered almost flat and Wf--* 0. The second term in (4.4) is very 

small, so J---, de t{ !  } = 1, and "--~ ~. Thus, if the intensity of the incident light is 

uniform, ~(x) = ~0, then uniform intensity of light is predicted on the screen, see Fig. 7. 

2 In transmission expression (3.4) must be replaced by equations (2.5). 
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Figure 7a. Jacobian of the mapping. 

~ ICr°ck ~i 
I 

Figure 7b. Intensity of  light on screen. 

As the singularity (crack tip) is approached, the value of J decreases and the light 

intensity on the "screen" increases. At some point J vanishes. The place where that 

happens is referred to as the initial curve. The intensity corresponding to reflections 

from the initial curve is infinite (4.3) and a caustic is the formed, see Figs. 7a, b. 
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Figure 8. Folding of the optical mapping. 

At points just inside the initial curve, the determinant in (4.4) takes small negative 

values. As we move closer to the center of the singularity, J decreases further and in the 

vicinity of the interruption curve ( I Vf 12 = 1) it tends to - oo. (One can see that by 

referring to (4.4) and observing that J is singular in the vicinity of the interruption 

curve.)  

It is worth noting at this point that at the initial curve there is a reversal of the sign 

of the Jacobian. This reversal implies "folding" of the mapping. The rays reflected 

from points outside the initial curve map outside the caustic curve. The rays reflected 

from points on the initial curve, map directly onto the caustic and the rays reflected 

from points inside the initial curve again map outside the caustic. No ray will reach the 

screen at points inside the caustic and a dark region, the shadow spot, will be created. 

In order to investigate the mechanism of reflection more completely, let us consider 

a two-dimensional reflector z = - f ( x )  as shown in Fig. 8. Assume that the reflector 

has a unit depth and that the incident light has a constant intensity represented here by 

the constant spacing dx  of the incoming rays. 

For this specific case, 

d X  
J =  

dx  

where d X is the spacing of the virtual extensions of the reflected rays reaching the 

"screen". As shown in Fig. 8a, at points away from the singularity dX---, dx  and 

J ---, 1. As the initial curve is approached, d X decreases and eventually is reduced to 

zero. Decreased spacing of rays represents high light intensity and a caustic curve is 

obtained by reflections coming from the vicinity of the initial curve. So far, for points 

outside the initial curve the mapping is one to one and all points are mapped outside 

the caustic curve. Right on the initial curve, all points are mapped directly on to the 

caustic. As we move inside the initial curve, the Jacobian changes sign, and a "folding" 

of the mapping is observed. That  means that, as shown in Fig. 8b, points inside the 

initial curve map again outside the caustic. At points just inside the initial curve, the 

value of J is small and negative (small spacing of rays on "screen"). As we move 

further in, J becomes larger in magnitude (increased spacing d X )  until it reaches the 
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value of - oo at the interruption curve (point where the slope of the reflector is _ 45°). 

The main features of the mapping can therefore be summarized as follows: 

i. Points on the reflecting surface lying outside the initial curve will map onto points 

of the "screen" lying outside the caustic. 

ii. Points on the initial curve will map directly on the caustic. 

iii. Points lying in the region between the initial and the interruption curve will map 

again outside the caustic. 

iv. Points inside or on the interruption curve will not be mapped on the screen. 

In other words, there are no points on the reflector that will map inside the caustic 

curve, and thus a dark region (shadow spot) surrounded by a highly luminous curve 

(caustic) is formed on the "screen".  

Letting 8co denote the initial curve defined in the reflector plane (x 1, x2) and 8f~ 

denote the caustic curve defined in the screen plane X 1, X 2, we can write 

x ~ + u g ~ u ~  - ~ X ( x )  ~ ~2+u 8fl 

x ~ 0,~ ~ X ( x )  ~ g~2 

which implies 

X - I ( ~ - )  = dp 

where o~ + represents the region outside the initial curve, o~- represents the annular 

region between the initial and the interruption curves and f2 +, f~- are the regions 

outside and inside the caustic respectively see Fig. 7. 

From the above it is clear that the total intensity at a point P ( X  1, )(2) on the 

"screen" is given by 

"-t°t=~ IJl, ,~,0+ + I J Ix~ ,0 -  " 

The two terms represent the contribution to the intensity at P(X1, X2) from rays 

reflected from regions both outside and inside the initial curve. For example, the 

intensity at a point far away from the optical singularity on the screen will come from 

rays reflected at points very far from the deformation singularity where Jx ~ ,~+~ 1 and 

from points very close to the interruption curve where J~ ,o - - ' *  - ~ .  Thus from (4.5) 

--tot(X) far away ~ ~(x)  (no optical distortion). 

At points closer to the optical singularity both  terms increase and they both become 

infinite on the caustic where contributions coming by reflection from both just inside 

and just outside the initial curve are added. 

Mappings of the nature discussed above have been experimentally observed in a 

number  of different situations. For  the case of a crack in a planar metallic specimen, 

the change in optical path  is produced by a nonuniform contraction in the thickness 

direction due to the existence of singular strains at the crack tip [8,9,10]. The type of 

optical pattern obtained is shown in Fig. 9. Far  from the singularity we see a matrix of 

uniform intensity where the Jacobian is very close to one. As the tip is approached, the 

value of the Jacobian decreases, the light intensity increases, and a highly luminous 

curve (the caustic) surrounding a dark area (shadow spot) is observed as predicted by 

the analysis. 

A closer observation of Fig. 9 ~11 reveal a set of "fr inges" surrounding the caustic 

curve. The existence of the fringes implies phase interference and consequently multiple 
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Figure 9. Caustic formed by reflection of coherent light from the vicinity of a mode-I elastic crack. 
Interference fringes demonstrate folding of the mapping. 

mapping. The phenomenon of the "folded" mapping discussed above can be used to 

explain the existence of the fringes as follows. 

The light source used to produce the photograph shown in Fig. 9, was a laser which 

emits monochromatic, single phase light. As explained above, the illumination outside 

the caustic curve results from a double reflection or mapping. That is, light waves 

reflected from both inside and outside the initial curve on the reflector strike the 

"screen" outside the caustic. Because of the deformation of the specimen surface, 

however, the light rays reflected from inside the initial curve travel a distance different 

from that traveled by the rays reflected from outside the initial curve. This difference in 

path length leads to a difference in phase at the screen which results in the observed 

interference pattern. 
A similar phenomenon has been observed in cases of optical patterns obtained by 

transmission of laser light through a compressible fluid (shadow graph). Abrupt 
changes in pressure and consequently density, created for example by shock waves, 

change the refractive index and create singularities in the additional optical path 

imposed on the light by the fluid. As in the case of reflection, a bright region is 

observed along the shocks bordering a dark line, the caustic. Interference fringes are 

observed outside the caustic line as predicted by the phenomenon of the "folding" of 

the mapping discussed above. 

5. The simplified application of causticsto fracture mechanics 

Consider a highly polished planar specimen of uniform thickness d in the undeformed 

state, occupying a region of the xl ,  x 2 plane. The specimen contains an edge crack and 

is subjected to traction and /or  displacement boundary conditions, see Fig. 10. When 

the loading is applied, the resulting change in thickness is nonuniform at the vicinity of 

the crack tip and the equation of the deformed specimen surface is given by 

= u (xl, x2 )=  x2) (5.1) 
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Figure 10. Specimen and optical set-up. 
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where u 3 is the displacement in the thickness direction. For a plane-stress, elastic, 

M o d e - I  crack, the displacement u 3 of the initially flat specimen is given by 

rKd t9 
U3(XI' X2)= E ~  c o s ~ ,  (5.2) 

where r = Poisson's ratio, K = stress intensity factor, E = modulus of elasticity, d = 

thickness of specimen, r = ~x~ + x~ and # = tan -1 XE/X 1. 
Substitution of the above expression for f(xl, x2) in the approximate equation (2.5) 

provides the equations customarily used for the interpretation of reflected caustics. 

These equations, expressed in polar form are given by [7]: 

r0[ 
)(1= ff 3 cos # +  2 cos , 

- ~r < 0 ~< ~r, ( 5 . 3 )  

'° [3 sin O+ 2 sin- ], 
5 -  _ 

where r o is the radius of the circular initial curve and is given by 

( 3drKlzo. ) z/' 
r° -- 221/~-E " (5.4) 

Equations (5.3) are the parametric equations of an epicycloid, see Fig. 11, where a 

positive sign indicates a real image (screen behind specimen, i.e. z o > 0) and the 

negative sign indicates a virtual image (screen in front of specimen, i.e. Zo < 0). The 

details of the derivation of equations (5.3) and (5.4) can be found in [7,8], where it is 

also shown that the stress intensity factor K can be expressed as a function of the 
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J'X! ~x I 

zo<O 

Figure 11. Positive and negative branches of caustic curve for mode-I elastic crack. 

maximum transverse diameter, D, of the caustic curve as follows 

DS/2E 

Kca,s = lO.71( zovd ) • 
(5.5) 

6. Numerical work 

As previously discussed, the approximations made in the usual analysis of caustics are 

invalid in regions of severe optical path gradient. For example very close to the crack 

tip severe surface deformation gradients exist, resulting in severe optical path gradients 

of light reflected from the surface. It is often desired to investigate such areas [15]. Thus 

it is important to know what errors occur in evaluating the caustic using the approxi- 

mate mapping equations. 

For  convenience a plane-stress, elastic, Mode-I crack is considered. In the presence 

of non-linear behavior the singularity in surface displacement at the near tip region is 

expected to be less severe than in the purely elastic case. Thus this work provides a 

conservative estimate of the error as the crack tip is approached. 

For a given surface deformation ( v K d / E  = const, in equation (5.2)) the position of 

the screen (x 3 = z0) was varied and the corresponding shadow patterns were obtained 

numerically. A square array of points representing light rays on the specimen surface 

was mapped point by point through the exact equations (3.4) to the screen. The range 

covered was from z 0 ---, + oo to z 0 --+ - oo corresponding to virtual and real images of 

the shadow patterns. Special attention was given to the transition region between the 

virtual and real images. This region corresponds to small initial curves and is of 

particular importance in the study of the near tip area. 

In order to obtain more information on the shape of the caustic the initial curve was 

computed numerically at each position of the screen (see equation (4.4)). Its points were 

mapped through equations (3.4) producing the caustic curve. The initial and caustic 

curves are displayed alongside the discreet full field shadow patterns in Fig. 12. 

It is worth observing at this point that for large values of z o (either positive or 

negative) the complete equations of the mapping described in (3.4) reduce to the 
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(e) (f) 

Figure 12. Computer generated shadow spots and caustic curves. Transition from a real to a virtual image is 
shown. 

approximate one considered by Manogg (2.3). This is true since for large enough z 0, 

the initial curve can be made large enough so that the caustic curve is formed from 

regions of less severe displacement gradients than those at the immediate vicinity of 

crack tip, thus (a f /ax i )  2 << 1 and z 0 >>f. The simplified equations (2.3) predict self 

s'mailar initial and caustic curves which are circular and epicycloidal respectively. 

Comparison of the computed initial and caustic curve shapes to the expected shapes, 

Figs. 12a (large Zo), 11, demonstrate that for large z 0 (large initial curves) the 
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approximate equations (2.3) are indeed a good description of the mapping. However 

our results show that as z 0 becomes smaller (the initial curve approaches the crack tip) 

the initial curve is no longer circular and the caustic shape deviates from that of an 

epicycloid. As a direct consequence the customary evaluation o f  the stress intensity 

factor through caustic (5.5) becomes increasingly inaccurate. 

The transition from virtual to real image is shown in Figs. (12b-d). As z 0 decreases 

some light begins to map inside the caustic curve producing a blurring of the right edge 

of the shadow pattern. As z 0 gets even smaller, of the order of f ,  a discontinuity in the 

initial and caustic curves occurs as shown in Fig. 12d. For  small enough initial curve, 

there are points on the initial curve where f ( x l ,  x2) becomes equal to and then larger 

than z 0 as 19 goes from ~r to zero ( f -  ( 1 /¢~ )  cos t~/2). Where this occurs, the sign of 

the second term in (3.4) changes and part of the caustic shifts from being a virtual 

image to a real one. As a result, part of the virtual and part of the real image are 

present on the same shadow pattern. Comparison of Figs. 12a and 12f illustrates the 

distinctly different caustic shapes for the virtual and real images. In Fig. 12e part of the 

real caustic is seen to the right and part of the virtual caustic is seen to the left. In 

addition to the discontinuity in the caustic curve there is a deterioration o$ the shape 

and definition of the shadow pattern. This deterioration l imitsthe values of z 0 that will 

give meaningful information according to the customary simplified analysis. 

By measuring the maximum transverse diameter of the caustic curve, the stress 

intensity factor K = ~  that would be calculated in  an experiment on the basis of the 

observed caustic curve was evaluated through the approximate equation (5.5). Its value 

was then normalized with respect to the value of K input to the numerical analysis and 
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Figure 13. Kcam/K vs. P/(vKd/E) 2/3, deviation from unity indicates error incurred in calculation of K 

using simplified mapping.  
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Figure 14. P/r o vs. P/(vKd/E)  2/3, deviation from uni ty indicates error in calculation of initial curve using 

simplified mapping.  

plotted as a function of the dimensionless parameter  P/(vKd/E) 2/3 in Fig. 13. The 

initial curve radius, P, is defined as the distance from the crack tip to the point on the 

initial curve that maps to the maximum value of X 2. (D = 2X2m~, ). The deviation of 

Kcaus/K f rom unity indicates the error incurred due to the approximations used in the 

caustics analysis. The parameter  P/(vKd/E) 2/3 was chosen because vKd/E represents 

the magnitude of the surface deformation f and is the only relevant length scale in the 

problem . In Fig. 14, ?/r o is plotted as a function of P/(vKd/E) 2/3. This curve 

indicates the deviation of the initial curve size from that calculated from the simplified 

mapping, using equation (5.4). Comparison of Figs. 12b and 13 shows that even before 

the visible deterioration of the caustic shape, the error in using the simplified analysis 

for the evaluation of K reaches 15% in K. To give a quantitative indication of the 

range of initial curve radii for which the errors become significant, the case of a 6 m m  

thick steel plate (containing a mode-I  crack) loaded to a stress intensity factor 

K 1 = 1 0 0 M P a v ~  was considered; see Table 1. 

Although the calculated values of ~ for which the errors become significant seem to be 

small, there are cases where it is desired to investigate deformation fields very close to 

the tip where the above effects could become significant. For such cases it is obvious 

f rom the above that the complete mapping equations are necessary. 

7. S u m m a r y  and conc lus ions  

By developing and using the exact mapping equations which describe caustics by 

reflection, it is demonstrated that some details of the formation of the shadow spot are 
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Table 1. 
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~0 Error 
(ram) (~) 

0.11 10 
0.13 5 
0.20 2 

obscured  when the usual  small  angle  ref lect ion app rox ima t ions  are  made.  This  becomes  

i m p o r t a n t  near  regions of  severe e levat ion  grad ien ts  in the  reflect ive surface. The  exact  

analysis  p resen ted  here enables  us to ex tend the f racture  mechanics  app l i ca t ions  of  the 

m e t h o d  to regions such as near  the crack  tip, where  such severe cond i t ions  prevail .  I t  is 

d e m o n s t r a t e d  tha t  in the evalua t ion  of  stress in tens i ty  fac tor  by  shadow spo t  measure-  

ments ,  based  on  the a p p r o x i m a t e  analysis,  the errors  can  be  as large as 15% before  any  

vis ible  change  in the caust ic  shape  occurs.  As  the crack  t ip is fur ther  app roached ,  the 

shadow spo t  shape is shown to change  dras t ica l ly  and  the t rans i t ion  f rom a real  to a 

v i r tua l  image  is demons t ra t ed .  
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