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ABSTRACT 

THE USE of a coherent gradient sensing (CGS) apparatus is explored in dynamic lracturc mechanics 
investigations. The ability of the method to quantify mixed-mode crack tip deformarion fields accurately 
is tested under dynamic loading conditions. The specimen geometry and loading follow that of Lee and 
Freund who gave the theoretical and numerical mixed-mode K values as a function of time for the testing 
conditions. The CGS system’s measurements of K, and K,, are compared with the predicted results, and 
good agreement is found. The method is used to measure K beyond the time domain of the known solution ; 
It 1s seen that a shift from primarily mode II deformalion to primarily mode I deformation occurs. 
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1. INTROUUCTI~N 

IN AN EFFORT to understand dynamic mixed-mode crack initiation as well as 
rapid crack growth, various optical techniques have been used extensively for direct 
determination of dynamic crack tip fields. The method of photo-elasticity, for instance, 
has been used to obtain both the dynamic fracture initiation and propagation tough- 
nesses of transient, optically anisotropic materials such as Homalite 100 (DALLY, 
1979). The method of caustics, on the other hand, has been used to study dynamic 
fracture behavior of transient solids such as PMMA and Homalite 100 (THEOCARIS 
and GDOUTOS, 1972 ; RAVI-CHANDAR and KNAUSS, 1984) as well as opaque materials 
such as steel (ROSAKIS and ZEHNDER, 1985). For a review of the method of caustics or 
the method of photo-elasticity see KALTHOFF (1987b) or BURGER (1987), respectively. 

The method ofcaustics has been used in a variety of fracture mechanics experiments 
(ROSAKIS and ZEHNDER, 1985; THEOCARIS and GDOUTOS, 1972; RAVI-CHANDAR and 
KNAUSS, 1984 ; BEINERT and KALTHOFF, 198 1). This technique, however, inherently 
assumes that the stress field near the crack tip is well described by the dominant 
(r- Ii’) singular term of the asymptotic expansion (K-dominance). If the K-dominance 
approximation is not valid in regions where measurements are performed, the method 
ofcaustics can produce erroneous results in its measurement of K, or K,,. Furthermore, 
if there is limited knowledge of the crack tip deformation field (consider the formation 
of an adiabatic shear band at a crack tip), the method of caustics can give little 
information about the deformation. Consequently, a full-field method is exper- 
imentally more advantageous because it can offer a more complete description of the 
deformation and response of the specimen over a larger region and not along a single 
curve as in caustics. The method of photo-elasticity is a full-field technique, but this 
method is limited to optically birefringent materials. 

The full-field method known as the coherent gradient sensor (CGS) (TIPPUR er al., 
1989a, b) is investigated here for the measurement of mixed-mode, dynamic crack tip 
deformation fields under plane stress conditions in optically transparent, non- 
birefringent materials. The CGS is a lateral shear interferometer utilizing two identical 
line gratings. The set up was first proposed for measuring lens abberations (HARI- 
HARAN er al., 1974; HARIHARAN and HEGEDUS, 1975) but, until recently, other possible 
applications of the CGS interferometer have been overlooked. When used in fracture 
mechanics the method gives real time measurements of the inplane stress gradients 
for transparent materials or the in-plane gradients of the out-of-plane displacements 
for opaque materials. With data taken at a wide range of points near the crack tip, it 
is possible for the CGS method both to show whether or not a K-dominant field exist 
near the crack tip and to find accurate values of K, and K,,. 

TIPPUR et al. (1989a, b) have demonstrated the accuracy of the CGS statically for 
mode I loading; however, its accuracy in dynamic investigations, including dynamic 
mixed-mode loading, has not been reported. 

Recently, KALTHOFF and WINKLER (1987) and KALTHOFF (I 987a) have observed 
interesting behavior in the dynamic propagation of mixed-mode (mostly mode II) 
cracks in steel. Double-notched specimens were impacted by a projectile travelling 
with speeds up to 70 m s- ’ [Fig. 1 (a)]. It was found that below a certain impact speed 
(depending upon the root radius of the notch) dynamic cracks propagated at a 
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deflected angle of approximately 70” from the notch line. This behavior is to be 
expected if the material fails in a brittle fashion under a maximum hoop stress criterion 
(ERDOGAN and SIH, 1963). Above a critical impact speed, however, failure occurs 
along a direction at a much smaller angle. Further investigation suggests that at high 
impact speeds (high strain rate) failure occurs in an adiabatic shear banding mode. 

An analysis of the experiment of KALTHOFF and WINKLER (I 987) and KALTHOFF 

(1987a) by LEE and FREUND (1990a) shows that both modes of deformation, mode I 
and mode 11, can be expected for such a loading geometry. In fact, apart from the 
dominant K,,, a small negative K, is also predicted. Lee and Freund indicate limited 
agreement of the mode II stress intensity factor predicted by their analysis with the 
caustics measurements of Kalthoff and Kalthoff and Winkler. In these measurements, 
the caustics patterns were interpreted as corresponding to a pure mode II deformation 
field. Hence, no values of K, are reported. The limited agreement of the theoretical 
results with the experimental measurements may be attributed to a failure of the 
assumption of K-dominance, which was not thoroughly substantiated in the exper- 
iments. 

It is important that the Lee-Freund analysis of the experiment be verified so that 
understanding of the failure mode transition from brittle cracking to adiabatic shear 
banding can be achieved. Knowledge of the existence and magnitude of a K field at 
the crack tip could lead to a clearer understanding of the mechanisms behind this 
failure mode transition. 

2. THEORETICAL DEVELOPMENT 

2. I. Analytical model 

The problem investigated by LEE and FREUND (1990a) is shown in Fig. l(b). One 
side of an elastic, half-space containing an edge crack is loaded dynamically by some 
prescribed velocity, t?(t). All other faces are traction-free so the boundary conditions 
to be satisfied are 

a,,(-f,xz, 1) = 0 a,?(-I,.uz, t) = 0, 
ifs2 > 0, 

u,(-/,x?,f) = 

O~~(X,,O’, t) = 0 
I a,z(x,,O’,t) = 0 

If-l<x, <o, 

and at t = 0 all quantities are zero. An elastic plane strain solution to this problem is 
reported by LEE and FREUND (1990a), but conditions in our experiment are closer to 
a plane stress situation. As a result, the analysis was adjusted to reflect a plane stress 
field. This was achieved by substituting for v with the quantity v/(v+ I) in the results 
for K, and K,,. Note that K, and K,, in this problem depend on material constants, 
namely v, because a velocity boundary condition is prescribed on part of the boundary. 
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FIG. I. Loading configuration and geometry for: (a) experiments of KALTHOFF (1989) and KALTHOFI: and 
WINKLER (1987). (b) theoretical solutions or LEE and FRELJND (1990~1). and (c) finite clement solution of’ 

LEE and FREUNU (1990b). 

For PMMA 1~ z 0.35 and v/(v+ 1) = 0.26; therefore the analysis was evaluated 
numerically for v = 0.26. The normalization factor, K', for the stress intensity factors 
is given by 

for plane stress, 

where the plane stress normalization factor is found using the above substitution for 
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FIG. 2. (a) Theoretical predictions for K,(I) from the analysis of LEE and FKEIJNII (1990~1) for 1’ = 0.26. 
(b) Theoretical predictions lor K,,(l) from the analysis or LEE and FKEUNII (1990a) for v = O.X. 

I’ in the plane strain normalization factor given by LEE and FREUND (1990a). The time 
axis is normalized by the characteristic time. I/&“. where c/j’ d is the plane stress 
dilatational wave speed. The results of the new calculations for both mode I and mode 
II stress intensity factors are shown in Fig. 2(a) and (b), respectively. As expected, 
these results are very close to the results of LEE and FREUND (I 990a) for I’ = 0.25. 

Most of the qualitative features of the curves in these figures can be explained. 
Upon impact a plane compressive wave is generted. It is followed by cylindrical 
unloading waves generated at the corners of the impact area. The compressive wave 
gives rise to K,,. The existence of the unloading wave makes the increase in K,, 
progressively more gradual and forces the crack faces to close, thus causing a smaller, 
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FIG. 3. Schematic of the experimental set up for transmission CGS. 

but significant, negative K,. As can be seen in Fig. 2(a) and (b) there exist three regions 
in the solution. These correspond to the arrivals at the crack tip of the first dilatational, 
shear and Rayleigh waves, respectively. The solution is valid up to c,,t/l = 3, which 
corresponds to the arrival of a second dilatational wave that is reflected from the 
impact surface. 

2.2. The method of CGS 

In contrast to TIPPUR et al. (1989a, b), the theoretical development of CGS shown 
here follows the more traditional approach of MURTY (1978) for lateral shearing 
interferometers. The two approaches are equivalent ; the same assumptions are made 
and the same governing equations result. It is hoped that the more traditional devel- 
opment will result in an easier understanding of the method. A schematic of the set 
up is shown in Fig. 3. A coherent, collimated laser beam, 50 mm in diameter, passes 
through a notched transparent specimen. After exiting from the deformed specimen, 
the beam falls upon the first of two identical diffraction gratings (40 lines/mm). The 
primary grating splits the beam into a direct beam and numerous diffraction orders. 
For the sake of brevity, only the first diffraction orders (+ 1) and the direct beam are 
considered. The second diffraction grating diffracts both the direct beam and the first 
diffraction orders into three beams each, giving a total of nine beams behind the 
second grating. Of these nine beams the (0, + 1) and (+ I, 0) orders are parallel-as 
can be seen in Fig. 4. 
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FIG. 4. Schematic describing the working principle of CGS. 

An on-line spatial filter is used to isolate one of the two pairs of parallel beams. A 
lens is placed a distance equal to its focal length behind the secondary grating as in 
Fig. 3. The Fourier transform of the intensity distribution at the second grating is 
observed in the back-focal plane of the lens where an aperture is placed on either the 
+ 1 or - 1 diffraction order spot. The aperture filters all but the two desired parallel 
beams from the wavefront. Another lens is placed at a distance equal to its focal 
length behind the aperture to invert the Fourier transformation. 

It is assumed that the wave front before the first grating is approximately planar 
with some phase difference, 6S(x,, .YJ. Deviations of the propagation direction from 
the optical axis are neglected. Thus, the two gratings shift one beam with respect to 
the other by a distance 

E = Atan6z A8, (2) 

where A is the separation between the gratings (Fig. 3) and 0 is the angle of diffraction 
(assumed small), given here by 

A /z 
(j=sin-‘-z--, 

P P 

where ,I is the wavelength of the illumination and p is the pitch of gratings. 
The two parallel, sheared wavefronts constructively interfere at a point if their 

difference in phase is an integer multiple of the wavelength, i.e. if 

~S(X,+E,X*)-#S(X,,X~) = m;l, (44 

where m is called “the fringe order”. Dividing this equation by E gives 

6S(xl+~,x~)-6S(x,,xz) mA =- 
E E ’ 

(4b) 

which, for sufficiently small E, may be approximated by 
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a[ss(s,,x~)J 171p 

as, A’ (5) 

In (5). the approximations in (2) and (3) have been used, and the result has been 
generalized to include shearing in either the s,- or sz-direction (a = I, 2). 

Equations (4a) and (4b) are the standard equations for lateral shearing inter- 
ferometry found in MURTY (1978). Note that as E goes to zero the approximation in 
(5) grows more exact, but at the same time the number of fringes and, therefore, the 
sensitivity of the system, is decreased. It is important that the grating separation, A, 
and, consequently, the value of E, appropriately balances the competition between 
maximizing sensitivity and approximating the derivative. 

For a transparent material, the phase difference, &S(s,, sz), in (4a) and (4b), is 
given by the difference in optical path length. Two important factors are included in 
calculating this parameter; the change in refractive index of the material due to 
variations in hydrostatic stress, and changes in specimen thickness due to Poisson’s 
contraction. The optical path difference is, thus, given by 

where II,, is the index of refraction of the un-deformed material and /I is the thickness. 
The first term in (6) represents the optical path difference due to changes in the plate 
thickness caused by the strain component, cJj. The second term represents the optical 
path difference accumulated due to stress-induced change in refractive index given by 
the Maxwell relation 

h>(.*, x2) = D,(a, I +a,z+o,A (7) 

where D, is the stress-optic constant and cij are the Cartesian stress components. 
Assuming the material is isotropic and linearly elastic, and using the plane stress 
assumption substitution of (7) into (6), yields (TIPPUR et d., 1989a, b) 

&s(s,, x2) = (;I(cf , , +c?zz), (8) 

where ? = D , - (v/E)(rz,, - 1) and I?, , and ti2? are plane stress thickness averages of 
stress components in the material, while e3, = 0. Finally, substituting (8) into (5) 
gives the result 

(9) 

All interference images produced by the CGS apparatus are interpreted using (9). 
A similar analysis may be carried out for opaque materials in reflection giving results 
with the same form (TIPPUR et al., 1989a, b). 

For the case of a mixed-mode, K-dominant deformation field at a crack tip, 

(cf,, +82z) = 2 
J&i 

K,cosg -K,, sin: , (10) 

. where r = Jm and 4 = tan-’ (x2/x,). x, and x2 are the coordinates along the 
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crack length and perpendicular to the crack length, respectively, with the origin at the 
crack tip. Equation (9) indicates that constructive fringes are formed if 

A sin 312~4 - 44 

J2xrj 
= sh for .\-,-gradients (I la) 

or 

A ~0s 312~4 - rl/) 

$7 
= zh for .yz-gradients, 

where K,/K,, = tan (31//2), and A = K,,/cos (31/1/2). An example of the fringe pattern 
expected from (I la) is shown in Fig. 5(a) for K,, = 0 and Fig. 5(b) for K, = 0. A 
change in the ratio K,/K,, results in a rotation and/or magnification of the fringe 
pattern, as seen in Fig. 5(c). 

(a) 1.0 

.O 

xl/h 

FIG. 5. (a) Numerical predictions of CGS fringes [constant [d(d, ,+dz2)]/?.\-, values) constructed on the 
basis of a pure K, field. (b) Numerical predictions of CGS fringes (constant [?(L+,,+~~~)]/?.Y, values) 
constructed on the basis of a pure K,, field. (c) Numerical predictions of CGS fringes iconstant 

[13(6,, +dz2)]/ds, values} construct’ed on the basis of a mixed-mode K field. K, = K,,. 
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FIG. 5. Continued. 



Dynamic mixed-mode fracture 

3. EXPERIMENTAL PROCEDURE 
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3.1. Apparatus 

The specimen geometry is shown in Fig. 6. Specimens are made of PMMA because 
it approximates the linear elastic assumption of the theoretical solution. Square tip 
notches z 1.5 mm thick are cut on a band saw as per Fig. 6. The inclusion of a notch 
of finite opening rather than a crack allows the generation of a negative mode I stress 
field at the notch tip (as long as the notch faces do not come into contact). Thus, the 
mode I response of the system can be investigated. 

Impact of the specimens is achieved using a Dynatup drop weight tower. The 
contact area of the drop weight tup is made of steel, and the corners are rounded to 
reduce stress concentration. The weight is dropped from approximately 1.4 m, giving 
it a velocity of 5.25 m s- ’ at impact. Including the impedance mismatch of the two 
materials, this results in a contact interface velocity between the specimen and the 
drop weight of %5 m s’. 

The set up of the CGS apparatus follows Fig. 3. A streak camera is used as the 
imaging system. The CGS interferograms are generated using an argon-ion laser 
pulsed for 50 ns at 7-~LS intervals as the light source. The total length of the test is 
z 300 ps, resulting in approximately 40 CGS interferograms per test. 

The fringe patterns are digitized by hand. A ray of constant 4 from the crack tip 
is followed; points at the center of fringes are digitized along the way. Most of the 

dl 

J 

Xl 

Dimensions of specimen : 
1=25lMl 
w=lUmm 
d=254nm 
dt=136mm 
thickness=75nm 

Mechanical proper& of specimen: 
E=1240 Mpa 
wO.35 
c=l.OS lo-*O Pa 
c,+‘=1765 m/s 

FIG. 6. Specimen geometry, loading conliguration and material constants. 
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uncertainty in digitization arises from locating the crack tip and choosing the center 
of the fringe. Uncertainties in the measurement of 4 are minimal. 

3.2. Duta reduction 

Rearranging ( I I a) gives 

Z-! J-’ 2nr,’ = Y,, (12) 

where Y, = A sin 3/2(4,-e) and the subscript i refers to individually digitized points. 
The left-hand side of (12) is obviously constant for fixed 4, K, and K,,. If K-dominance 
is exhibited. plotting the left-hand side of (12) with respect to I’ should result in a 
horizontal line. K-dominance was studied by producing such plots and investigating 
their slope. 

Deviation of experimental resuIts from the fringe patterns predicted by a K-domi- 
nant field are expected for various reasons. These include the notch tip geometry, the 
zone around the notch tip where plane stress assumptions break bown (the 3-D zone) 
(ROSAKIS and RAW-CHANDAR, 1986; KRISHNASWAMY et ul., 1988) and the finite 
specimen size. Once a region of K-dominance is located, however, a fit of the expected 
fringe pattern to the digitized data points can be attempted. This fit is produced by 
minimizing the error function 

X(4, K,,) = x p2 -P 2(l$,.m,, K,, K,,)]‘, (13) 
,= I 

where 

( l3a) 

and N is the total number of points. The minimization of (13) results in a linear set 
of equations for K, and K,,. It is noted that the function x inherently weights the outer 
lobes of the interferograms more strongly than the inner lobes. Another function was 
tested, namely. 

where 

n^l(4,r,, K,, K,,) = P~~~,:[K,,sin(3~‘)-K,cos(3~f)], 

This function weights the inner lobes more heavily, but results similar to those reported 
here are found. 



FIG. 7. Scqucnce of CGS inter~erograms corresponding to the initial stages ol‘ the dynamic asymmetric 
loading or the pre-notched specimen. 
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FIG. 9. Synthetic fringe pattern reconstructed from one-term analysis compared with experimental 
transmission mixed-mode CGS interferogram. 
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FIG. I I. Sequence of high-speed images showing compressive waves generated during impact. 
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4. RESULTS AND DISCUSSION 
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A series of shearing interferograms is shown in Fig. 7. Comparison with Fig. 5(b) 
shows that the fringes represent a primarily mode II type of deformation at a short 
time after impact (c,,/// 6 3). In analogy to observed near-tip 3-D effects in mode I 
deformation (ROSAKIS and RAW-CHANDAR. 1986; KRISHNASWAMY et N/., 1988) it is 
expected that, within a radius equal to half the specimen thickness, mixed-mode 
deformation will have a strongly 3-D character. As a result, the fringes contained 
within a radius equal to half the specimen thickness were always excluded in the 
analysis. Digitization was always performed outside the 3-D zone for the useable 
interferograms, and, consequently, the results up to I8 /ls (c,,/// = 1.2) were rendered 
un-interpretable. 

Before attempting a fit based on (I 3), K-dominance was investigated. The left-hand 
side of (12) was plotted for various values of I’, and constant 4. Examples of such 
plots are shown in Fig. 8. It can be seen in Fig. 8 that in a substantial region 
surrounding the 3-D zone horizontal lines result. Thus, K-dominance is a reasonable 
assumption for data points taken beyond half the thickness from the notch-tip. 

Fitting of the theoretical fringes to the digitized points was carried out for a K- 
dominant field, and an example of such fits is shown in Fig. 9. In Fig. 9 the theoretical 
fringe pattern from the fit has been superimposed on the interferogram from the 
experiment. It can be seen that the experimental interferogram matches the theoretical 
fringe pattern quite well. The resulting K values from all the fits are shown in Fig. IO 
plotted with the analysis of LEE and FREUND (1990a) and the numerical calculations 
of LEE and FREUND (1990b). Normalization of the experimental data was achieved 
using the plane stress values for K' [see (I)]. As can be seen, good agreement between 
the experiment and the analysis is found. In Fig. IO(a) the mode I experimental results 
follow the numerical simulation closely, but most deviate from the theoretical analysis. 
This is expected since the theoretical loading has an infinite area of contact while the 

.O .2 .4 .6 .6 1.0 

ri/h 

FIG. 8. Radial variation of Y, for various C#J at a time. I = 49 ks (C-J// = 3.3). after impact. 
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FIG. 10. (a) Normalized stress intensity factor as a function of normalized time for “short” times (c,r// i 3). 
Comparison of theoretical analysis of LEE and FREUND (1990a), numerical analysis of LEE and FREUND 

(1990b) and experimental results for mode I. (b) Normalized stress intensity factor as a function of 
normalized time for “short” times (c,r/l< 3). Comparison of theoretical analysis of LEE and FREUND 

(1990a). numerical analysis of LEE and FREUND (1990b) and experimental results for mode II. 

finite element analysis models our specimen more closely. (In this experiment, the 
area of contact is small, 1.5 times the crack length ; the finite element analysis is carried 
out for loading area equal to the crack length. This effect also explains the large 
difference between numerical and analytical predictions.) The good agreement of 
mode I results indicates that the method is sensitive enough to measure both K, and 
K,, even when the ratio K,/K,, is small. In Fig. 10(b), the mode II results agree well 
with both the theoretical and the numerical analysis. 
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FG. 13. (a) Normalized stress intensity factors as a function of “long” times (c,,r// > 3) for mode I. (b) 
Normalized stress intensity factors as a function of “long” times (c,,/// > 3) for mode II. 

It is noted that experimentally determining the time of impact, i.e. c,,f/l = 0, is 
difficult. Simply watching the tup impact the specimen is not sufficient because in the 
time between two exposures the tup moves a distance c 1 itm. The magnification is 
zz 1 ; thus, detecting such small motions is impossible. However, at 5 m so ’ impact 
velocity, it is possible for the CGS to detect the initial compression wave travel- 
ing from the contact area to the crack tip (see the interferograms in Fig. 11) and, 
thus, determine the time of impact. Measurement of the velocity of this wave (cd = 
1750 m so ‘) agrees well with the expected plane stress velocity in PMMA for a 
dilatational wave. By extrapolating the wave propagation back to the contact area, 
the time of impact was found satisfactorily. 
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In the CGS interferograms at later times (Fig. 12) it can be qualitatively seen that 
a shift from primarily mode II in Fig. 7 to primarily mode I deformation occurs. The 
fit of K-dominant fringes in this time domain gives the results shown in Fig. 13. The 
time of the initiation of a mode change, the time when K,, reaches a maximum, 
coincides with the arrival time of the reflected dilatational wave from the opposite 
side of the specimen. c,,t// z 9. 

In conclusion, the ability of CGS to measure mixed-mode stress intensity factors 
under dynamic conditions has been examined. The good agreement between exper- 
imental results and theory demonstrates that even when mode-mixity is not substan- 
tial. the method produces acceptable values for both stress intensity factors. A shift of 
dominant deformation mode II to mode I is observed over 300 11s for this loading 
and specimen geometry. This fact is important in experiments using this configuration. 
Depending upon the time of initiation and, as a result, the mode-mixity, crack propa- 
gation can occur in many different directions. 
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