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Abstract. The asymptotic structures of crack-tip stress and deformation fields are investigated numerically for 
quasi-static and dynamic crack growth in isotropic linear hardening elastic-plastic solids under mode I, plane stress, 
and small-scale yielding conditions. An Eulerian type finite element scheme is employed. The materials are assumed to 
obey the von Mises yield criterion and the associated flow rule. The ratio of the crack-tip plastic zone size to that of 
the element nearest to the crack tip is of the order of 1.6 × 104. The results of this study strongly suggest the existence 
of crack-tip stress and strain singularities of the type P (s < 0) at r = 0, where r is the distance to the crack tip, which 
confirms the asymptotic solutions of variable-separable type by Amazigo and Hutchinson [1] and Ponte Castafieda [2] 
for quasi-static crack growth, and by Achenbach, Kanninen and Popelar [3] for dynamic crack propagation. Both the 
values of the parameter s and the angular stress and velocity field variations from the present full-field finite element 
analysis agree very well with those from the analytical solutions. It is found that the dominance zone of the P-singularity 
is quite large compared to the size of the crack-tip active plastic zone. The effects of hardening and inertia on the 
crack-tip fields as well as on the shape and size of the crack-tip active plastic zone are also studied in detail. It is 
discovered that as the level of hardening decreases and the crack propagation speed increases, a secondary yield zone 
emerges along the crack flank, and kinks in stress and velocity angular variations begin to develop. This dynamic 
phenomenon observable only for rapid crack growth and for low hardening materials may explain the numerical 
difficulties, in obtaining solutions for such cases, encountered by Achenbach et al. who, in their asymptotic analysis, 
neglected the existence of reverse yielding zones along the crack surfaces. 

1. Introduction 

F o r  quas i -s ta t ic  crack growth  in isotropic,  l inear  harden ing  elast ic-plast ic  solids, Amaz igo  and 

Hu tch inson  [1] per formed asympto t i c  analyses  in mode  II I  and  in mode  I p lane stress and  

plane s t ra in  th rough  var iab le - separab le  solutions.  By assuming the existence of  an active plast ic  

zone at  the crack front, and  by neglecting the possible  reverse plast ic  load ing  a long the 

t ract ion-free  crack surface, they were able to ob ta in  angular  var ia t ions  of  the crack- t ip  stress 

and  plast ic  s train rate  fields, and  to de termine  their  o rder  of  s ingulari t ies  at the crack tip. 

The above  analyses  were general ized in mode  II I  by Dunayevsky  and Achenbach  [4] for low 

harden ing  mater ia l s  so as to a p p r o a c h  the elastic-perfectly plastic solut ion when harden ing  

d isappears ,  and  were extended in mode  II I  and  mode  I p lane stress and  plane strain to include 

a secondary  plast ic  zone a long the crack f lank by Ponte  Castaf ieda [2],  who also in t roduced  a 

novel  me thod  for ob ta in ing  an a p p r o x i m a t e  ampl i tude  factor  of  the near- t ip  s ingular  field and  

a p p r o x i m a t e  crack- t ip  active plast ic  zone shapes. 

Fini te  e lement  studies under  s teady state and  small-scale yielding condi t ions  were carr ied out  

by Dean  and  Hutch inson  I-6] in mode  III,  with compar i sons  to the asympto t i c  results of 

Amaz igo  and  Hutch inson  [1], and  by Dean  1-7] in mode  I p lane stress. Both of the studies gave 
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explicit results regarding the crack-tip opening displacement variations and the effect of 
hardening on the shape of the crack-tip primary active plastic zone. 

For an isotropic hardening material, the effect of yield-surface vertices was considered by 
Lo and Peirce I-8] in mode III, with a phenomenological J2 corner theory of plasticity I-9]. An 
analysis for mode I plane strain, steady state, quasi-static crack growth was performed by 
Zhang, Zhang, and Hwang [10] to study Bauschinger-like effects for anisotropic linear 
hardening solids. Finite element computations for steady state, quasi-static crack growth 
conducted by Lam [11] and Lam and McMeeking [12] in mode I plane strain also investigated 
the effect of kinematic hardening with a bilinear stress strain relation. 

Under dynamic crack propagation conditions, the asymptotic quasi-static solutions of 
variable-separable type by Amazigo and Hutchinson [1] were extended for isotropic linear 
hardening materials to include inertia by Achenbach and Kanninen 1-13] in mode III, and 
Achenbach, Kanninen, and Popelar [3] in mode I plane stress and plane strain. It is noted that 
both of the above studies neglected the possible reverse plastic loading along the crack flank, 
which may yield large errors when this secondary plastic zone is large. 

In the following, we will report the results of a very detailed finite element investigation of 
the crack-tip fields for cracks growing, quasi-statically or dynamically, in isotropic, linear 
hardening solids, under conditions of mode I plane stress, steady state, and small-scale yielding. 
We will compare the solutions of this study to available asymptotic and numerical counterparts 
in the literature. Detailed discussions regarding the evolutionary variations of the field 
quantities with respect to crack propagation speed and the effect of linear strain hardening on 
the crack-tip fields will be presented. All computations are carried out with Poisson's ratio 
v = 0.3. All logarithmic values used in figures are based on the natural number e. 

The finite element formulation employed in this study is of the Eulerian type, which was first 
used in fracture mechanics by Dean and Hutchinson [6]. Stresses are obtained by numerically 
integrating the incremental elastic-plastic constitutive law over strain increments, with the 
modified tangent predictor-radial return algorithm [14]. This stress integration algorithm con- 
bines the fine points of both the original tangent predictor-radial return algorithm 1,15] and the 
secant stiffness algorithm 1-16, 17], in that it is easy to implement in plane stress, and that it gives 
a stress state automatically satisfying the yield condition at the end of a strain increment for 
elastic-perfectly plastic and linear hardening materials. 

In implementing the stress integration algorithm, a solution procedure proposed by Deng and 
Rosakis 1,18] is adopted. With this technique, existing solution procedures in wide use today 
can be modified to eliminate the occurrence of negative plastic flow, and to avoid treating elastic 
unloading as plastic flow. This modification is shown to improve the accuracy and convergence 
of the numerical solution. 

2. Finite element formulation 

In this section, the finite element formulation and the design of the finite element mesh are 
discussed briefly. Details can be found in [14, 18]. 

The linear hardening material under consideration is assumed to be homogeneous, isotropic, 
and obey the von Mises yield condition and the associated flow rule. As we know, the uniaxial 
stress-strain curve for such a material is depicted by two straight lines: the elastic line and the 
plastic line, with slopes E and Ep respectively. The ratio of the two slopes, ~ = Ep/E, is called 



Crack-tip stress 293 

the hardening parameter and represents the hardening level of the material. Obviously, when 
ct = 1, the material is linearly elastic; when ~ = 0, the material is elastic-perfectly plastic. 

Suppose a crack is propagating steadily in a plane made of such a material (see Fig. 2.1), such 
that an observer moving with the crack tip will not see any changes of the crack-tip fields as 
the crack extends. Mathematically, this requires that the crack speed v be a constant, and that 
for any field quantity, say, q, its material time derivative be computed from 

Oq ~q 
a t  = - v c3x~" (2.1) 

Equation (2.1) implies that the time rate or history of any field quantity for steady-state crack 
growth is stored spatially along horizontal lines parallel to the direction of crack propagation. 

Making use of the property specified by (2.1), an iterative finite element solution procedure 
first used by Dean and Hutchinson [-6] is adopted in this study. In the present study, at each 
solution step, convergence is said to have been reached at the (k + 1)th iteration if the following 
criterion is met simultaneously for every choice of i, j and 

i la~/Zll 2 ~< ~, ii~j+Zll2 ~< ~, i lu~+lll 2 ~< e, (2.2) 

where a u, e u and u, represent respectively the stress, strain, and displacement components; 
indices i,j range from 1 to 3 and • from 1 to 2; el. 112 is the standard 2-norm; and e is the error 
tolerance which is a small positive number. The stress and strain norms are summed over all 
Gauss integration points, and the displacement norm is summed over all nodal points, e is taken 
to be around 1.0 × 10 -4 in the current computation. 

In this study, the small-scale yielding condition [19, 20] is assumed. A rectangular domain of 
finite size (see Fig. 2.2) is used to model the mathematical problem of a semi-infinite crack 
advancing in an otherwise infinite plate, where coordinates Xx and x2 are normalized by 
(K/ao) 2, K being a generic symbol for the stress intensity factor, and ao the initial yield stress in 

xz 

v - da(t]/dt 

o' ;,; o ~, 
l- ~t, 

Fig. 2.1. A diagram of crack propagation, 
where (x'b x~) is a fixed reference coordinate 
system; (Xl, x2) is a moving system with 
origin at the crack tip; and (r, 0) is the 
associated polar coordinate system. 
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Fio. 2.2. A coarse representation of the finite 
element mesh used in the present computation. 
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uniaxial tension. The origin of the schematic mesh in Fig. 2.2 is at the current crack tip, and the 
traction-free crack surface and the symmetry line coincide, respectively, with the negative and 
positive xl-axis. The domain of the rectangle is discretized by a network of horizontal and 
vertical lines, whose intervals decrease rapidly towards the bottom and the center vertical lines, 
resulting in vanishingly small elements near the crack tip. The divided areas are simply 
represented by four-noded isoparametric rectangular elements, with 2 x 2 Gauss integration 
points. This type of element arrangement is designed to fit the need of the Eulerian finite element 
formulation, such that stresses can be integrated along horizontal lines composed of Gauss 
points, from the right boundary to the left (for details, see [14]). Now according to the boundary 
layer concept introduced by Rice [19, 20], the solution for this mathematical problem is 
equivalent to the crack-tip solution for the original mechanics problem under small-scale 
yielding conditions. As pointed out by Dean [7], a domain with a size larger than ten times that 
of the crack-tip active plastic zone will suffice to produce reasonable results. The size employed 
in this investigation is about fifteen times larger than the plastic zone size. 

Two meshes of high resolution are used in our computation. They are different in that the 
numbers of the horizontal and vertical lines of the mesh networks and the variations of the intervals 
between those lines are different. In the finer mesh, the network of lines results in 4050 elements 
with 4186 nodes, and the ratio of the plastic zone size to that of the smallest near-tip element is on 
the order of 1.6 x 10 4. In the sightly coarser mesh, there are 1800 elements, and the plastic zone size 
is about 0.8 x 104 times the size of the smallest near-tip element. Comparisons between numerical 
results obtained from those two meshes demonstrate very good agreement, which was reported 
earlier in [14, 23]. 

The boundary condition is specified as follows. In accordance with the small-scale yielding 
assumption, surface traction and displacements corresponding to the crack-tip elastic singular 
field, which is characterized uniquely by the dynamic stress intensity factor Kf, are prescribed on 
the domain boundary, with necessary updating on the portion of the boundary near the crack 
flank, where boundary conditions incompatible with the K-field arise due to the presence of 
residual plasticity in the plastic wake. 

3. Quasi-static crack growth 

As mentioned in the introductory section, quasi-static crack growth in linear hardening solids 
under mode I plane stress and steady state conditions has been investigated through asymptotic 
analyses of variable-separable type by Amazigo and Hutchinson [1] and by Ponte Castafieda 
[2], and through a finite element analysis of the Eulerian type under small-scale yielding 
conditions by Dean [7]. Explicit results were obtained by Amazigo and Hutchinson and Ponte 
Castafieda regarding the singularities and angular variations of the crack-tip asymptotic stress 
and velocity fields, and by Dean regarding the shape of the crack-tip active plastic zone and the 
radial dependence of the crack opening profile. In the following subsections, comparisons of the 
present numerical solution with those mentioned above will be performed whenever possible. 

3.1. Active plastic zones 

Approximations for the shapes of the crack-tip active plastic zones under small-scale yield- 
ing conditions have been given by Dean [7], from a finite element analysis very similar to 
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the present one, and by Ponte Castafieda [5], through matching trial functions to the elastic 

far-field and the elastic-plastic near-tip field, with parameters optimized using a variational 

compatibility statement. Comparisons with the results of the previous two investigations 
are shown in Fig. 3.1 for e = 0.25 and 0.1, where ~ is the hardening parameter. Note 
that the Poisson's ratio is taken to be 0.5 in Ponte Castafieda's calculation, and 0.3 in 
those of Dean and the current authors. It is seen from Fig. 3.1a, as in the case of ideal 
plasticity (see Fig. 3.2.1 of [14]), Dean's result predicts a plastic zone larger than ours. 
Considering the fact that the current study employed a much finer near-tip finite element 

mesh, it is felt that the current study gives a better approximation for the crack-tip active 
plastic zone. 

As to the comparisons with Ponte Castafieda's result, it is seen from Fig. 3.1b that both 
calculations agree well on the size of the active plastic zone along the prospective crack line, 
and on the angular extent of the active plastic zone. Yet Ponte Castafieda's approximation 
estimated a much higher value for the height of the active plastic zone than ours. It should be 
noted that Ponte Castafieda's result also gave a large plastic zone size in mode Ill, but in the 
horizontal direction rather than in the vertical direction. Nonetheless, due to the use of 
different Poisson's ratio values, it is difficult to draw definite conclusions from the above 
comparison. 

The effect of hardening on the shape of the crack-tip active plastic zone is illustrated in 
Fig. 3.2. It is found that as the level of strain hardening decreases (i.e. as ~ decreases), the size of 
the active plastic zone increases from 0.168(K/ao) 2 at ct = 0.5 to 0.209(K/ao) 2 at a = 0.1 in the 
horizontal direction, and it decreases from O.179(K/ao) 2 at e = 0.5 to O.140(Kfiro) 2 at e = 0.1 in 
the vertical direction. 

Estimate for the angular extent of the active plastic zone or the angle at which elastic 
unloading occurs is very sensitive to the contour value used in the estimation. Consequently, this 
subject will be temporarily dropped until the angular variation of the stress field is discussed. 
Moreover, it is worth mentioning that there are no signs of the existence of secondary active 
plastic zones at the back of the quasi-statically growing crack tip for the hardening parameter 
values studied. This observation will be further discussed later. 
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Fig. 3.1a. A comparison of the crack-tip active plas- 
tic zone in normalized coordinates with that of Dean 
I-7] for ~ = 0.25, with the crack tip situated at the 
origin. 
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Fig. 3.lb. A comparison of the crack-tip active plas- 
tic zone in normalized coordinates with that of 
Ponte Castafieda [5] for ~t = 0.1, with the crack tip 
situated at the origin. 
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3.2. Angular field variations 

We present the crack-tip stress and velocity field variations in this subsection. We start with a 
comparison of stress variations with the asymptotic solutions of Ponte Castafieda [2] for 
ct = 0.1. (Although this asymptotic solution was carried out with Poisson's ratio v = 0.5, it is still 
comparable with the present study due to the existence of substantial incompressible plastic 
deformation at the crack tip). Angular variations of polar stress components a,,, tree and tr,0, von 
Mises's effective stress tre, and flow stress or the current yield stress a for the current yield 
surface, are plotted in Fig. 3.3, which demonstrate very good agreement between the analytical 
results (v = 0.5) and the finite element results (v = 0.3). We also note that the asymptotic analysis 
in I-2] predicts that elastic unloading occurs at an angle around 73.65 °, which is right at the 
angular position where the effective stress becomes smaller than the flow stress (see Fig. 3.3). On 
one hand, this comparison suggests that the Poisson's ratio has little effect on the stress 
variation near the crack tip, which can be attributed to the fact that when ~ = 0.1 the elastic part 
of the strains is small compared to its plastic counterpart. On the other hand, this good 
agreement indicates that the present finite element mesh is fine enough to capture the 
asymptotic behavior of the crack-tip stress and deformation fields. Consequently, the findings of 
this numerical study can be interpreted with greater confidence. 

The effect of hardening on the angular stress variations are demonstrated through the 
progressive changes of stress components with respect to the linear hardening parameter ct, as 
shown in Fig. 3.4, where all stress quantities are normalized such that tre= 1 at 0 = 0. The 
general tendencies of the stress variations are consistent with the asymptotic solutions in [1], 
which were later elaborated in I-2] as discussed earlier. Further, the numerical solution seems to 
show that the slopes of tr,, at 0 = 0 and ace at 0 = 0 and 180 °, are very close to zero for all 
values computed. Substantial compressive radial stresses behind the crack tip are observed also 
for all ~ values studied, which suggests, as in the case of ideal plasticity (see [23]), that a 
tendency of reverse loading exists at the back of the crack tip. However, it is clear, as indicated 
by the relative magnitudes of the effective stress a~ and the flow stress tr, that this tendency is not 
strong enough for the stress state near the crack surface to regain yielding. This is consistent 
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Fig. 3.2. The effect of hardening on the crack-tip 
active plastic zone in normalized coordinates, with 
the crack tip situated at the origin. 
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Fig. 3.4a. The effect of hardening on the angular vari- 
ations of the polar stress components a,~ and aoo, nor- 
malized such that the effective stress ae = 1 at 0 = O. 
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Fig. 3.4b. The effect of hardening on the angular vari- 
ations of the polar stress component a,0, the effective 
stress ae, and the flow stress a, normalized such that 
ae = l at O = O. 

with existing analytical solutions. For  example, according to the asymptotic solution in [2], 

plastic reloading occurs only for ~ ~< 0.01 and at an angle very close to 180 °. Hence, the plane 

stress solution in [1], which neglected the possibility of plastic reloading behind the crack tip, is 

indeed a very accurate simplification. It can be further observed from Fig. 3.4 that the value of 

a00 is very close to zero near the crack flank from 0 = 165 ° to 180 °, and that the traction-free 

condition at 0 = 180 ° is very well satisfied, which is a major sign of the convergence of numerical 

solutions obtained from an Eulerian type finite element procedure. 

The angular extent of the crack-tip active plastic zone or the angle at which elastic unloading 

occurs can be estimated from the position where 6e deviates from a, with an error tolerance 
specified for the relative difference of the two quantities. For example, we can set the tolerance to 

be the value such that for ~ = 0.1, the numerically estimated angle equals that of the analytic 
study in [2], which is approximately 0.77 x 10 -2. Then the angle for the active plastic zone is 

estimated to be, for example, 77.9 ° for ~ = 0.5 and 72.4 ° for c~ = 0.05. We have compared these 
estimates for different ~ values with those of [2] with satisfactory agreement. 

The angular variations of the Cartesian velocity components for ~ = 0.1, with good agreement 

with those of [2], are shown in Fig. 3.5, where the velocity quantities are normalized such that 

vl = - 1 at 0 = 0. The dependence on • of the angular velocity variations is illustrated in Fig. 3.6, 

with the same normalization. It can be seen that vl and v2, respectively, always stay negative and 

positive. At 0 = 0, the slope of v2 is found to increase as ~ decreases. At angles beyond the active 

plastic zone, approximately for 0 larger than 70 °, the magnitude of v2 is about three times that of Vl. 

3.3. R a d i a l  f i e l d  var ia t ions  

The radial variations of the crack-tip stress and strain fields will be presented along the 

prospective crack line (0 = 0) and for stress component  a22 and plastic strain component  e~2 
only. Their features, however, are typical of the variations of other stress and strain compon- 
ents and along other radial lines (see [14]). All data are taken from five elements away from 
the crack tip and only one data point is extracted from each element. While plotted radial 
variations in original coordinates can be found in [14], those shown here are often illustrated in 
nondimensional double-logarithmic (natural logarithm) coordinates only. 



298 X. Deng and A.J. Rosakis 

- . !  c u r e t  study along r / ( K / o , )  z - .2033e-3 v /c  s + 0 
4 . 0  

3 . 5  
1 ( ~ r ~ t  Study (Y " .3) 

3 . 0  . . . . . . .  ~ t e  ~ t ~  (y - .5) 

2 . 5  

2 . 0  

1.5  

1,0 

.5 

.0 

- 1 . 0  

- 1 . 5  
30 60  9[ '  120 I[0 IET 

e 

Fi O. 3.5. Angular variations of the Cartesian velocity 
components for ct = 0 . 1 ,  normalized such that v~ = - 1 at 
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Fig. 3.6. The effect of hardening on the angular variations 
of the Cartesian velocity components, normalized such 
t h a t v l = - I  a tO=O.  

The general trend of the stress variations are as follows. It is observed that all stress 
components possess strong singularity at the crack tip, and that the magnitudes of their radial 
distribution decrease as 0t, the level of strain hardening, decreases. As shown in Fig. 3.7 in 
double-logarithmic coordinates, where the data point on the left is nearest the crack tip, the 
stress distributions for tr22 for materials with different levels of strain hardening, all appear as 
straight lines within a sizable crack-tip region (see Table 3.2). It can be concluded then that the 
stresses must behave asymptotically at the crack tip as r ~ (s < 0) as r --, 0, where the singularity 
parameter s equals the slope of the straight lines. Since the absolute value of s and the 
magnitudes of the stress components are found to decrease as ct decreases, it can be said that the 
stresses are less singular for materials with lower levels of strain hardening. Also from Fig. 3.7, it 
is seen that the straight lines start to curve up at locations away from the crack tip, especially so 
for smaller ~ values. In other words, the range of linearity of the curves becomes smaller as ct 
becomes smaller. A consequence of this behaviour is that the dominance zone of the 
rS-singularity diminishes as strain hardening disappears. 

Similar observations can be made about strain variations. For example, the dependence of the 
plastic strain component e~2 on the radial distance r is plotted in double-logarithmic coor- 
dinates in Fig. 3.8, where the curves are seen to be nearly straight. Hence we conclude that 
plastic strains have the same type of singularities as stresses at the crack tip, behaving as r s 
(s < 0) as the crack tip is approached, where Isl decreases as ~ decreases. 

As discussed earlier, Amazigo and Hutchinson I-1] and later Ponte Castafieda [2] were able 
to obtain asymptotic solutions for stress and velocity fields with assumed rLtype singularities. 
The angular stress and velocity variations and the values of s were obtained numerically from a 
system of ordinary differential equations in 0 (derived from governing field equations with the 
assumed stress and velocity forms) subjected to appropriate boundary and continuity condi- 
tions. The magnitude of the field quantities and the size of the validity zone of the r'-singularity 
are left undetermined in the asymptotic analyses and must be obtained from a complete 
boundary-value solution for a particular problem, such as from the present study. 

To compare with the aforementioned analytic solutions regarding the values of s for materials 
with different values of c~, least square fittings are performed for stress values found in the 
present finite element study. The stress data are taken along 0 = 0 from the sixth to the tenth 
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Fig. 3.7. Radial variations of the stress component 0"22 

along the prospective crack line in normalized double- 
logarithmic coordinates. 
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Fig. 3.8. Radial variations of the plastic strain compo- 
nent e~2 along the prospective crack line in normalized 
double-logarithmic coordinates. 

elements (assuming the crack tip coincides with the lower-left node of the first element). Values 
of s are estimated for each stress component and their mean value is taken as the final estimate. 
The result of the estimations are listed in Table 3.1, where sl is the estimate from 0-~1; s2 is from 
a22; Sa is the average of Sl and s2; s, is the reference value from the asymptotic solution in I-2] for 
Poisson ratio v = 0.5; ~ is the percentage relative difference of sa from s,. It is observed that the 
difference between the finite element results and the asymptotic results is consistently small. At 
the same time, it is observed that the difference increases as • decreases. This is expected since as 
the strain hardening becomes weaker, the dominance zone of the r~-singularity becomes smaller, 
and hence the error becomes larger in approximating the stress curves as straight lines in the 
double-logarithmic coordinates. 

The size of the re-singularity dominance zone can be estimated by setting a relative error 
tolerance between the original numerical data and the fitted data. For example, by requiring 
that the tolerance be within 5 percent, we have obtained such estimates along 0 = 0, which are 
shown in Table 3.2, where R~ and R2, normalized by the horizontal size of the crack-tip active 
plastic zone, are respectively the sizes of the dominance zones of stress components 6a 1 and 0-22 
with actual maximum relative percentage errors E1 and E2. The comparisons suggest that 0-22 has 

Table 3.1. Values of s for quasi-static crack growth 

$1 $2 Sa Sr 

0.5 - -0 .412  - -0 .416  - -0 .414  - -0 .420  --  1.4 

0.3 - -0 .346  - -0 .352  - -0 .349  - -0 .357  - -2 .2  

0,2 - -0 .297  - 0.303 - 0 .300 - 0 . 3 1 0  - -  3.2 

0.1 - -0 .223  - 0 . 2 2 8  - 0 . 2 2 5  - 0 . 2 3 7  - -5 .1  

Table 3.2. Dominance-zone size for r~-type stress singularity for quasi- 
static crack growth 

ct R 1 E 1 R 2 E 2 

0.5 0 .640 4.9 ! .43 4.4 

0.3 0 .234 4.6 0.838 4.8 

0.2 0 .170 5.0 0 .467 4.6 

0.1 0 .094 4.4 0.247 4.7 
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a much larger dominance zone than trl 1 for all hardening values considered. Further, it is seen that 
the sizes of the dominance zones for both stress components decrease rapidly as ~ decreases. None- 
theless, it seems that the r~-type stress singularity has a crack-tip dominance zone that is significant 
compared with the size of the active plastic zone even for materials with moderate strain hardening. 

The radial dependence of displacement component u2 along the crack surface is illustrated in 
Figs. 3.9 and 3.10. For • = 0.25, the crack opening displacement ~, which is twice the value of u2 
along 0 = 180 °, is compared with that of a similar finite element investigation by Dean [7]. As 
shown in Fig. 3.9, it is seen that 6 predicted in [7] is slightly larger than that of the current study, 
which is believed to be due to the use of a coarser mesh employed in [7]. The dependence of the 
crack opening profile on the level of strain hardening is clearly shown in Fig. 3.10. It is obvious 
that u2 decreases as ~ decreases. 

4. Dynamic crack propagation 

As outlined in the introduction, dynamic crack propagation in linear hardening solids under 
mode I plane stress and steady state conditions has been investigated by Achenbach, Kanninen, 
and Popelar [3] through asymptotic analyses of assumed variable-separable forms, in a manner 
similar to that by Amazigo and Hutchinson [1] for quasi-static crack growth. Explicit results 
were obtained of the crack-tip stress and velocity singularities, and the angular variations of 
stresses in the active plastic zone. In the following, these analytic results will be compared with 
those of the present finite element study whenever possible. 

4.1. Active plastic zones 

Shown in Fig. 4.1 is the effect of hardening on the shape of the crack-tip active plastic zone for 
m = 0.3, where m is the Mach number and is defined as the ratio of the crack propagation speed 
v to the material's elastic shear wave speed cs. As in quasi-static crack growth, it is observed 
that as the level of strain hardening ~ decreases, the active plastic zone elongates in the direction 
of crack growth and shrinks in the perpendicular direction. Approximately, the width and height 
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coordinates, with the crack tip situated at the origin. 

of the plastic zone are, respectively, 0.177(K/tro)2 and 0.202(K/tro)2 when ~ = 0.5, and 0.22 l(K/go)2 
and O.164(K/ao) 2 when • = 0.1. Interestingly, the near-tip angular extent of the plastic zone, or 
the unloading angle, remains almost constant as ~t changes. When crack speed goes higher, 
however, the influence of the level of strain hardening bears different features. For  example, when 
m = 0.5, the plastic zone does not change its size as significantly as when m = 0.3, but its shape 
varies in a different fashion when • varies. Furthermore, the near-tip angular extent of the plastic 
zone is found to increase as 0t decreases, and eventually a secondary active plastic zone develops 
along the crack surface as ~ approaches zero. This phenomenon is not observed when m is small. 

The evolutionary variations of the crack-tip active plastic zone with respect to the crack 
propagation speed is illustrated in Fig. 4.2 for a material with weak strain hardening (~ = 0.05). 
The figure clearly shows that inertia has a strong effect on the height and angular extent of the 
plastic zone - as inertia or m increases, the height and the angular extent of the plastic zone 
increase substantially. However, for a material with a higher ct value, the change in the angular 
extent is not as impressive. Again, a reverse yielding zone is observed along the crack flank when 
m becomes large. From the above findings, it can be concluded that the existence of a secondary 
active plastic zone along the crack surface is possible when crack speed is sufficiently high and 
for a material with a sufficient low level of strain hardening. It is noted, however, that the 
reversed plastic loading is limited to a region very close to the crack flank. 

4.2. Angular field variations 

In Fig. 4.3 the angular variations of the Cartesian stress components au, the effective stress tre 
and the current flow stress a are plotted against the angular position 0 for the case of ~ = 0.3 
and m = 0.4. The results of the asymptotic analysis in [3] for the same value of at and a slightly 
higher value of m (approximately equal to 0.403, corresponding to fl = 0.25 of [3]), are plotted 
in the same figure. For  comparison purposes, all stress quantities are normalized such that 
o- e = 1 at 0 = 0 °. It is clear that the two sets of angular stress variations agree very well. Note 
that the solutions from I-3] stop at the angle at which elastic unloading takes place and which is 

found to be around 85.8 ° . As in the quasi-static case, this angle can be estimated from the 
numerical solution by locating the angular position where ae starts to deviate from tr. Using 
the error tolerance 0.77 x 10 -2, the angle is found to be about 81 °, which is slightly smaller than 
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and Popelar I-3]. 

the one predicted in I-3]. This estimate is reasonable since a slightly higher m value is used in [31, 
which, according to this study, will result in a higher unloading angle. 

Using the same error tolerance, the effect of  hardening and inertia on the angular extent of the 
crack-tip active plastic zone can be estimated from the values of ae and a. For example, at 
m = 0.3, it is found that the unloading angle changes slightly from 78 ° for ~ = 0.5 to 80 ° for 
ct = 0.05. Whereas at m = 0.5, it changes from 82 ° for ct = 0.4 to 92 ° for ct = 0.05. On the other 
hand, for the same strain hardening level ~ = 0.4, the angle is estimated to be 76 ° at m = 0 and 
82 ° at m = 0.5. It must be pointed out however, that the estimation is very sensitive to the choice 
of error tolerance, and the values given above will have different degrees of accuracy. 

The effects of  hardening and inertia on the angular stress variations are as follows. When 
crack speed is low (m < 0.4) or when the strain hardening level is high (ct > 0.1), the stress 
variations are not much different from their quasi-static counterparts (see Figs. 4.4, 4.5, and 3.4). 
However, when m is sufficiently high and ~ sufficiently low, a distinctive feature can be observed 
in the stress variations. For example, the stress variations are shown in Fig. 4.4 for m = 0.5 but 
different levels of strain hardening, and in Fig. 4.5 for ct = 0.05 but different crack propagation 
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Fig. 4.5b. The effect of crack propagation speed on the 
angular variations of the polar stress components or,e, the 
effective stress a~, and the flow stress a for c( = 0.05, in 
normalized form. 

speeds. It  is seen that when m is high and c( is low, kinks or strong signs of slope discontinuity in 

polar stress components at, and trro appear at locations where approximately elastic unloading is 
taking place. This feature also has been observed for rapid dynamic crack propagation in 

elastic-perfectly plastic solids (see Fig. 5(b) of [23] and the asymptotic solution of Gao [21]). 

This distinctive behavior, if not attributed to numerical errors, may explain an interesting 

situation encountered by Achenbach, Kanninen and Popelar [3]. They reported that, in 

carrying out the integration of a set of ordinary differential equations in their asymptotic 

analysis, there exist limiting crack speeds (corresponding to different values of ct) above which 
their numerical integration algorithm fails to converge. 

The existence of a secondary active plastic zone along the crack flank for ct = 0.05 is evident 

from Figs. 4.4b and 4.5b, where it can be seen that (7 e rises sharply near 0 = 180 ° and eventually 

coincides with a, which indicates yielding or reversed plastic loading there. For other values of c(, 

the values of (re always remain lower than corresponding values of a near the crack surface, 
indicating elastic states there. 

Another interesting feature of angular stress variations can be observed near the prospective 

crack line 0 = 0 °. It is found that as m increases, the value of troo decreases for all values of :( 
considered, whereas that of a ,  undergoes a transition: it increases for ct ,~ 0.4 and 0, but 
decreases for ~ ~ 0.05. 

The angular variations of near-tip velocity field for various strain hardening levels and crack 

propagation speeds are presented in Fig. 4.6a with normalization such that Vl = - 1 at 0 = 0 °, 
and in Fig. 4.6b with normalization as shown so that the relative magnitudes of vl and v2 at 
different m numbers can be observed. Like stresses, velocity components have very much the 

same features as their quasi-static counterparts when m is small or when c( is large, and are seen 

(from figures not shown here) to experience abrupt  changes near where the active plastic zone 

separates the elastic unloading zone when m is sufficiently large and c( sufficiently small. 

4.3. Radial field variations 

The effects of hardening and crack propagation speed on the radial variations of the crack- 
tip stress and deformation fields are presented here. To be concise, only a limited number 
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of illustrations will be included in this paper. However, the features demonstrated are 
typical of variations of all similar field quantities, whose details can be found in [14]. 

A general observation about the radial dependence of stress and strain states is that as the 
crack tip is approached, stresses and strains rise rapidly, indicating stress and strain singularities 
at the crack tip. Like quasi-statically growing cracks, the singularities are found to be of the 
type r ~, r being the radial distance to the crack tip. The singularity exponent s is negative and 
dependent on m and ~, and is given by the slope of a stress or strain vs. r curve plotted in 
double-logarithmic coordinates. A collection of such curves for tr22 are presented in Fig. 4.7a for 
m = 0.3 and various ~ values, and in Fig. 4.7b for ~t = 0.4 and various m values. As expected, the 
curves are for the most part straight lines, and have negative slopes. It can be concluded that tsl 
decreases as ~t decreases or as m increases. It is also noted that there are signs, although they are 
not obvious from the figures shown here, that as ~ decreases the straight stress line in the 
double-logarithmic coordinates starts to curve, an evidence of decreasing dominance-zone size 
of the r~-type stress singularity. 
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It is worth pointing out an interesting phenomenon concerning the dependence of the radial 

variations of trll on the level of strain hardening. While az2 consistently decreases as m increases 
for all ~ values, trll reverses its tendency at a small ~ value. For  example, for the same range of 
radial distance r along 0 = 0 where the r~-singularity is observed, as m increases trll first 
increases when ~ = 0.4, then decreases when ~ = 0.05, and again increases when hardening 

disappears (see Fig. 8(b) of [23]). 
To compare the values of the singularity exponent s with those of the asymptotic analysis [3], 

and to estimate the range of dominance of the r~-type stress singularity, least-square fittings are 
performed for the finite element data extracted from the sixth to the tenth elements along the 
prospective crack line. As in the case of quasi-static crack growth, s is estimated for each stress 
component and their mean value is taken to be the final estimate. The result of the estimations 
are listed in Table 4.1 for m = 0.4 (m ~ 0.403 in [3]) and various ~ values, where sl is the 
estimate from tr11; s2 from 0"22; s a is the average of sx and $2; s r is the reference value from [3]; 
and e is the percentage relative difference between Sa and s,. As is seen, the difference between the 
finite element results and the analytic results is small. 

Estimates can be made of the range of validity of the r'-singularity in the same manner as is 
done for the case of quasi-static crack growth. By setting a relative error tolerance, say about 5 
percent, between the original finite element data and the least-square-fitted data, the ratio of the 
r~-singularity dominance zone size along 0 = 0 to that of the crack-tip active plastic zone is 
obtained and listed in Table 4.2, where R1 and R2 are the ratios estimated from, respectively, tr~ 
and tr22, and E1 and E2 are the actual maximum percentage relative errors between the original 
and fitted data of trx ~ and tr22 respectively. It is found that tr22 has a larger dominance zone than 
al  1, that the range of validity of the rS-singularity is significant for both stress components when 
compared with the crack-tip active plastic zone size, and that as ~ decreases, the dominance 
zone size of the r~-singularity also decreases. 

Typical radial variations of plastic strain components are presented in Fig. 4.8 for e~2 along 
the prospective crack line 0 = 0, for m = 0.3 and various ~t values. As stated before, these curves 
appear to be straight in the double-logarithmic coordinates. Comparing the distributions of e~ 
and e~2, it is observed (from figures not shown here) that the latter always dominates the former, 
although their difference becomes smaller as ~ or m becomes larger. It is also observed, in the 
normalized coordinates, that for a certain linear hardening elastic-plastic material (i.e. for a fixed 

value), the magnitude of e~2 near the crack tip decreases as m increases. As a result, the level of 

Table 4.1. Values  o f  s for  d y n a m i c  c rack  g r o w t h  a t  m = 0.4 

O~ S 1 S 2 S a S r g 

0.5 - 0.402 - 0.406 - 0 .404 - 0.411 - 1.7 

0.3 - 0.328 - 0.333 - 0.331 - 0.339 - 2.4 

0.2 - 0.271 - 0.276 - 0 .274 - 0.282 - 2.8 

Table 4.2. D o m i n a n c e - z o n e  size for  r M y p e  s t ress  s i n g u l a r i t y  for  dy-  

n a m i c  c rack  g r o w t h  a t  m = 0.4 

c~ R1 E1 R2 E2 

0.5 0.997 4.9 1.36 4.3 

0.3 0.321 4.7 1.23 4.0 

0.2 0.199 4.4 0.605 4.7 
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Fig. 4.9b. A detailed view of the effect of crack propag- 
ation speed on the radial variation of the vertical displace- 
ment u2 along the crack surface for ~t = 0 . 0 5  in normalized 
coordinates. 

the effective plastic strain near the crack tip will decrease as m or crack speed increases. Thus, as 
demonstrated in [-i4, 23] for crack growth in ideally plastic solids, this asymptotic tendency of 
the effective plastic strain can be used to explain the following experimental observation on 
metallic materials: The resistance of a material to crack propagation is higher at a higher crack 
propagation speed. The above can be interpreted as follows. At a certain fixed load level, which 
is characterized by the value of the far-field stress intensity factor K, the level of plastic straining, 
which is represented by the effective plastic strain, is lower for higher crack propagation speeds 
at the same location ahead of the crack tip. Hence, in order for the level of plastic straining at a 
higher crack speed to reach the same magnitude as that at a lower crack speed, the loading for 
the former must be raised. Consequently, continued fracture will occur at a higher crack speed 
only if a higher loading level is achieved, if fracture is characterized by the attainment of a 
critical plastic strain level at a certain physical distance ahead of the crack tip (a critical plastic 
strain fracture criterion). 

Finally we discuss the effects of strain hardening and crack propagation speed on the crack 
opening displacement. As in the case of quasi-static crack growth, it is found that the magnitude 
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of the opening displacement u 2 in the normalized coordinates decreases, for fixed m, as 
decreases, and increases (at sufficient distance away from the crack tip), for fixed ct, as m 
increases. However, for a low strain hardening material, say ct = 0.05, and at a distance very 
close to the crack tip, the magnitude of u2 will decrease as m increases (compare Figs. 4.9a and 
4.9b). This latter feature of the crack-tip opening displacement was more clearly observed in 
mode 1 plane strain for elastic-perfectly plastic solids in [22], at a distance to the crack tip about 
one-hundred times larger than that in the present study. As discussed in [14, 23], a region with 
this special feature and of sufficient size is necessary for one to use a critical opening 
displacement fracture criterion and to derive a theoretical relation between the critical K-value 
and the crack speed v, as is done in plane strain [22]. 

5. Summary 

The findings of a detailed, full-field finite element investigation of quasi-static and dynamic 
crack growth in linear hardening elastic-plastic solids under mode I plane stress, steady state, 
and small-scale yielding conditions are presented. The results of the finite element study 
given for a variety of linear hardening materials and different crack propagation speeds, 
compare well with available asymptotic analyses, and reveal many features of the size and shape 
of the crack-tip active plastic zone and the near-tip variations of stress and deformation fields, 
which can be used constructively in higher-order asymptotic analysis, full-field experimental 
interpretations, and further numerical crack-growth simulations. 
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