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Abstract. A new full field optical technique - 'Coherent Gradient Sensing' (CGS) - is developed and used to study crack 
tip deformations in transparent as well as opaque solids. A first order diffraction analysis is provided for the technique 
and its feasibility is demonstrated both in transmission and reflection modes. Preliminary results from the dynamic 
crack growth experiment clearly demonstrate the capability of CGS to be an effective experimental alternative to other 
optical methods used in dynamic fracture studies. Notably, it is a full field technique which works with optically 
isotropic materials. 

The static fringe patterns obtained from the experiments are analyzed in regions outside the 3-D zone. For geometries 
where the region outside the 3-D zone is K-dominant, the fringes provide an accurate value of 2-D stress intensity factor. 
For geometries where the region outside the 3-D zone is not K-dominant, Williams' expansion is used in conjunction 
with a least squares procedure to obtain the stress intensity factors. 

1. Introduction 

In this paper, we report an experimental investigation of crack tip deformations in transparent 
and opaque solids using a new coherent optical technique - 'Coherent Gradient Sensing' (CGS). 
CGS is a full field, lateral shearing interferometric method. This full field optical method will be 
demonstrated both in transmission and in reflection modes to study deformations in transparent 
as well as opaque solids. Its ability to produce fringes in real time is used advantageously to map 
crack tip deformations in PMMA and A1 6061 specimens. The technique measures either in- 
plane stress gradients (transmission) or out-of-plane displacement gradients (reflection). CGS 
has a distinct advantage because of its insensitivity to rigid body translations and rotations 
which are generally quite difficult to avoid in experiments. 

In the past, several other experimental procedures have been proposed for measuring surface 
slopes. Incoherent optical techniques such as reflection moir6 [1] and moir6 deflectometry I-2] 
are commonly used. Among the coherent techniques, defocussed laser speckle photography [3], 
grating shearing interferometry I-4], speckle shearing interferometry [5, 6] are some of the 
examples. Many of these methods have been demonstrated with either reflective or diffused 
object surfaces. Also, they typically consist of double exposure procedure which often is a 
limitation for dynamic applications. 

In experimental fracture studies, photoelasticity I-7-9], caustics 1-10-14], geometric moir6 [15] 
and moir6 interferometry [16] are some of the methods used to measure crack tip deformations 
or deformation related quantities and hence the stress intensity factor. In these techniques, 
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interpretation of the measurements is based on the premise that a K-dominant, 2-D asymptotic 
field description exists in the vicinity of the crack tip. However, in reality, the situation has not 
been this simple. Recent studies have brought to light the shortcomings of such interpretations 
because of the three-dimensional nature of the crack tip deformation and the inadequacy of 
r -1/2 singularity term to model the field outside the three-dimensional zone (lack of K- 
dominance). In photoelastic studies, higher order terms have been used to overcome this lack 
of K-dominance [-8] in the interpretation of the experimental data. Rosakis and Ravi-Chandar 
[14], using the method of caustics, have addressed the question of crack tip three dimensional- 
ity. They showed that the caustics obtained from within the region of crack tip three- 
dimensional deformations (up to about one half plate thickness) could result in erroneous values 
of measured stress intensity factors. These results were supported by the analytical investigation 
of Yang and Freund [17]. Several finite element simulations performed since then [18-21] have 
further confirmed the three dimensional nature of the crack tip deformation field. 

From these experimental and numerical investigations, it has become increasingly evident that a 
2-D, K-dominant, crack tip field description for general specimen configurations should be used 
cautiously keeping in mind the near tip three dimensionality and possible lack of K-dominance. 
Furthermore, in dynamic loading situations, these complexities are compounded by the transient 
nature of the fracture phenomenon which may inhibit the establishment of a K-dominant region 
[21]. In view of the above, besides demonstrating the applicability of CGS to static and dynamic 
fracture studies, we will also examine some aspects concerned with the lack of K-dominance. 

2. Experimental method 

2.1. Experimental set-up 

In Fig. 1 the schematic of the experimental set-up used for transmission CGS is shown. A 
transparent, optically isotropic specimen is illuminated by a collimated bundle of coherent laser 
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Fig. 1. Schematic of the experimental set-up for transmission CGS. 
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light. The transmitted object wave is then incident on a pair of high density Ronchi gratings, 
G1 and G2, separated by a distance A. The field distribution on the G2 plane is spatially filtered 
by the filtering lens L1 and its frequency content is displayed on its back focal plane. By locating 
a filtering aperture around either the _+ 1 diffraction orders, information regarding the stress 
gradients is obtained on the image plane of the lens L2. 

Figure 2 shows the modification of the above set-up for measuring surface deflections of 
opaque solids when studied in reflection mode. In this case, the specularly reflecting object 
surface is illuminated by a collimated beam of laser light using a beam splitter. The reflected 
beam, as in the previous case, gets processed through the optical arrangement which is identical 
to the one shown in Fig. 1. 

In the following sections, a first order diffraction analysis is presented to demonstrate that the 
information displayed on the image plane indeed corresponds to gradients of in-plane stress and 
gradients of out-of-plane displacement. 

2.2. Principle 

Figure 3 explains the working principle of the method of CGS. For the sake of simplicity, and 
without losing generality, the line gratings are assumed to have a sinusoidal transmittance. Let 
the gratings G1 and G2 have their rulings parallel to, say, the xx-axis. A plane wave transmitted 
through or reflected from an undeform~d specimen and propagating along the optical axis, is 
diffracted into three plane wave fronts Eo, E1 and E_ 1 by the first grating G1. The magnitude of 
the angle between the propagation directions of Eo and E± ~ is given by the diffraction equation 
0 -- sin-~(2/p), where 2 is the wave length and p is the grating pitch. Upon incidence on the 
second grating G2, the wave fronts are further diffracted into Era,o), Em,~) , E u _  ~), Etl,o), ERE1) 
etc. These wave fronts which are propagating in distinctly different directions, are then brought 
to focus at spatially separated diffraction spots on the back focal plane of the filtering lens. The 
spacing between these diffraction spots is directly proportional to sin 0 or inversely proportional 
to the grating pitch p. 
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Fig. 2. Schematic of the experimental set-up for reflection CGS. 
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Fig. 3. Schematic describing the working principle of CGS. 

Now, consider a plane wave normally incident on a deformed specimen surface. The 
resulting transmitted or reflected wave front will be distorted either due to changes of refrac- 
tive index or due to surface deformations. This object wave front that is incident on G1 
now carries information regarding the specimen deformation, and consists of light rays 
travelling with perturbations to their initial direction parallel to the optical axis. If a large 
portion of such a bundle of light has rays nearly parallel to the optical axis, each of 

the diffraction spots on the focal plane of L1 will be locally surrounded by a halo of 
dispersed light field due to the deflected rays. The extent of this depends on the nature of 
the deformations. By using a two-dimensional aperture at the filtering plane, informa- 
tion existing around one of the spots can be further imaged. Here, an important but subtle 
point should be noted. Since each of the diffraction spots is surrounded by dispersed light 
due to the deformation, overlapping of the information could occur on the filtering plane 
when the deflection of the ray is sufficiently large (i.e., >~ (2/2p)). However, it will be shown in the 
following sections, this limitation can easily be overcome by the use of higher density gratings. 

2.3. Analysis 

Consider a specimen whose midplane, in transmission, or surface, in reflection, occupies the 
(xx, x2) plane in the undeformed state. Let el denote unit vector along xcaxis, (i = 1, 2, 3), 
see Fig. 4. When the specimen is undeformed, the unit object wave propagation vector 

do = e3. After deformation, the propagation vector is perturbed and can be expressed by, 

do = ~el + fie2 + 7e3, (1) 

where ~(xl, X2), fl(X1, X2), and 7(xl, X2) denote the direction cosines of the perturbed wave front. 
This upon incidence on G1, whose principal direction is parallel to, say, the x2-axis, is split into 
three wave fronts propagating along do, d+l and whose amplitudes Eo(x'), E+l(x') can be 

represented by, 

Eo(x') = ao exp[ikdo'x'],  E~ l(x') = a .  1 exp[ikd+ 1 "x'], (2) 
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Fig. 4. Diffraction of a generic ray in CGS. 

where a0 and a±~ are constants and k = 2x/2 is the wave number. Due to diffraction by the 

sinusoidal grating G~, the propagation directions of the diffracted wave fronts can be related to 
the direction cosines of the incident propagation vector through, see [22] for details, 

d+ x = [:tel + {fl cos 0 + ? sin 0)e 2 + (7 COS 0 + fl sin 0)e3] , (3) 

using the diffraction condition 0 =  sin-l(2/p). On the plane G2(x'3 =A), see Fig. 4, the 
amplitude distribution of the three diffracted wave fronts are, 

Eolx;=A = Eo(OTB) = aoexpEikdo.OTB] = aoexpEik(~)],  {4} 

Exlx;=a = E~{OTA) = al exp[ikdl '07,43 = al exp ik {7 cos0 - - [ J s in  0j ' {5) 

E A i] E llx~=~= E-~( 07B ' j=a- l exp[ i kd  ~'07B '] = a  ~exp ik(TcosO+/JsinO ' {6) 

The wave fronts Eo, E± 1 will undergo further diffraction upon incidence on G 2 into secondary 

wave fronts E(o.o, EIo.1 ), E(I . -1},  E{1.oD E{1.1} etc. Of these secondary diffractions, E{o,l~ and 
E~l.o~ have their propagation direction along dl, E{o, ~} and E{_ l.O} along d ~ and Eo.o}, E{_ ~,l~ 
and E{~_ ~} along do, Fig. 3. If information is spatially filtered by blocking all but _+ 1 diffraction 

order, only the wave fronts E(o.± ~} and E~± 1.01 contribute to the formation of the image. Noting 
that the two wave fronts do not acquire any additional relative phase differences after G2, the 
amplitude distribution on the image plane is, 

E ,] E ~ m = ( E o + E + l ) l ~ , ~ = a o e x p  ik +a±~exp ik(TcosOT_flsin 0 . (7) 
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Hence, the intensity distribution on the image plane is, 

[ ._FT(cos 0 - 1)-T- fl sin 0]~ 
I,m = E,mE*m = ag + a~l + 2aoa+, cos~Ka L- ~T'/cos0 T fis~n~ J J '  (8) 

where E% is the complex conjugate of Ei,,. Under small 0 approximation, the above equation 
simplifies to 

i ,o  = + a +l + aaoa+lcos  t9t 

Thus, lira denotes an intensity variation on the image plane whose maxima occur when 

ka O 
°,2 - 2 n n ,  n = 0 ,  _+1, _+2 .... (10) / 

where n denotes fringe orders. Similarly, when the principal direction of the grating is parallel to 
the xx-axis, it can be shown that, 

kAaO 
72 - 2 m m  m = 0 ,  +1, + 2  .... (11) 

Equations (10) and (l l) are the governing equations for the method of CGS and they relate 
fringe orders to the direction cosines of the object wave front. It is clear from the above two 
equations that the sensitivity of the method could be increased by either increasing the grating 
separation distance A or decreasing the grating pitch p. 

2.4. Relation between direction cosines and deformation 

We now relate the direction cosines of the object wave front to deformation quantities of interest 
for both transmission and reflection cases. 

2.4.1. Transmission 
Consider a planar wave front incident normal to an optically isotropic, transparent plate of 
uniform nominal thickness h and refractive index no. Now, if the plate is deformed, the 
transmitted wave front acquires an optical path change 3S which is given by the elasto-optical 
equation (14), 

f0 /2 t 1/2 6S(xl, x2) = 2h(no - l) g33d(x3/h) + 2h 3nod(x3/h). (12) 
do 

The first term represents the net optical path difference due to the plate thickness change caused 
by the strain component g33. The second term is due to the stress induced change in the 
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refractive index of the material. This change in the refractive index c~no is given by the Maxwell 

relation, 

6no(xl,x2) = O1(a11 + a22 + a33), 

where D~ is the stress-optic constant and au are stress components. For an isotropic, 
linear elastic solid, strain component e33 can be related to stresses and thus (12) can be written 
as, 

v jo 

where D2 = [vD1 + (v(no-  1)/E]/[D1- (v(no- 1)/E], E and v are Young's modulus and 
Poisson's ratio of the material, respectively. The above equation is written in such a way that the 
second term in the square brackets represents the degree of plane strain. When plane stress is a 
good approximation, this term can be neglected and (13) reduces to, 

6S ~ ch(t711 -'k d22), (14) 

where c = D~ - (v/E)(no - 1) and t711 and t722 are thickness averages of stress components of the 
material. Using these, the propagation vector for a perturbed wave front can be expressed as, 

o(6s) o(6s) 
V(S) 63x~ - e l  + O x ~  e2 + e3 

nO IV(S)] 1 -'{- k, 6qX1 / -+- k, 6~X2 J 

o(6s) ~(6s) 
axe-el + Ox~-e2 + e3 (15) 

for ]V(6S)] 2 ~ 1 and where S(xl, x2, xa) = x3 + 6S(xl, x2) = constant. Using (14) in (15), we can 
obtain the direction cosines of the propagation vector. Thus, using (10) and (11), the fringes can 
be related to the gradients of (~11 + 422) as follows: 

ch O(all + (T22) mp ~" (16) 
0Xl A '  

~((711 "~ •22) np 
ch ~x2 ~ A' (17) 

2.4.2. Reflection 
Consider a specimen whose reflective surface occupies the (xl, x2) plane in the undeformed state, 
Fig. 4. Upon deformation, the reflector can be expressed as 

F(x1, x2, x3) = x3 q- /-/3(X1, X2) = O, (18) 
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where u3 is the out-of-plane displacement component. The unit surface normal N at a generic 
point O(xx, x2) is given by, 

VF u3. te  1 + u3,2e 2 + e 3 
N - - , (19) 

2 2 IVFr x/1 + //3.1 + //3~2 

u3,= implies differentiation with respect to x~. Consider now, a plane wave which is incident on 

the specimen along the x3 direction. Let do be the unit vector along the reflected ray whose 

direction cosines are ~, fl and 7. From the law of reflection, and noting that vectors do, N and e3 
are coplanar, one can show that [22] the direction cosines of do can be related to the gradients 

of u3 by, 

- -  U 3 , 1  - -  / / 3 . 2 )  ( 2 0 )  2u3,1 2U3, 2 , )' (1 2 2 
2 2 ' f l ~  2 2 = 2 2 ' 

= (1 + //3,1 + //3,2) (1 + //3,1 -~- U3,2) (1 + U3,1 + U3,2) 

Using the above in (10) and (11), and using ]Vu3] 2 ~ l, we get, 

~u3 (mp) 
" ~ m = 0 .  + 1, + 2 , .  ( 2 1 )  

~x~ ~ . . . . .  

~x2 ~ n = 0, _ 1, _+2 .... (22) 

where the fact that 0 ~ (2/p) and k = 2~/2 are made use of. For an isotropic, linear elastic solid, 

out-of-plane displacement u3 can be expressed as follows: 

~0 '2 u3 = h c33(xl, x2, x3)d(x3/'h) 

(23) 

In the above, the second term in the square brackets represents the degree of plane strain and 

when plane stress is a good approximation, it can be neglected. Thus, the above equation 

reduces to, 

vh 
U3 = - - ~ ( 6 1 1  + ~22)'  (24) 

Hence (21) and (22) can be expressed as, 

(}/33__ vh ~ ( d t l  +#22){mp~ 
~xl 2E ~xl ~J2A 

m = 0 ,  _+1, _+2 .... (25) 

e//3 ,,I, + a 2 2 1  ( , , q  
?x2-  2E ?x2 \ 2 A ]  

n = O ,  + I ,  _+2,... (26) 



Optical mappino of crack tip deformations 99 

3. Experiments 

3.1. Spherical wave front 

To verify the above diffraction analysis, first we carried out an experiment in which a well 
defined wave front is studied. A spherical wave front is generated by passing a collimated beam 
of light through a convex lens of focal length ft. The spherical wave front emerging from the 

convex lens can be described by, 

( ~ S ( x 1 ,  X 2 )  - -  _ _  
2f, 

Hence, the propagation vector is, 

V S  X 1 X 2 
= 7 <  + + e , ,  

~J ~J 

where S(xa, Xz, x3) = x3 + 6S(xl, Xz) = constant. When grating lines are oriented such that their 
principal direction is parallel to the x2-axis, we obtain, 

x2 np (27) 
f l - f ,  - A" 

Thus, the filtered image consists of equally spaced parallel fringes as shown in Fig. 5. For the 
experimental parameters of ft = 546 mm, p = 25 Ixm and A = 22 mm, the expected fringe 
spacing (x2/n) is 0.66 mm/fringe and is in good agreement with the experimental observation of 
0.63 mm/fringe. 

3.2. Three point bend fracture specimens in transmission 

Specimens are made from a sheet of PMMA of thickness 9 mm for studying crack tip fields. The 
specimen geometry and the three point bend loading configuration used is shown in Fig. 6. 
Three different crack length (a) to plate width (w) ratios, namely (a/w) = 0.2, 0.32 and 0.52, are 
studied. A band saw, approximately 0.75 mm thick, is used to cut notches in these specimens. A 
collimated laser beam of diameter 50 mm is centered around the crack tip and transmitted 
through the specimens in these experiments. The object wave front is processed through a pair 
of line gratings of density 40 lines per mm with a separation distance A = 30 mm. Figure 7 
shows the fringes around the crack tip when the grating lines are perpendicular to the xl- and 
x2-axes, respectively, for an applied load P = 1775 N. These fringes represent contour maps of 
constant [O(6S)/dXl ], [-~(6S)/Ox2] , respectively, where 6S is the integrated optical path difference 
through the specimen thickness, see (13). In the regions around the crack tip where plane stress 
is a good approximation, these reduce to ch(O(6~ + 622)/0x0, ch(~(611 + 622)/c~x2). For the 
experimental parameters chosen, the sensitivity of measurement is typically 0.025 degree/fringe. 
It is apparent from these patterns that CGS produces sharp and high contrast fringe patterns in 
the near vicinity of the crack tip. The numerical aperture [F t#~] of the optical system used in the 
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Fig. 5. x2-derivatives of a spherical wave front. 

study limits the maximum deflection that could be measured to about 0.8 degrees, and 
deflections greater than this do not reach the image plane, leading to the formation of a small 
dark spot around the crack tip. 

To analyze the crack tip deformation fringes, we assume a linear elastic asymptotic plane 
stress field to prevail in the crack tip vicinity. Using Williams' expansion [-23] for a mode-I crack 

stress field in (16) and (17), we find, 

ch(~(~ll q- (722) ch A N ~ - I r (0'/2)-2~ COS ~ - -  2 ~b = ~- ,  (28) 
Oxt N = I  

ch~(611 + ~ 2 2 )  __ ch y~ AN ~ -- 1 r ~N/2)-2) sin -- 2 ~b = (29) 
~x2 A '  N = I  
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Fig. 6. Three point bend fracture specimen. 

Fig. 7. Fringe patterns representing contours of constant (a) ch(~3(dll + d22)/~X1) (b) ch(0(611 + 622)/~x2) Fringes 
around the notch tip. 

where r and ~b are the polar coordinates defined at the crack tip and AN are constants. 
Here, A1 is proportional to the stress intensity factor K~ (A1 = 2 K ~ / x ~ )  and A2 ..... An 
denote the constant coefficients of  the higher order terms. It should be noted that the term 
corresponding to N = 2 in (28) and (29) identically vanish. This implies that the constant 
stress term in ~11 of the Williams' expansion does not contribute to the formation of the 
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fringes. This feature, which is also present in the method of caustics, could be an advantage 
if a single parameter fit of the experimental data is sought. Also, this constant term has 
been shown to be responsible for tilting of the crack tip fringes in the method of photo- 
elasticity. 

Let us, now, define a K-dominant crack tip field as one in which the contribution from N >~ 2 
terms is negligible compared to the first term. Thus, when a K-dominant field exists near the 
crack tip, (28) and (29) reduce to, 

K l  3 ~ /~/P oh- ~ r - "  '~ cos(3~b/2) + O(r- 1:2) = A-' 
w,"2~ 

(30) 

ch-~rx/2~z 3/2 sin(3~b/2) + O(r- ~.,2) = A-'nP (31) 

where the negative sign has been absorbed in to fringe orders m and n. Now let us define two 
functions Y~  and yIz) a s  follows: 

Y~l~(r, 4)) = ch cos(3qS/2)' (32) 

,.3..2 

ch sin(3~b/2)" 
(33) 

It is apparent from the above two equations that when a K-dominant field adequately 
describes crack tip deformations, then Y~ (~ = 1,2) is identically equal to the mode-I stress 
intensity factor K~. To measure Y~) from fringe patterns, the pictures are digitized and fringe 
order (m or n) and radial distance (r) along different directions (4~) around the crack tip are 
tabulated. Functions Y~'I are plotted against normalized radial distance (r/h) for different 
crack length to plate width ratios (a/w) in Figs. 8 10. The calculated K~ measured from the 
applied load measurements is indicated as K~ D, see [-24]. Several interesting observations 
can be made from these plots. If a K-dominant field were to exist in the near tip region, 
one would expect Y~'~ to be constant in each case and equal to K 2~ to within experimental 

error. Indeed, as seen in Figs. 8a, b, for certain geometries (a/w = 0.2), there seems to be a 
region of constant Y~'~ when 0.5 < (r/h) < 1.25. The value of this constant is also equal to 
K~ D to within about 10 percent. Also, when (r/h) < 0.5, the data seem to underestimate the 
value of K 2D by more than the typical experimental errors that one would anticipate. 
This observation is consistent with other experimental investigations [14,9, 15] wherein 
such behavior has been attributed to 3-D deformations near the crack tip. In recent times, 
several finite element calculations [18-21] have also confirmed the existence of the 3-D 
zone surrounding the crack tip. Figure 11 shows a 3-D representation of the degree of 
plane strain [~33/v(~1 + a22)] which is a measure of the near tip three dimensionality. 
This corresponds to a 3-D finite element simulation [21] of the geometry used in these 
experiments. In regions where deformation is locally plane stress, this measure is equal to 
zero. In the figure, only one half of the specimen thickness is shown. The top surface 
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Fig. 8. Plot of y(l)or(2) vs, (r/h) from (a) ch(0(611 + 6zz)/dxl) (b) ch(8(611 + dzz)/Ox2) Patterns for specimen geometry 
(a/w) = 0,2. 

represents the mid-plane of the specimen. The maximum extent of the 3-D zone cor- 
responds to approximately 0.44).5 h. Within this region, the plane stress approximation that 
led to the simplification of (13) to (14) is not applicable. Indeed, this is responsible for the 
deviation of Y~') from K~ ° in the near tip region. For this geometry, however, outside the 3-D 
zone, Y(') is coincident with K2~ ° in the range 0.5 < (r/h) < 1.25 which means that there is a 
region of K-dominance in the plane stress region outside the 3-D zone. 

However, this may not be the case for other geometries. From plots (Figs. 9a and 10a), for 
which (a/w) is 0.32 and 0.52, respectively, it is apparent that there is no region surrounding the 
crack tip where ym is constant suggesting a lack of K-dominance for these two crack 
geometries in the measured field quantity. However, plots (Figs. 9b and 10b), obtained from the 
•(ffll "~ ~22)/(~X2 fringes indicate that the value of y(2) has relatively lesser deviation from K~ z° 
for (r/h) > 0.5. It will be shown in the next sections that the larger deviation of ym compared to 
y(2) in Figs. 9 and 10, outside the 3-D zone, is due to significant contributions from the higher 
order terms (N = 2, 3, 4 .... ) which are ignored in (30) and (31). 

These observations point out that, in typical laboratory specimens, the crack tip deformation 
field may not generally be K-dominant and may be influenced by higher order terms which 
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should be accounted for, if K~ is to be extracted from regions outside the three dimen- 
sional deformation zone. However, there may be exceptions to this, as in the case of 
the specimen with (a/w)= 0.2, where one can measure K~ quite precisely without resorting 
to the use of higher order expansion. The use of higher order terms has also been found to 
be necessary in photoelastic fracture studies (for example, see [-8]). In the next section we 
attempt a data analysis procedure using a multi-parameter, least square curve fitting to 
determine K]. 

Another interesting observation could be made about the data corresponding to 4} -,~ 120 ° in 
Figs. 8-10. Although, substantial deviations in the measured values of Y{~} seem to persist along 
different radial lines, the variation along ~ ~ 120 ° is the least in all of the cases considered. 
Moreover, the data seem to be in good agreement with the corresponding K2Q Although this 
may seem surprising, it is consistent with the behavior shown in Fig. 11. Indeed, along ~b ~ 120 °, 
the extent of the 3-D zone seems to be the least. Because one can closely approach the crack tip 
(say, up to about 0.25 h) along 4} ~ 120 c' without being affected by near tip three dimensionality, 
the deformations in this plane stress region are relatively less influenced by the higher order 
terms. 
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3.2.1. Least square data analysis 

In this section we describe a multi-parameter least square data processing to extract K] from 
regions outside the 3-D zone. The O(dl~ + d2z)/Sxl fringe patterns are used in this analysis 
because they show relatively larger deviations from K 2D in Figs 9-10. The fringe patterns are 
digitized around the crack tip to obtain fringe orders (m or n) and fringe location (r, ~b) around 
the crack tip. Typically the data from the t3(dx~ + ~zz)/Sx~ field is obtained for (r, 0 ° < ~b < 45 °) 
and (r, 90° < 4)< 150°); and from (r, 30° < ~b < 90 °) when t3(dll + ~22)/t~x2 field is used. The 
choice of the above ranges in q~ is simply guided by the most number of fringe intersections that 
occur in these sectors. 

In the absence of K-dominance, from (28) we find, 

ch cos(3~b/2) \ A J Z-" k AN ~ -- 1 r ((~¢- 1)/z) N= 1 cos(3~b/2) ' 
(34) 
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Fi O. 11. Degree of plane strain near the crack tip in a three point bending configuration (from [21]). 

where the multiplicative constant ,/"2~ is absorbed into AN. Note that the left hand side 

in the above equation is Y(~ and is proportional to At or KI for a K-dominant  field and 

consists of quantities that are measured from the fringe patterns. The right hand side of 
the above expression, denoted by FIll(r, qS;A1,A3 ..... AN), is the least squares fit we 

would attempt for our experimental data. As explained earlier, the term associated with 

N = 2 is identically equal to zero because it represents the gradients of constant stress and hence 

does not contribute to our fringe patterns. In the curve fitting procedure, we minimize the 

function, 

M 

OO(A1, A3 ..... A~.) = ~ qi[y~i '' _~F'I'] : j  (35) 
i = l  

with respect to A1, A3,...,A~-. Here, M is the total number of data points used in the 

minimization and q is the weighting factor (q = 1.0 for 1hi or ImL > 1 and q = 0.95 for In1 or 
I ml ~< 1) which takes into account the uncertainty associated with the location of fringe centers. 
The satisfactory number of higher order terms needed for a good fit is determined by the 
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number of higher order terms which yields minimum value of the non-dimensional error 
function ~ defined as, 

~(N) = . (36) 

In the above procedure, experimental data from the 3-D zone, the radial spread of which 
is obtained from the plane strain constraint contours shown in Fig. 11, have been dis- 
regarded. Thus, the data primarily comes from regions (r/h)> 0.5 for 0 ° <  ~b < 90 ° and 
140 ° < ~b < 180 °. For qS = 105 ° and qS = 135 °, the extent of three dimensionality is assumed 
to be up to 0.4h and 0.25h along qS = 120 ° . Figure 12 shows the variation of e as the 
number of terms (N) used in the expansion is varied for the field quantity C(611 + 422)/0xl 
for different (a/w) ratios. Typically the error function attains a minimum as more number of 
terms are considered and begins to increase when more than optimal number of terms are 
used. This increase in ~ is because the function tries to improve the fit for those data points 
with larger degree of uncertainty in the wide outer fringe loops. Also, from this plot it is 
apparent that, when (a/w) = 0.2, ~ constantly increases with the number of terms (N) while 
for (a/w)= 0.32 and 0.52, ~ decreases upto N = 3, and increases when more terms are 
added. This implies that a three term expansion is necessary to describe the 2-D field 
surrounding the crack tip for (a/w)= 0.32 and 0.52 whereas just a single term expansion 
is sufficient for (a/w)= 0.2 confirming K-dominance observed outside the 3-D zone in that 
specimen. The values of K~ obtained by the above procedure are also shown in Figs 8-10. 
To provide a visual picture of the agreement between the multi-parameter fit and the 
experimental data, contours of C(dll + dz2)/Cxl are shown in Figs. 13a, b for (a/w)=0.2 
and 0.52. The symbols denote raw experimental data from the fringe patterns. Here, solid 
lines represent multi-parameter fit while the broken lines represent single parameter descrip- 
tion. The circle centered around the crack tip represents (rib = 0.5, 4). When (a/w)= 0.2, 
Fig. 13a, for which K-dominant description gives the lowest value of e, the data points are 
well described just by the single parameter fit. However, when (a/w)= 0.52, it is apparent 
that a three parameter expansion is essential. The three parameter description seems to help 
fit the digitized data fairly well all around the crack tip while a single parameter fit shows 
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large deviations from the data points, Fig. 13b. Again, it should be noted that the data 
along q~ ~ 120 ° seem to fit the contours the best. In Fig. 14a we have superimposed the 
three parameter fit (shown as broken lines; note that the synthetic contours that are plotted 
correspond to both dark and light fringes) for (a/w)= 0.32 on the original fringe patterns 
demonstrating good agreement between the fit and the fringes outside the three dimensional 
region. Also, to verify the conformity in results between the two field quantities namely, 
~((~11 ~- (~22)/GX1 and 0(611 + ~22)/~x2, in Fig. 14b we have shown the synthetic contours of 
c~(611 + d2z)/~x2 for (a/w)=0.32 using A~, A3 and A 4 obtained by processing the data 
from the corresponding (~(61~ +~22)/?.xl fringes and superposing it with the actual 
0(611 + 622)/0x2 fringe pattern. 

Next, let us examine why the spread in y(2) from c(~11 -t- ~22}/~x 2 field is less than those from 
~(~11 "~ (~22)/CX1 fringe patterns. First note the difference that the digitized data come from 
different regions in the two fields. The ~(dl~ + dz2)/~xl patterns are digitized along 
(r, 0 ° < ~b < 45") and (r, 90 < q~ < 150 °) while ~(ff~ + 622)/?~x2 patterns are digitized in the 
range (r, 30 -~ < ~ < 90°). As stated earlier, this choice is simply guided by the fact that one can 
realize greater numbers of least erroneous fringe intersections along these directions. It was 
previously demonstrated that the field in this case (a/w = 0.52) can be well described with three 
terms rather than one  term. Thus ,  for N = 3, F (u becomes ,  

( cos +J2,  r32 ' 1) F~X)(r, qS; A1, A3, A4) = AI 1 + ~ r c o s ( 3 q ~ / 2 )  + A1 cos(3q~/2i -~ At(1 + g(1)) (37) 
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Fi9. 14. (a/w)= 0.32; (a) Synthetic [ch(O(611 + ~22)/0X1)] patterns (broken lines) obtained from three parameter fit 
(N = 3) superposed on actual fringe patterns. (b) Synthetic [ch(O(dl i + ~22)/0x2)] patterns (broken lines) obtained from 
three parameter fit (N = 3) for [ch(t3(rH + ~22)/0xl)] and superposed on actual fringe patterns. 

to describe the function y(1) at any generic point in the field. Similarly, if O(ff11 -1- ~22)/~X2 field 
were considered, one can write the counterpart of (37) as, 

~A3 sin(q~/2) ~'~ 
F(2)(r, ~b; A1, A3, A4)= A~ 1 + [fiT r sin(34)/2)~ ) - A~(1 + 9 (2') (38) 

to describe y(2). In (37) and (38), g") and g(2) represent the contribution of the higher order 
terms. Also, note that the term associated with N = 4 is identically equal to zero in 
~ ( ~  + ~2z)/t3x2 field, (38). In Fig. 15, g(a) and 9 ~z) are plotted against ~b for (r/h) = 1 and the 
ratios (Aa/AO and (Ag/At) obtained from the least squares fit for the O(dll + ~22)/0xl fringes. 
The emphasized portions of the curves indicate the regions from which the data is typically 
extracted for the multi-parameter analysis. It is evident from these plots that as 4)---, 60 °, the 
contribution of gO) becomes much larger than unity in the ~(~11 + ~2z)/OXl field. Similarly, as 
~b~ 120 °, the contribution of g(2) becomes large compared to unity in the 0(~1~ + ~22)/(~X2 field. 
Figure 15a indicates that in the t3(d~ + 622)/t3x~ field, the data ahead of the crack tip 
(0 ° < q~ < 45 °) will have larger contribution from g") than for those from behind the crack tip 
(90 ° < ~b < 150°). At the same time, the magnitude of 9 (z), Fig. 15b, is small compared to unity 
and varies weakly with ~b in the region where the experimental data are obtained 
(30 ° < ~b < 90°). This explains why the spread in Y") obtained from the data ahead of the crack 
tip in the 3(~ 1 -'1- d22)/0X1 field is more when compared to the data from behind the crack tip in 
Figs. 9-10. Also, magnitudes of AN/A1 are certainly an important factor which directly account 
for the overall contribution of g~) and g(2) and hence the deviation from K-dominance. This 
illustrates that the experimentally observed K-dominance depends not just on the region of 
measurement but also on the field quantity considered. 
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3.2.2. Synthetic caustics 
The caustic mapping in transmission is given by the relations [11], 

x ' ,=x,+ Zo[ch ~(t711 -~- (722) 1 ?~x, ' ~ = 1,2, (39) 

where (x'~, x~) denote the in-plane coordinates of the caustic plane located at a distance Zo from 
the specimen plane along the optical axis and (xl, x2) correspond to the in-plane co-ordinates of 
the specimen plane. From a multi-parameter analysis of the 0(611 + (722)/(~X1 patterns of CGS 
(refer to (34)) one can obtain A1, ... AN needed to evaluate ~(611 + ~22)/c3x~. Synthetic caustics 
are generated using the mapping relations (39) for a range of Zo leading to caustics obtained 
from different distances ro (initial curve radius) from the crack tip. In Fig. 16 one such caustic 
(Zo = 4.0m) obtained for (a/w) = 0.52 and a three term expansion (A1, A3, A4), is shown. Also, 
the values of K . . . .  , measured by interpreting the synthetic caustics as if they were from a 
K-dominant region (only A1 present) are shown in plots in Figs. 8-10. Some interesting 
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observations can be made from these results. For (a/w) = 0.2, Fig. 8a, b, for which K-dominance 
is observed through CGS outside the 3-D zone, the agreement between K 2° and K ca"*, for 
different initial curve radii in the range 0.4 < (ro/h) < 0.75, is good. When (a/w) = 0.32 and 0.52, 
we see that the magnitude of K ca"s, for the same range of initial curve radii as above, is 
apparently a constant. However, K . . . .  overestimates K~ ° by as much as 50 percent. This is 
clearly a consequence of a lack of K-dominance. Also, note that K ea"s values coincide with a 
horizontal portion of y<2) obtained from the 0(fill + ~22)/0x2 pattern; however, both of them 
differ substantially from K 2°. 

3.3. Three point bend fracture specimens in reflection 

Applicability of CGS to opaque solids is demonstrated by using it in reflection mode, Fig. 2, 
to map surface deformations in single edge notch, three point bend specimen made of 
PMMA (plate thickness of l l .Tmm) and AI 6061 (plate thickness of 13mm, yield stress 
ao g 300 MPa). The specimen geometry is the same as the one used in transmission experi- 
ments, Fig. 6, with a notch length to plate width ratio of (a/w) -- 0.2 in which K-dominance is 
observed in both the derivative fields. One of the faces of the PMMA specimen is aluminized to 
provide a reflective surface. In the case of aluminum specimens, a flat mirror-life surface is 
produced by lapping one of the surfaces flat and subsequently polishing it to 1 gm finish to 
obtain a reflective surface. 

The fringe patterns observed in reflection CGS by using the set up described earlier, are 

shown in Figs. 17 and 18. As previously described in Section 2.4.2, they represent contours of 
constant surface gradients, ~u3/c~x~ where ua is the out-of-plane displacement component. 
Although the overall structure of these fringes is similar to those obtained in transmission 
experiments, there are some differences. The sensitivity of the fringes is 0.0125 degrees/fringe - 
twice that of transmission CGS for the same grating separation A. Clearly, in the case of 
aluminum specimen Fig. 18, dense and wiggly fringes concentrated around the tip of the notch 
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Fig. 17. Fringe patterns representing contours of constant (a) ?m3/~xl (b) ~u3/Ox2 fringes around the notch tip; (PMMA 
in reflection). 

Fig. 18. Fringe patterns representing contours of constant (a) Ou3/~xl (b) Ou3/Gx 2 fringes around the notch tip; 
(AI 6061-T6 in reflection). 

indicate plastic deformat ion  at the crack tip (plastic zone radius rp/h ~ 0.3). In any event, the 

fringes close to the crack tip are still discernible and the method  demonst ra tes  its ability to 
a c c o m m o d a t e  modera te  amounts  of plastic deformations.  

In te rpre ta t ion  of these fringes is done using Will iams'  expansion [23] for mode- I  crack stress 
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field in (25) and (26) and we get, 

rheA:N) m, 
0-~xl= ~N~__ 1 N k ~ - ' l  r((m2)- 2) cos ~ - - 2  q ~ - ~ ,  

Ou3 v h ~ ( N )  ( N )  np = ~-Eu~=IAN ~ - 1  r ((m2)-2)sin ~ - 2  ~ b = ~ .  

113 

(40) 

(41) 

If a K-dominant field were to prevail near the crack tip, higher order terms in (40) and (41) can 
be neglected to yield, 

8u3 vh K I _3/2COS(3t~/2 ) mp (42) 
~x, = ~ qT~  r = ~ '  

x~2n np (43) (~U 3 = Yh  r - a / 2  s in (3~b /2 )  = ~ .  
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In Figs. 19 and 20, the quantities Z" (~t = 1, 2), where 

rap) 2E~/~  r 3!2 
Zm(r' 95) = ~ vh cos(395/2)' (44) 

np) 2 E x / ~  r 3/2 
Z(2)(r' 95) = ~ vh sin(395/2)' (45) 

are plotted against (r/h). As in the transmission case, Z (') would coincide with Kx if a 
K-dominant field exists. The plots, however, indicate that, when r/h < 0.5, the data is strongly 
influenced by three dimensional deformations around the crack tip. Beyond this range of 
appreciable 3-D deformations, the data suggest that Z (') lies within _+ 10 percent of the K~ 2° 
(obtained from boundary measurements) in the region 0.5 < Uh < 0.75. 
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3.4. Demonstration of CGS in dynamic fracture 

The potential of CGS to study crack tip deformation fields around dynamically propagat- 
ing cracks is examined using high speed photography. Three point bend, PMMA specimens 
of 8.2 mm thickness and an initial crack length of 25 mm (Fig. 6) are subject to impact load- 
ing in a drop weight tower. The optics used for the purpose is essentially the same as the 
one used in static experiments but for the use of a high speed rotating mirror camera to 
record the image. A 50 mm diameter collimated Argon-Ion laser beam pulsing once every 
101~s (pulse width = 50ns) is transmitted through the specimen. The opening of the 
camera shutter and pulsing of the laser are synchronized with the falling weight making 
contact with the specimen. The net crack propagation through the region of observa- 
tion occurred in a period of about 150 ~ts after crack initiation and the measured average 
crack velocity was 275 m/s (approximately a fourth of the shear wave speed in PMMA). 
The pair of line gratings are oriented such that the 0(611 + t722)/C~X ! field is produced. The 
fringe patterns obtained in this experiment are shown in Fig. 21. These sharp and high 
contrast fringes clearly hint the potential of the method in the study of dynamic fracture. 
The measurement of the dynamic stress intensity factor from these patterns and K-dominance 

Fig. 21. High speed photographs of [ch(63(~11 q-~22)/t~x1)] fringes around a dynamically propagating crack (crack 
speed = 275 m/s) in three point bend PMMA specimen. 
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Fig. 22. Transient effects near a dynamically propagating crack tip: Comparison between static and dynamic crack tip 
fields. (a) Dynamic Y") vs. r/h for (a/w) = 0.23 at 20 Its after crack initiation (b) Static yill vs. r/h for (a/w) = 0.2. 

under transient crack growth conditions are the topics of investigation of a forthcoming 
report. However, in order to point out the overwhelming importance of transient effects in 
a dynamic event of this nature, we have plotted v(1) against (r/h) for a frame 20 ~ts after * d y n a m i c  

crack initiation (a/w = 0.23) next to an equivalent Ystatie(1) (same as Fig. 8a; a/w = 0.2) in 
Fig. 22. All other features such as material and specimen geometry being the same, this 
clearly depicts the transient effects that dominate the dynamic event of this nature. 

4. Conclusions 

A new full field optical technique 'Coherent Gradient Sensing' (CGS) - is developed and 
used to study crack tip deformations in transparent as well as opaque solids. A first order 
diffraction analysis is provided for the technique and its feasibility is demonstrated both in 
transmission and reflection modes. The intrinsic ability of the technique to measure gradients 
makes it insensitive to rigid translations and rotations. Preliminary results from a dynamic 
crack growth experiment clearly demonstrate the capability of CGS to be an effective experi- 



Optical mapping of crack tip deformations 117 

mental alternative to other optical methods used in dynamic fracture studies such as photo- 
elasticity and caustics. Notably, it is a full field technique which works with optically 
isotropic materials. It also has a potential for application to study dynamic fracture of 
metals. 

The static fringe patterns obtained from the experiments are analyzed in regions outside the 
3-D zone. For geometries where the region outside the 3-D zone is K-dominant, the fringes 
provide an accurate value of 2-D stress intensity factor. For geometries where the region outside 
the 3-D zone is not  K-dominant, Williams' expansion is used in conjunction with a least squares 
procedure to obtain the stress intensity factor. 
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