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ABSTRACT 

The sensitivity of the transmission ‘Coherent Gradient Sensing’ (CGS) 
technique is investigated experimentally in relation to the study of 
deformations near the tips of cracks in three-point bend specimens. 
Fringe data from these experiments are interpreted as gradients 
(geometric interpretation) and finite differences (physical interpretation) 
of hydrostatic stress fields. These data are used to compare the accuracy 
of the geometric interpretation of fringes with the physical interpretation 
of fringes obtained using increased sensitivity in order to confirm the 
theoretical findings from Part I of this investigation. Also, a least- 
squares fitting technique was used on the fringe data obtained from the 
region outside of the near tip 30 zone in order to investigate issues of 
K-dominance of the stress field in this region. 

Results from the experimental investigations reported in this paper 
indicated that increasing the sensitivity of the CGS technique improved 
the quantity and quality of fringe data. However, the apparent size of 
the region on the image plane dominated by 30 effects increased and the 
differences between the geometric and physical interpretations of CGS 
fringe data were increased as well. In addition, the stress field outside of 
the 30 zone was determined not to be strictly K-dominant, as was 
predicted by results from previous experiments. 

1 INTRODUCTION 

This paper outlines some recent advances in the interpretation and 
application of lateral shearing interferometers to the full field investi- 
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gation of crack tip deformations in transparent solids. The lateral 
shearing interferometer used in the experimental investigations outlined 
in this paper has been named the ‘Coherent Gradient Sensor’ (CGS).’ 
This technique has been used to obtain in-plane stress gradient fields 
(transmission) and out-of-plane displacement gradient fields (reflection) 
at the tips of stationary cracks in PMMA and Al 6061 specimens’ and at 
the tips of propagating cracks in PMMA and AISI 4340 carbon steel? 
The data obtained from these experiments have been used to investi- 
gate the transient nature of fracture phenomena and the structure of 
three-dimensional (3D) effects near the crack tip. The purpose of these 
investigations has been to identify the conditions under which K- 
dominance prevails around crack tips. 

The CGS technique has the same advantages as other lateral shearing 
interferometric techniques used to measure deformation fields, such 
as the speckle-shearing interferometers of Hung and Taylor4 and 
Hung and Liang,” which are variations on the Wollaston Prism 
Interferometer. These advantages include: (1) insensitivity to 
ambient vibrations, (2) simple optical components to set up and 
align, (3) variable sensitivity, (4) direct full-field measurements of de- 
formation gradients, and (5) excellent fringe quality. However, unlike 
the speckle-shearing interferometers which vary fringe sensitivity by 
using various small angle prisms or by adjusting the distance of the 
object relative to the imaging lens, the CGS technique alters sensi- 
tivity merely by adjusting the separation between a pair of diffraction 
gratings, which are used as the lateral shearing components of the inter- 
ferometer. Thus, unlike the optical path problems that arise when using 
thick prisms or large object distances in speckle-shearing interfero- 
meters, the CGS technique does not compromise any of the optical 
quality or construction of the fringe patterns when certain ranges of 
sensitivity are desired. Furthermore, the CGS technique can provide 
measurements of orthogonal deformation gradients simultaneously 
with the use of cross-gratings. 

In Part I of this investigation,h theoretical calculations of the errors in 
interpreting fringes as gradients were made for wave fronts perturbed 
by deformations due to K-dominant stress fields. Part II compares the 
finite difference (physical) interpretation and the gradient (geometric) 
interpretation of transmission CGS fringe fields using experimental data 
obtained near the tips of cracks in PMMA specimens. Also, a 
least-squares fit to the fringe data will be made using Williams’ solution 
in order to determine K-dominance in the region outside of the near tip 

3D zone. 
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2 EXPERIMENTAL DESCRIPTION 

Three-point bend experiments were conducted using the transmission 
CGS technique described in Part I of this investigation and seen in Fig. 
1. Single edge notched PMMA (c = 1.08 x 10e4 mm2/N) specimens 
were prepared with the dimensions seen in Fig. 2. A crack length (a) to 
plate width (w) ratio of 0.2 was used to obtain a crack tip stress field 
that would most likely have some K-dominant region as indicated by 
results from experiments performed on similar plate geometries in Ref. 
2. A larger plate width was used in these experiments than those 
performed in Ref. 2 in order to reduce possible boundary effects on the 
crack tip stress field. A band saw, approximately 1 mm thick, was used 
to cut notches in these specimens. A collimated He-Ne laser beam of 
diameter 50 mm was centered around the crack tip and transmitted 
through the specimens in these experiments. The perturbed wave front 
was then processed through a pair of line gratings of density 40 lines per 
mm. 

Two sets of experiments were then conducted on the specimen. The 
first experiment was conducted at a grating separation distance A = 
33 mm. The resulting fringe sensitivity for the experimental parameters 
chosen is approximately 0_022”/fringe. The maximum deflection that 
could be measured was limited by the choice of aperture size to 
approximately O-72”, and deflections greater than this do not reach the 

x, 

Fig. 1. Schematic of the experimental set-up for transmission CGS. 
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Fig. 2. Three-point bend fracture specimen. 

image plane, leading to the formation of a small dark spot around the 
crack tip. A load of P = 2230 N was applied to the specimen, resulting 
in a calculated Kf” ^- 1.45 MPa fi.’ Figure 3 shows the infinite width 
light fringe field around the crack tip when the grating lines arc 
perpendicular to the x,- and x7-axes respectively, for an unloaded 
specimen. Figure 4 shows the fringes generated around the same crack 
tip when the specimen is loaded. From the characteristic dimensions of 

the plate 
( 1 

f= 17 , it is reasonable to assume that a state of plane stress 

may exist in a region surrounding the 3D zone near the crack tip, 
thereby predicating the use of the optical coefficient, c, in interpreting 
fringes in these regions as gradients of the applied stress field. 

The second experiment was conducted on a plate with the same 
geometry and loading as in the first experiment. The grating separation 
used in this experiment was A = 100 mm. The corresponding fringe 
sensitivity for this grating separation was approximately 0~007”/fringe. 
Figure 5 shows the infinite width light fringe field around the crack tip 
when the grating lines are perpendicular to the x,- and xl-axes 
respectively, for an unloaded specimen. Figure 6 shows the fringes 
generated around the same crack tip when the specimen is loaded. 

3 EXPERIMENTAL FRINGE DATA ANALYSlS 

3.1 K-dominance in fringe interpretation 

Using the K-dominant, geometric interpretation of transmission CGS 
fringes from Part I of this investigation, two functions Y(l) and Y(‘) will 
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(4 

Fig. 3. Infinite fringe width fields for experiment 2 (A = 33 mm, P = ON): (a) lateral 
shearing in x,-direction; (b) lateral shearing in x2-direction. 
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(b) 
Fig. 4. Infinite fringe width fields for experiment 2 (A = 33 mm, P = 2230 N): 

lateral shearing in x,-direction; (b) lateral shearing in x,-direction. 
(a) 
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(b) 
Fig. 5. Infinite fringe width fields for experiment 2 (A = 100 mm, P = 0 N): (a) lateral 

shearing in x,-direction; (b) lateral shearing in x,-direction. 
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(b) 
Fig. 6. Infinite fringe width fields for experiment 2 (A = 100 mm, P = 2230 N): (a) 

lateral shearing in x,-direction; (b) lateral shearing in x2-direction. 
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be defined using the crack tip coordinate system in Fig. 2 as follows:2 

?I2 

{a,, cos (3$/2;+ 6,, sin (3@/2)}’ 
cu=1,2 

(1) 
where 

C$ = tan-’ 

c?,,~ is the Kronecker delta, and 8 = 0” for cx = 1 while 8 = 90” for (Y = 2. 
It is apparent from the above two equations that when a K-dominant 
field adequately describes crack tip deformations, then Y(,) is ap- 
proximately equal to the Mode I stress intensity factor K, in the region 
of K-dominance which surrounds the 3D zone. 

Alternatively, the K-dominant, physical interpretation of fringe data 
from Part I of this investigation can be used to define a function G(“) as 
follows, 

where 

r, = v(x, + A8, cos 0)’ + (x2 + At?, sin 0)* 

r2=V$Gj 

$, = tan-’ 
x2+A8,sin8 

x, + A6, cos 8 

are evaluated using 8 = 0” for (Y = 1 while 0 = 90” for (Y = 2. Once 
again, when a K-dominant field adequately describes crack tip defor- 
mations, then G(“’ is approximately equal to K, in the region of 
K-dominance which surrounds the 3D zone. 
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The values of Y(@ and G(“’ measured at various angles and radial 
positions using only dark fringes from fringe patterns for the first 
experiment can be seen plotted against normalized radial distance (r/h) 
in Figs 7 and 8, respectively. Similar plots for the values of Y(%) and 
GCa) measured using only dark fringes from the fringe patterns obtained 
in the second experiment can be seen in Figs 9 and 10, respectively. 

3.2 Least squares data analysis 

From the experimental results in Ref. 2, it appears that a K-dominant 
region exists for 0.5 < (r/h) < 1.25 near crack tips in three-point bend 
specimens with certain geometries (a/w = 0.2). The values of Yea) that 
were obtained in this region were within 10% of the calculated Kf” 
values. However, in order to properly confirm the existence of the 
observed K-dominant regions, a least-squares data analysis was per- 
formed on the measured YCe) values assuming that K-dominance was 
absent and that an unknown number of terms from Williams’ expansion 
for a Mode I crack tip stress field are necessary to describe the stress 
field near the crack tip of the three-point bend specimen. 

For the least-squares data analysis using the geometric interpretation 
of fringes, if it is assumed that a power series representation for the 
stress field surrounding a crack tip is valid (see eqn (22) from Part I of 
this investigation), then eqns (18) and (19) from Part I of this 
investigation can be used to express Y’ and Y’ as, 

y+, +) z (y) zcos ;;,2) = 2 $%A, (;- 11 
N-l 

Note that Y(“) are proportional to A, or K, for a K-dominant field and 
consist of quantities that are measured from the fringe patterns. The 
right-hand side of the above expression will be denoted by F’“‘(r, @; 

A,, A,, . . . , A,,,) and will be the least-squares fit used on the 
experimental data. It is important to note that the second term in the 
series expansion on the right-hand side of eqns (3) and (4) does not 
contribute to the gradient interpretation of the fringe data. This is 
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understandable because the second term of the series expansion 
represents gradients of constant stress, and hence does not contribute 
to the fringe patterns. 

In implementing the curve fitting procedure, the following function 
W)(A,, Al, . . . , AN) is minimized, 

Wa)(A,, A3, . . . , AN) = 2 [ y!“’ - Fj”‘]’ (5) 
,=I 

with respect to A,, A,, . . . , A,. Here, M is the total number of data 
points used in the minimization. The quality of the fit was measured 

using a normalized cross-correlation error function, s(“)(N), as follows, 

E’a’(N)=l- J$$qgy (6) 

A normalized cross-correlation value of 0 represents a perfect fit. The 
values of E(~)(N) calculated using the geometric interpretation in the 
least-squares fit to fringe data obtained from experiments 1 and 2 can 
be seen in Figs 11 and 12, respectively for values of N 5 10. 

In previous experimental CGS work,2 an error function was used that 
was normalized by the first term in the series expansion, A,. By singling 
out an individual term in a least-squares fit, the resulting error function 
could not be minimized without biasing the minimization towards 
least-squares fits that would yield larger values of A,. Thus, the results 
from the least-squares fits used on the experimental data in Ref. 2 
yielded minimized values for the error function at a finite number of 
higher order terms. However, the normalized cross-correlation error 
function seen in eqn (6) will be unbiased towards the contributions of 
individual terms in the least-squares fits. Consequently, the values of 
E(~)(N) would be expected to decrease continuously as more and more 
higher order terms are added in the least-squares fit, since the 
additional terms allow the fitted function F(@ to become more flexible 
thereby reducing any differences between the experimental data and 
the optimized fit due to measurement errors in the CGS technique. The 
error function in eqn (6) should therefore converge rapidly to the 
number of higher order terms that actually contribute to the ex- 
perimentally observed stress field, and additional higher order terms 
should only marginally improve the least-squares fit by compensating 
for measurement errors in the CGS technique. 

For the least-squares data analysis using the physical interpretation of 
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fringes, eqn (22) was substituted into eqn (11) from Part 1 of this 
investigation, yielding 

(7) 

Note that G(“) are proportional to A, or K, for a K-dominant field and 
consist of quantities that are measured from the fringe patterns. The 
left-hand side of eqn (7) will be denoted by W”)(r, 4; A,, AT, . . . , AN) 

and will be the least-squares fit used on the experimental data. Once 
again, the second term in the series expansion for the least-squares tit is 
equal to zero. By substituting G’“’ and H’“) for Y”‘) and F’^’ in eqn (S), 
the same procedure can be used to optimize the least-squares fit for the 
physical interpretation CGS fringes as is used for the geometric 
interpretation of fringes. The, values of E”“(N) calculated using the 
physical interpretation in the least-squares tit to fringe data obtained 
from experiments 1 and 2 can also be seen in Figs (11) and ( 12) 

respectively for values of N 5 10. 

4 DISCUSSION OF RESULTS 

From Part I of this investigation, it was determined that for a 
K-dominant region of radius greater than three times the shearing 
distance, A0, the errors in using the geometric interpretation of fringe 
data are less than 5%. Therefore to obtain this level of accuracy 
experimentally, the region of K-dominance should be greater than 

r = 0.28 for experiment 1 and greater than i = 0.84 in experiment 2. 
h 
Furthermore, lateral shearing effectively extends the apparent dimen- 

sions of the 3D affected region on the image plane by $. So, the 

apparent dimensions of the 3D zone on the image plane should extend 

out to i = 0.55 in experiment 1 and to k = 0.64 in experiment 2. The 
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corresponding number of data points outside of the 3D zone was 
thereby increased from 14 in Figs 7(a) and 8(a), to 21 in Figs 9(a) and 
10(a), while remaining essentially unchanged in Figs 7(b) through 
10(b). 

It is important to note that before analysing the interpretation of 
fringe data in Figs 3-6, the fringe width of the infinite fringe width 
fields at zero load in experiments 1 and 2 was not truly infinite. From 
Figs 3(a), 3(b) and 5(a), the distance between the dark fringes appears 
to be approximately 50 mm, or the diameter of the laser beam. From 
Fig. 5(b), the distance between the dark fringes appears to be 
approximately 25 mm. These fringes appear because the wave front 
passing through the unloaded specimen is not truly planar due to 
imperfections in the collimator and nonuniformity in the specimen’s 
thickness. Also, any misalignment of the diffraction gratings has been 
shown to produce finite fringe width fields.x Subsequently, the fringes 
from loaded specimens should be interpreted under the restrictions of 
finite fringe width fields.’ 

In the interpretation of finite fringe width fields, fringes are gen- 
erated from interfering rays by superposing the optical path differences 
responsible for the undeformed finite fringe width field with optical 
path differences due to specimen deformations. As a result, the fringe 
order is proportional to the displacement of undeformed fringes by the 
deformed wave front, as opposed to the infinite fringe width field 
interpretation which assumes optical path differences are due only to 
specimen deformations. One way of eliminating the effects of the 
undeformed finite fringe width field is to take digital images of the 
deformed and undeformed fringe fields and process the images to 
reverse the effects of superposing optical path differences. However, if 
it is assumed that the frequency of the fringes in the undeformed finite 
fringe width field is much lower than the frequency of the fringes in the 
deformed finite fringe width field, then the effects of the optical path 
differences responsible for the undeformed finite field can be neglected 
and an infinite fringe width field interpretation can be used. 

From Figs 4 and 6, it is obvious that the frequency of the higher 
order fringes from the deformed specimen are much higher than the 
frequency of fringes from the undeformed specimen. Consequently, any 
ambiguities in interpreting the higher order fringes using an infinite 
fringe width field are considerably less than the ambiguities in inter- 
preting the lower order fringes. Ambiguities also arise in locating 
the exact position of minimum or maximum intensity within lower 
order fringes because the lower frequencies result in larger fringe 
widths. 

The aforementioned ambiguities are immediately evident from the 
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apparent asymmetries in the location of lower order fringes in Figs 4 
and 6. As the fringe order increases approaching the crack tip in these 
figures, the symmetry of the fringes improves considerably. The end 
result of these ambiguities is to increase the uncertainty in the 
measurement of YcW) and Gcn) from the lower order fringes. Thus, there 
is considerable scatter of the lower order fringe data furthest from the 
crack tip in Fig. 7 about the 2D value of K, calculated from the 
specimen’s geometry and loading. However, in Fig. 9(a) the order of 
the fringe data measured at locations comparable to those in Fig. 7 
were much higher because of the increased sensitivity, resulting in 
much less scatter. In Fig. 9(b), the increased frequency of the finite 
fringe width field resulted in increased scatter despite the increased 
sensitivity. 

Comparing Fig. 7 with Fig. 8, it is apparent the values of Y(“) and 
G(“) are nearly identical, which is expected since most of the data were 

obtained at distances i> O-28. However, the results from Figs 9 and 10 

show a definite deviation between comparable values of Y(@ and G(“) 

that were obtained at distances i < 0.84, which was also anticipated. In 

fact, the values of Gc2) exhibit much less scatter than comparable values 
of Yc2) in this region, while the values of G(l) decreased considerably 
from Y(l) for angles between 0” and 45” and increased for angles 
between 90” and 13.5”. 

It is also apparent from Figs 7-10 that the observed trends in the 
measured data are consistent for Y(@ and G’“‘. From the trends in Y(I), 
it appears that a K-dominant region exists for angles between 0” and 45” 
in the region outside the apparent 3D zone, while the trends in Y@) 
indicate a K-dominant region for angles between 0” and 90” in the 
region outside the apparent 3D zone. As was stated previously from the 
results in Ref. 2, it was anticipated that the region of K-dominance 
should be present everywhere outside of the 3D zone. However, the 
results from experiments 1 and 2 indicate that strict K-dominance does 
not prevail for angles greater than 90”. 

The lack of K-dominance is supported by the trends in the 
normalized cross-correlation error in Figs 11 and 12. For almost all of 
the least-squares fits, convergence in E(‘)(N) occurs rapidly after 
only two terms for both Y(l) and G (I) However, similar convergence rates . 

were also observed in E(~)(N) for Y(*) and Gc2). The magnitude of the 
error in the least-squares fit was an order of magnitude less for E”‘(N) in 
experiment 1 than for any of the other fits. This is understandable since 
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the data outside of the 3D zone in Figs 7(a) and 8(a) exhibit almost no 
scatter about the predicted K, value. 

In order to evaluate the quality of the least-squares fit, Y(@ was 
plotted against F (a) for experiments 1 and 2 in Figs 13 and 15, 
respectively. Also, G’“) was plotted against H’“) for experiments 1 and 
2 in Figs 14 and 16, respectively. From the results in Figs 13 and 1.5, the 
value of K, could be determined directly from the convergence of the 

values of F’“) as 5 approaches 0. However, the value of K, could not be 

explicitly determined from H (a) because H(“’ does not asymptotically 

approach K, as i approaches 0. In fact, the value of H(‘) oscillates 

about 5~ 0.125 in Fig. 14(a) and x_ 0.05 in Fig. 16(a) before 

converging to approximately 1.30 MPa fi at i = 0 in both figures. So, 

the value of K, had to be calculated using A,, which yielded a value of 
approximately 1.22 MPa 6 from H(‘) and H(*) in experiment 1 and 
values of approximately 1.23 MPa fi from H(‘) and 1.41 MPa 6 
from H(*) in experiment 2. 

5 CONCLUSIONS 

An experimental investigation into the effects of increased sensitivity on 
the accuracy of the geometric interpretation of fringes obtained from 
the transmission CGS technique has yielded quantitative and qualitative 
results for applications to the study of deformations in K-dominant 
regions near crack tips. The results of increasing the sensitivity are as 
follows: 

(1) More fringes are generated outside of the predicted 3D zone 
near the crack tip. This results in a higher fringe density and 
increases the quantity of data that can be measured outside of 
the 3D region. 

(2) The fringes are sharper due to the higher fringe density. This 
reduces ambiguities in measuring the correct location of the 
minimum or maximum intensity in the fringe. 

(3) The higher fringe density results in higher fringe orders. This 
also reduces ambiguities in correctly identifying the order of 
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Fig. 14. Results from least-squares fit to fringe data from experiment 1 (A = 33 mm, 

P = 2230 N) using physical interpretation. 
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Fig. 15. Results from least-squares fit to fringe data from experiment 2 (A = 100 mm 
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z 1.5 
L 

-0 

5 
1.0 

.A 

-&I 
.5 

.O 

3.0 

2.5 

e 
2 2.0 
x 

3.0 

2.5 

E 
a” 2.0 
x 

= -ix 1.5 

z 
l” 1.0 

zi 
-W 

.5 

.O 

- 

On the sensitivity of coherent gradient sensing: Part II 

2 term higher order fit (0 degree) 

------- 2termhigherorde- fit (30 degree) 
-- --.--. 2 term higher order fit (90 degree) 
_--.--. 2 term higher order fit (120 degree) 

0 EX!XRIMNTAL (0 DEGREE) 
0 EXPERIMENTAL (30 DEGREE) 
fi EXFFRIMZNTAL (90 DEGREE) 
+ EXPERIMENTAL (120 OEGWE) 

p _~~A~‘lA -_-o, B 0 O ______o_ _____------ 
--=-y-f+-- 

0 
.:-== _-;---_-_-_=-__~=~_- _ 

A -- - 
+ 

II O $ 

I’ @ 
i” 

.O .5 1.0 

r/h 

(4 

1.5 

2 term higher order fit (30 degree) 
------- 2 term higher order -it (45 degree) 
-- --.-- 2 twm higher order fit (60 degree) 
‘- --.--- 2 term higher order fit (75 degree) 

0 EXPERIMENTAL (30 DEGREE) 
0 EX!=ERIMEMAL (45 OEWEE) 
A EXPERIMENTAL (60 DEGREE) 
+ EXPERIMENTAL (75 OEGREE) _- -- 

%-- --. _-.- 
__+=~~_~~__-_==------_--- 

.O .5 1.0 1.5 2.0 

49 

r/h 
@) 

Fig. 16. Results from least-squares fit to fringe data from experiment 2 (A = 100 mm, 
P = 2230 N) using physical interpretation. 
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fringes assuming an infinite fringe width field as long as the 
fringes remain inside the field of view. If fringes move outside of 
the field of view during loading, the fringe order must first be 
identified when the entire fringe is inside the field of view. 
Then, the remaining visible portions of the fringe must be 
tracked during loading in order to reduce ambiguities. 
The apparent size of the region on the image plane where the 
3D zone affects fringe measurements increases. This is a direct 
result of the increased lateral shearing necessary for increased 
sensitivity. However, the increase in the apparent size of the 3D 
zone is confined to the direction of shearing. 
The differences between the geometric and finite difference 
interpretations of CGS fringe data increased in a larger region 
about the crack tip as the sensitivity of the CGS technique 
increased. 

From the experimental results given in this paper, it is obvious that 
the increased sensitivity resulted in more data with improved fringe 
quality. However, the deformations that were observed near the crack 
tip did not appear to have a uniform region of K-dominance as 
evidenced by the least-squares fits. 
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