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A Finite Element Study of Stable
Crack Growth Under Plane
Stress Conditions: Part I|—
Influence of Hardening

A detailed finite element analysis is performed to model quasi-static crack growth
under plane stress, small-scale yielding conditions in elastic-plastic materials
characterized by isotropic power law hardening and the Huber-Von Mises yield sur-
face. A nodal release procedure is used to simulate crack extension. Results pertain-
ing to the influence of hardening on the extent of active yielding and the near-tip
stress and deformation fields are presented. Clear evidence of an elastic unloading
wake following the active plastic zone is found, but no secondary (plastic) reloading
along the crack flank is numerically observed for any level of hardening. A ductile
crack growth criterion based on the attainment of a critical crack opening displace-
ment at a small microstructural distance behind the tip, is employed to investigate
the nature of the ] resistance curves under plane stress. In addition, the same
criterion is employed to investigate the influence of hardening on the potential for
stable crack growth under plane stress. It is found that predictions based on a
perfectly plastic model may be unconservative in this respect, which is qualitatively
similar to the conclusions reached in antiplane shear and Mode I plane strain.
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1 Introduction

Several investigators have contributed in providing an
understanding of the mechanics of stable crack growth by us-
ing both analytical and numerical techniques. Such works are
reviewed in the introduction of Part I of the present
investigation.

In this part a detailed finite element analysis is undertaken
to model crack growth under plane stress in isotropic power
hardening solids. This is a continuation of our earlier work
(Narasimhan and Rosakis, 1986), which analyzed the
monotonic loading of a stationary crack. Two crack growth
histories (see Section 2) are simulated to study the mechanics
problem of quasi-static crack extension and also to investigate
the initial phase of stable growth under small-scale yielding, as
would be observed in an experiment.

2 Numerical Analysis

Formulation. The numerical modeling of the Mode I
plane stress, small-scale yielding problem was discussed in
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detail by Narasimhan and Rosakis (1986), who performed the
analysis of a monontically loaded stationary crack. In the pre-
sent investigation, the results obtained by them will be used as
initial conditions to simulate quasi-static crack extension. The
basic features of the numerical analysis have been summarized
in Part I.

Constitutive Assumptions. The material model that was
considered here was that of an elastic-plastic solid with an
isotropic power law hardening behavior. A small strain in-
cremental plasticity theory was employed along with the
Huber-Von Mises yield condition and the associated flow rule.
The Huber-Von Mises yield condition for isotropic harden-
ding takes the form,

f(a,&) =F(0)— ("), Q.1

where F (o) = 3/2 8+8, and & = [(2/3c%¢%)"2dlt is the ac-
cumulated equivalent plastic strain. In the above, S is the
deviatoric stress tensor, and &(é”) is defined by the following
power hardening rule,

er a\"” 7]
. ——) -2 2.2)
€ 0y 4]

Here o, and ¢, are the yield stress and strain in uniaxial
tension. :

The total strain rate tensor is assumed to be decomposed in-
to elastic and plastic parts, and the constitutive law for
material currently experiencing plastic deformation is given

y’
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Fig. 1 Active plastic zone surrounding the propagating crack tip for
various levels of hardening
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Here Cj, is the isotropic, positive definite elasticity tensor
and H = dé/de?, which can be obtained from (2.2). In the
present analysis, the yield criterion and the constitutive law
were used along with the plane stress condition,

03 =0. ©.4)

On using equation (2.4) in (2.3), a constraint for é;; in terms
of ¢,5 may be obtained.

The computations were performed for two levels of harden-
ing, n=35 and 9. The ratio of the Young’s modulus to the yield
stress in pure shear (£/7;) was taken as 1400 and the
Poisson’s-ratio as 0.3 in the calculations.

Solution Strategy. In this study, two simple crack growth
histories were simulated employing the nodal release pro-
cedure (see Part I and also Narasimhan et al. 1986). In the first
case, the maximum plastic zone extent at the end of the sta-
tionary loading process was slightly more than 50 times the
smallest element size L. Subsequently, twenty one-element
crack growth steps were simulated using the nodal refease pro-
cedure, holding the externally applied load fixed. This was
achieved by imposing T'=(E/03)dJ/da=0 during crack
growth. 7T is the nondimensional Paris tearing modules. The
purpose of this investigation is to examine the nature of the
near-tip stress and deformation fields for the mechanics
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problem of quasi-static crack growth without the influence of
increase in applied load. Following Rice (1975), this would
correspond to a hypothetical situation in which a cracked
specimen is initially loaded by clamping portions of its boun-
dary and imposing displacements, which is then followed by
crack extension by saw-cutting ahead under fixed boundary
displacements.

However, in an actual situation, after initiation, a crack will
generally grow stably in an elastic-plastic material for an ex-
tent typically of the order of a few plastic zone sizes, during
which the applied load will have to be increased to propagate
the crack. A steady-state condition will then be reached, after
which no further increase in applied load will be required for
additional crack growth. In the second load history, stable
crack extension was modelled (in a continuous manner) by
simultaneously increasing the applied load during the nodal
release procedure. This was accomplished by simulating fif-
teen one-element crack growth steps under 7" = 1.5, following
the stationary loading process. The maximum extent of the
plastic zone was over 100 times the smallest element length, L.
Only the material with n» = 9 was considered in this
investigation.

In the following section, detailed results will be presented
initially for » = 5 and 9 corresponding to the first load
history. At the end of the section, comparison between the
results for the two load histories will be made for the material
with n = 9.

3 Results and Discussion

Active Plastic Zones. The active plastic zone surrounding
the propagating crack tip after the twentieth crack growth step
is shown in Fig. 1 for n = 5 and 9, in moving coordinates that
have been made dimensionless by the self-similar parameter
(K;/0,)*. The plastic zone for the stable plane stress crack
growth in an elastic-perfectly plastic material is also shown for
comparison.! The current crack tip is at the origin of the coor-
dinate system, and a point in the figure represents an actively
yielding integration station within an element.

A large elastic unloading region can be seen following the
active plastic zone. No secondary (plastic) reloading along the
crack flank has been observed for any level of hardening from
the present numerical solution. The asymptotic angular extent
of the active plastic zone, #,, decreases with decreasing
hardening (increasing 7). The values of 6, are approximately
65 deg, 55 deg, and 45 deg for n = 5, 9, and oo, respectively.
The maximum radial extent of the active plastic zone, R,
which occurs directly ahead of the crack tip, increases with
decreasing hardening. The values of R, are about
0.22(K;/04)?, 0.24(K;/04)?, and 0.28(K/a,)? forn =5, 9, and
o0, respectively.

Comparison of Fig. 1 with the plastic zone surrounding the
stationary crack (Narasimhan and Rosakis, 1986) show that
the active plastic zone becomes more acute (sharper) with the
onset of crack growth. The results for the stationary problem
show rounded plastic zones for the hardening cases, with
yielding spreading beyond 90 deg near the crack tip. Strong
changes in the near-tip plastic zone shape occurred during the
first few crack growth steps, and then the overall features were
unaltered with subsequent crack advance. The maximum
radial extent of the plastic zone, R, given above for the pro-
pagation crack, is about the same as in the stationary problem
for all levels of hardening.

A kink in the trailing boundary of the active plastic zone
(Fig. 1) appears to develop for materials with low hardening
and it becomes pronounced for the perfectly plastic case. The
reason for this development could be related to the change in

lThroughout this paper, results given as n = oo will correspond to the
perfectly plastic crack growth analysis of Part I.
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Fig. 2 Radial distribution of plastic strain ahead of the propagating
crack tip for various levels of crack growth under fixed applied load for a
material withn = 9
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Fig. 3 Radial distribution of plastic strain ahead of the propagating
crack tip at the end of the twentieth crack growth step at fixed applied
load forn = 5and 9

nature of the governing equations (from elliptic to hyper-
bolic), in the limit as the perfectly plastic case is approached.
Such a behavior can also be observed from the plastic zone
shapes given by Dean and Hutchinson (1980) for crack growth
under antiplane shear in a linear hardening material. The
similarity between the present plane stress plastic zone shapes
and their antiplane shear results stems from the presence of an
intense deformation zone ahead of the crack tip in both cases.

The active plastic zones of Fig. 1 and the corresponding
results obtained by Dean (1983) for steady-state crack growth
under plane stress in a linear hardening material have essen-
tially the same features. However, one difference seems to be
the absence of the kink in the active plastic zone for the
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Fig. 4 Radial distribution of opening stress ahead of the moving tip

perfectly plastic limit in Dean’s solution. Nevertheless, the
present analysis is more detailed, because it has a larger ratio
of plastic zone to smallest element size as compared with that
of Dean’s computation. Also, unlike his work, the initial
phase of crack growth was modelled in the present
investigation.

Radial Distribution of Plastic Strains. The radial distribu-
tion of the normalized plastic strain, €4,/¢,, with respect to
normalized distance, r/(K;/0y)?, ahead of the propagating
crack tip is shown in Fig. 2 for a material with n = 9. Results
are presented for various levels of crack growth at fixed ap-
plied load, along with the plastic strain distribution ahead of a
monotonically loaded stationary crack tip, which was obtain-
ed by Narasimhan and Rosakis (1986). As can be seen from
this figure, the plastic strain ahead of the moving crack tip
converges rapidly during the first few crack growth steps to an
invariant distribution. For example, at a distance of r = 0.013
(K,/0,)? ahead of the moving tip, the plastic strain dropped by
30 percent during the first five crack growth steps and by 8
percent, 3 percent, and 1.5 percent during the sixth to tenth
steps, eleventh to fifteenth steps, and sixteenth to twentieth
steps, respectively.

Such rapid convergence was typical of the other hardening
case (n = 5) as well as the perfectly plastic material. The
weaker singularity in the plastic strains near the tip during
crack growth, as compared with the stationary problem in Fig.
2, is due to the fact that the crack propagates into material
that has already deformed plastically (Rice, 1975). The radial
distribution of the plastic strains ahead of the tip at the end of
the twentieth release step is shown in Fig. 3 for the two levels
of hardening, » = 5 and 9.

Radial Distribution of Stresses. The radial distribution of
the normalized opening stress, ¢,,/7;, ahead of the moving
crack tip is shown in Fig. 4 for n = 5 and 9, along with the

. perfect plasticity solution. As can be seen from this figure, the

stress components become more strongly singular with in-
creasing hardening. The perfect plasticity solution for gy
tends to a bounded value of 1.9997,, as the crack tip is ap-
proached along the =0 ray, and is in excellent agreement
with the preliminary asymptotic result of Rice (1982). This

~ asymptotic limit was the same as that obtained by the

numerical solution near the stationary crack tip.
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Fig.5 Comparison of radial stress distribution ahead of the moving tip
as given by the K| field (solid line) with the finite element solution for (a)
n=>5and{p)n =9
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The stress variation for the hardening materials in Fig. 4
also differs only slightly from the stationary crack distribu-
tion, for moderate to large distances from the tip. For exam-
ple, at a distance of r = 0.018 (K|/0,)? ahead of the tip, the
ratio of the opening stress for the propagating crack to that
for the stationary problem is 3.04/3.13 and 2.58/2.66 for n =
5 and 9, respectively. Also, as pointed out by Narasimhan and
Rosakis (1986), the stress distribution (Fig. 4) appears to be
relatively insensitive to the hardening level for distances from
the tip exceeding about 0.15 (X1/0,)?%.

In order to study the influence of the crack tip plastic zone
on the stress field in the surrounding elastic region, the radial
stress distribution ahead of the moving crack tip is shown on
an expanded scale for » = 5 and 9 in Fig. 5. The singular
elastic solution (K field) is also indicated by the solid line in
the figure, for comparison. The distribution of stresses outside
the plastic zone is almost identical to the corresponding result
obtained for the stationary problem. The g,, stress component
obtained from the numerical solution differs strongly (by
more than 30 percent) from that given by the K| field at the
elastic-plastic boundary (r = R,)). But a rapid transition in the
stress distribution takes place immediately outside the plastic
zone and the stresses agree closely with those of the K; field
forr >1.5R,.

Near-Tip Angular Distribution of Stresses. The near-tip
angular distribution of the normalized polar stress com-
ponents is shown in Fig. 6 for n = 5 and 9 along with the
perfect plasticity solution. The centroidal values of stresses in
the elements lying on a rectangular contour surrounding the
moving crack tip, with an average radius of 0.018 (K;/a,)?
(which is within 0.08 R,), have been used to make this plot.
The angular variation along the above contour of the Von
Mises equivalent stress, oo, = (3/2s;s;)"/2, which has been
made dimensionless by oy, is also shown in the figure.

The assertion made earlier, that no secondary (plastic)
reloading was observed (as 6 — 180 deg) for any level of
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Fig.6 Near-tip angular distribution of the normalized polar stress com- ,
ponents and the Von Mises equivalent stress at a distance of 0.018

(K,lag)* from the moving tip
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Fig. 7 Numerically obtained crack opening profiles for quasi-static
crack growth under fixed applied ioad for n = 5 and 9. The dashed line is
th linear elastic asymptotic solution and the solid line is the asymptotic
crack displacement for steady-state crack growth in a perfectly plastic
solid, as predicted in Part I.

hardening, is confirmed from this figure. Also, elastic
unloading occurs for angles 0 greater than about 65 deg, 55
deg, and 45 deg for n = 5, 9, and oo, respectively, although it
is not obvious from this figure for the hardening cases. The
near-tip angular stress variation for the hardening materials
appears to be qualitatively similar to the perfectly plastic case.
As noted in Part I, the angular stress variation within the ac-
tive plastic zone for the perfectly plastic case is in very good
agreement with the distribution in a centered fan, as predicted
by Rice (1982).

Crack Opening Profiles. The normalized crack opening
displacement, &/(J/a,), versus normalized distance,
x,/(K;/dy)?, along the crack flank is shown in Fig. 7 for the
two hardening cases, n = 5 and 9, when the crack grows under
fixed applied load. This profile was obtained after twenty
crack growth steps and was self-similar in normalized form, in
the sense that it was almost identical for different levels of
crack growth. The crack opening profile for a linear elastic
material is also shown by the dashed line in the figure.

The steady-state asymptotic opening profile for a crack
growing in a perfectly plastic material, as predicted in Part I,
is indicated by a solid line in the figure. This is given by,

es

(Jfao) =Buln (7,_) @1

where
n=r/(K;/ay)*.

In the above equation e is the base of the natural logarithm.
The parameters 38 and s which occur in equation (3.1) were
estimated in Part I as 1.70 and 0.60, respectively, from a best-
fit to the near-tip crack displacement increment, obtained
from the numerical solution for the nonhardening case.

It can be noticed from Fig. 7 that the crack profiles vary -

considerably with the hardening level. This was also observed
by Dean (1983) from his steady-state solution for plane stress
crack growth in linear hardening solids. This also appears to
be true for the crack profiles obtained under antiplane shear
by Dean and Hutchinson (1980). However, the crack profiles

under Mode I plane strain show comparatively less variation
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with the hardening level, at least near the crack tip (e.g., Dean
and Hutchinson, 1980). Also, as opposed to the blunted
shapes obtained for the stationary problem, the crack opening
profiles during growth (Fig. 7) are sharp. This is directly
traceable to the permanence of plastic deformation (Rice,
1975).

4 Ductile Crack Growth Criterion

Perfect Plasticity. Rice and Sorensen (1978) and Rice et al,
(1980) proposed that a critical opening displacement, 6 = §.,
should be maintained at a small microstructural distance, r,,
behind the crack tip for continued crack growth. The near-tip
crack displacement during continuous stable crack extension
(see Section 3, Part I) can be written as

=5()rm ()
= n(—), r—0, 4.1
5 B(E rin{— r “.1)
where

0 = Re(l+ Tarf) | 4.2)

In the above equation, R = sEJ/o¢ for small-scale yielding
and T is the tearing modulus. The parameters «, 8, and s,
which occur in equation (4.2), were estimated in Part I as 0.82,
1.70, and 0.60 respectively. The crack growth criterion stated
above requires that the parameter p, which uniquely
characterizes the near-tip crack profile, be constant for con-
tinued crack extension.

Thus, on estimating p from J and T}, which are the values
of the far-field J and the tearing modulus T at the onset of
crack growth, it is possible to obtain the following differential
equation for J as function of crack length a (Rice et al., 1980),

E dJ(a) B ( J )

T = =T, ——n
o da L

(4.3)
c

By using J = J, and @ = g, as initial conditions the above
equation can be integrated to give,

ﬂ"_z_:i e(aTo/B) [Ei{— O‘To}
(EJ:/05) B B

—E {ln (—JJ;) - “BT°H, @.4)

where E;{+} is the exponential integral function. It is in-
teresting to note that the mathematical structure of equations
(4.3) to (4.4) are similar to the ones deduced by Wnuk (1974)
by means of his ‘‘final stretch’’ crack growth criterion, based
on a plane-stress Dugdale, line plastic zone model.

A family of plane stress resistance curves generated from
equation (4.4) corresponding to several values of T, with «
and 8 taken as 0.82 and 1.70, respectively, is shown in Fig. 8.
The abscissa of the figure is the extent of crack growth, made
dimensionless by the quantity 0.3EJ./0¢, which is approx-
imately equal to the maximum plastic zone extent at initiation.
The flat portion of the curves corresponds to steady state
crack growth when no further increase in externally applied J
is required to propagate the crack. Setting dJ/da = 01in (4.3)
gives J corresponding to steady-state as

JSS = Jce"‘TO/ﬁ . (45)

Comparison of Fig. 8 with the corresponding plot for plane
strain given by Rice et al. (1980) show that the amount of
stable crack extension in plane stress if far more extensive than
in plane strain. This is because the ratio «/f in plane stress as
computed in the present investigation, is 0.82/1.70, which is
about 4.4 times larger than the corresponding ratio of
0.6/5.46 in plane strain (Rice, 1982; Sham, 1983). Thus, for
T, = 5, theratio Jgg/J calculated from (4.5) is 11.2 and 1.73
for plane stress and plane strain, respectively.
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abscissa is the amount of crack growth normalized by a quantity which
is approximately equal to the maximum plastic zone extent at initiation.
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Fig. 9 Variation of 5/(¢gr) with normalized distance along the crack
fiank for (a) the stationary problem (Narasimhan and Rosakis, 1986) and
(b) quasi-static crack growth under fixed applied load

Hardening Solid. The above crack growth criterion can be
used for both initiation and continuation at crack growth
(Dean and Hutchinson, 1980) to examine the potential for
stable growth from the microstructural viewpoint. :To this
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Fig. 10 Influence of hardening on Jgg// in Mode I plane stress, as
predicted by the critical displacement criterion, for continued crack
growth. The solid line is the perfect plasticity result of Part I.

end, the crack proflies shown in Fig. 7 for crack growth under
fixed applied load were taken as steady-state profiles and were
used to generate a plot of 8/ (er) versus r/(Kgg/0y)?. This is
shown in Fig. 9(d) for the two cases of hardening, » = 5 and
9. The opening displacement for the stationary crack given by
Narasimhan and Rosakis (1986) was used similarly to obtain
the variation of 8/ (eyr) versus r/(K./0,)* as shown in Fig.
XHa).

For a given value of the microscale parameter A, =
8¢/ (&r,), the value of r./(Kg5/04)* can be obtained from the
abscissa of Fig. 9(b) corresponding to steady-state crack
growth. The value of r./ (K -/0,)* may be obtained similarly
from Fig. 9(a) for initiation of crack growth. These two quan-
tities can be used to compute the ratio of Jg/Jo =
(Kss/Kc)?, corresponding to the chosen value of the
microscale parameter A,. The variation of Jg/J. versus
8¢/ (€r,), calculated as indicated above for » = 5 and 9, is
shown in Fig. 10. On comparing Figs. 9(a) and 9(b), it can be
seen that the influence of hardening on the relationship be-
tween Jgg/J- and &,/ (€yr,) arises mainly due to the results in
Fig. 9(b), corresponding to steady-state crack growth. The ef-
fect of hardening on the variation of 6/ (¢y7) with respect to
r/(Kc/0,)? at initiation is not so significant, as can be seen
from Fig. 9a).

For comparison purposes, the variation of Jg/J. with
respect to 6./ (gyr,) for the elastic-perfectly plastic material, is
also shown in Fig. 10 by the solid line. It can be shown from
equations (4.1)-(4.3), along with the fact that 6, = aJ/0
for initiation, that this relation is given by,

JSS _ [2
Jo  SA,

where N, = 8,/ (eo7,). It can be seen from Fig. 10 that in the
range u,, > 8.0, the ratio Jg;/J, may increase significantly
with a decrease in hardening. For example, corresponding to a
value of A,, = 9.5, the ratio Jgg/J is 5.8, 8.3, and 14.1 for n
= 5,9, and oo, respectively. Thus, the potential for stable
crack growth may be grossly overestimated by a calculation
based on the perfect plasticity idealization, when the material
actually possesses some hardening. Hence, predictions about
the extent of stable crack growth based on the perfectly plastic

ePm/B-1, (4.6)
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Fig. 11 Comparison of the radial distribution of plastic strains ahead
of the tip for the two crack growth histories that were simulated for n =
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Fig. 12 Radial stress distribution ahead of the tip for n = 9 for the two
crack growth histories

model may be unconservative for a hardening material when
the microscale parameter exceeds a value of about 8. A
qualitatively similar conclusion was reached in antiplane shear
and Mode I plane strain as well, by Dean and Hutchinson
(1980).

In the light of the above observation, one is compelled to ex-
amine the effects of kinematic hardening and corner forma-
tion on the yield surface, which may occur during the non-
proportional loading experienced by a material particle near
the crack tip. It is not clear to what extent these factors will af-
fect the potential for stable crack growth under plane stress
conditions. Dean and Hutchinson (1980) found that the in-
fluence of corner formation was not as significant as strain
hardening from their numerical results for antiplane shear
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Fig. 13 Effect of increase in applied load at T = 1.5 on the near-tip
crack displacement forn = 9

crack growth. However, Lam and McMeeking (1984) ob-
served that both corner formation and kinematic hardening
further reduced the potential for stable crack growth in Mode
I plane strain. Thus, in this sense, even the results based on a
smooth yield surface with isotropic hardening may be un-
conservative. It is suggested that such effects should be in-
vestigated in Mode I plane stress.

5 Comparison of Results for the Two Crack Growth
Histories

In order to study the influence of increase in applied load,
as would be observed in an experiment during the initial phase
of stable crack extension, a crack growth history at a constant
value of T = 1.5 was also simulated in this work. Only the
material with » = 9 was considered in this investigation.

The active plastic zones obtained for this crack growth
history compared very closely with that shown in Fig. 1, both
in shape and size. During the first few crack growth steps, the
active plastic zone assumed the sharpened shape of Fig. 1,
which did not change with subsequent crack advance. The
values of 6§, and R, were about 55 deg and 0.24 (K/00)? as
reported earlier, based on the first crack growth history (at fix-
ed applied load).

The plastic strains ahead of the moving crack tip exhibited a
tendency to converge rapidly to an invariant distribution dur-
ing the first few crack growth steps as in the earlier analysis
(Fig. 2). The normalized plastic strains ahead of the tip at the
end of the fifteenth crack growth step under 7 = 1.5 is shown
in Fig. 11 and is compared with the result given in Fig. 3 for
crack growth at T = 0. As expected, the plastic strains for 7°
= 1.5 are slightly higher due to the influence of increase in ap-
plied load with crack growth.

The radial distribution of stresses ahead of the propagating
crack tip for the two histories is shown in Fig. 12 in the non-
dimensional form, ¢,4/7, versus r/(K;/0,)*. The effect of the
increase in applied load on the stress field seems to be less
significant than that on the deformation field. Also, the near-
tip angular stress distribution for the two histories were almost
identical. Finally, the nondimensional crack opening displace-
ment, 8/ (J/ay), as a function of position on the crack flank,
x,/(Ky/00)?, is shown in Fig. 13 for T = 0 and 1.5. Due to the
increase in applied load, the crack opening displacement for T

"= 1.5 is higher than that for 7 = 0.

Transactions of the ASME

zz0z Ainr z1L uo 1psyeloly euuoq ‘ABojouyos ] Jo ensu eluioped Aq ypd- L 9y8/9ry6G1S/9v8 vy S/Apd-alonie/solueyoswpaldde/Bio-swse uonos|oojelbipswse//:dny woly pspeojumoq



Acknowledgment

The authors would like to express their gratitude to Pro-
fessor J. W. Knowles for his valuable advice and encourage-
ment. This investigation was supported by the Office of Naval
Research through ONR contract #N00014-85-K-0596. The
computations were performed using the Supercomputer at
Boeing Computer Services, Seattle. This was made possible
through NSF contract #MEA-8307785. The above contracts
and the facilities provided by Boeing Computer Services are
gratefully acknowledged. ’

References

Dean, R. H., 1983, **Elastic-Plastic Steady Crack Growth in Plane Stress,”’
Elastic-Plastic  Fracture: Second Symposium, Volume I-Inelastic Crack
Analysis, ASTM STP 803, pp. 1-39-1-51.

Dean, R. H., and Hutchinson, J. W., 1980, ‘‘Quasi-Static Steady Crack
Growth in Small-Scale Yielding,” Fracture Mechanics: Twelfth Conference,
ASTM STP 700, pp. 385-400.

Lam, P. S. and McMeeking, R. M., 1984, ““Analysis of Steady Quasistatic
Crack Growth in Plane Strain Tension in Elastic-Plastic Materials with Non-

Journal of Applied Mechanics

Isotropic Hardening,’’ Journal of Mechanics and Physics of Solids, Vol. 32, pp.
395-414.

Narasimhan, R., and Rosakis, A. J., 1986, ‘‘A Finite Element Analysis of
Small-Scale Yielding near a Stationary Crack under Plane Stress,”” Caltech
Report SM 86-21, Pasadena, CA, Journal of Mechanics and Physics of Solids,
to appear, 1988.

Narasimhan, R., Rosakis, A. J., and Hall, J. F., 1986, ‘‘A Finite Element
Study of Stable Crack Growth under Plane Stress Conditions in Elastic-
Perfectly Plastic Solids,”” Caltech Report SM 86-22, Pasadena, CA.

Rice, J. R., 1975, ‘‘Elastic-Plastic Models for Stable Crack Growth,”
Mechanics and Mechanisms of Crack Growth, May, N. J., ed., British Steel
Corp. Physical Metallurgy Centre Publication, Sheffield, England, pp. 14-39.

Rice, J. R., 1982, ‘‘Elastic-Plastic Crack Growth,”’ Mechanics of Solids,
Hopkins, H. G., and Sewell, M. J., eds., Pergamon Press, Oxford, pp.
539-562,

Rice, J. R., and Sorensen, E. P., 1978, “*Continuing Crack-Tip Deformation
and Fracture for Plane Strain Crack Growth in Elastic-Plastic Solids,”” Journal
of Mechanics and Physics of Solids, Vol. 26, pp. 163-186.

Rice, J. R., Drugan, W. J., and Sham, T. L., 1980, ¢‘Elastic-Plastic Analysis
of Growing Cracks,” Fracture Mechanics: Twelfth Conference, ASTM STP
700, pp. 189-221.

Sham, T. L., 1983, ““A Finite Element Study of the Asymptotic Near-Tip
Fields for Mode I Plane Strain Cracks Growing Stably in Elastic-Ideally Plastic
Solids,”” Elastic-Plastic Fracture: Second Symposium, Volume I—Inelastic
Crack Analysis, ASTM STP 803, pp. 52-79.

Wnuk, M. P., 1974, “‘Quasi-static Extension of a Tensile Crack Contained in
a Viscoelastic-Plastic Solid,”> ASME JOURNAL oF APPLIED MECHANICS, Transac-
tions of ASME, Ser. E, Vol 41, pp. 231-242.

DECEMBER 1987, Vol. 54/ 853

220z AInr z1 uo 1payelopy euuoq ‘ABojouyoa] jo sinjisu| eluioyed Aq 4pd L 9¥8/9rYESYS/9r8/ /S /ipd-eoe/solueydswpsldde/Bio swse  uonos|jooleybipswse;/:dny woly papeojumoq



