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SUMMARY 

This work presents a specialization of the integral identities used in the boundary element method. This 
modification is especially tailored to deal with thrce-dimensional elastostatic problems involving geometries 
which contain two parallel planar surfaces (e.g. three-dimensional plate problems). 'The formulation makes 
use of the three-dimcnsional fundamental solution for a point load acting in the interior of an infinite layer of 
uniform thickness (obtained by Benitez and Rosakis'.'). 

It is shown that this procedure is especially suited for the analysis of three-dimensional problems 
involving cavities in plate structures. ln  such problems it is demonstrated that, in addition to  the cavity 
surfaces. only the lateral surfaces of the structure need to  be discretized, with no discretization required on 
the traction-free parallel surfaces. 

1. INTRODUCTION 

The boundary element method (BEM) has become a powerful alternative numerical technique to 
the finite element method (FEM). Both numerical methods have been widely used to study 
elastostatic, elastoplastic, transient and dynamic problems. l n  somc problems, the BEM has 
shown a series of advantages over the E'EM. The fact that the discretization is only pcrformed on 
the surface of the solid under study implies a reduction of the dimensionality of the problem by 
one and, therefore, it is easier to modify the discretization mesh. Once the boundary solution has 
been numerically obtaincd, interior values may easily be determined. This feature is particularly 
advantageous for modelling regions with high stress gradients with great accuracy and efficiency, 
making this technique an  appealing tool for the numerical solution of problems in linear fracture 
mechanics. In addition, the BEM is specially well suited to elastic problems involving infinite 
regions. Finally, since the formulation is based on fundamental solutions that satisfy the 
governing differential equations, approximation of the variables is required only on the bound- 
ary. This implies, in most cases, better accuracy. 
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The advantages over FEM are more clearly manifested when the ratio of surface to volume in 
the solid is low. In particular, this quotient is high for three-dimensional plate structures; 
therefore, in order to retain the boundary element method capabilities, it is desirable to use the 
three-dimensional fundamental solution for an infinite layer. By using this solution the need for 
discretization of the two edd parallel surfaces disappears, as long as they are traction-free. 

In a number of studies, various boundary integral formulations have been shown to be useful 
for particular classes of boundary-value problems. The main difference among them focusses on 
the use of diverse Green's functions fundamental solutions, which are more appropriate for 
dealing with the geometry of the problem considered. Thus, for generic two- and three-dimen- 
sional elastostatic problems, Kelvin's fundamental solution derived in 1848' of a concentrated 
load in an infinite medium has been widely This solution is available in close-form 
expressions of relative simplicity. Also, for problems involving a single free surface the solution 
presented by M e l a r ~ , ~  for the stress distribution due to a point load applied within an infinite 
two-dimensional semi-space, or the one given by Mindlin,' for the three-dimensional case, are of 
great interest. These latter fundamental solutions have been applied to the boundary element 
technique by diverse investigators.6. 

The work presented in this paper reports on a specialization of the integral identities used in the 
boundary element method appropriate for the numerical solution of elastostatic three-dimen- 
sional problems involving plate regions. The formulation makes use of the fundamental solution 
of a concentrated load in an infinite three-dimensional elastic layer of uniform thickness, which 
was obtained by Benitez and Rosakk8.' 

In the first part of this paper, the nature of this fundamental solution and its use Into 
a boundary element scheme is described. In the second part, the numerical implementation of the 
technique is tackled. 

2. BASIC MATHEMATICAL CONCEPTS 

Let E 3  denote the three-dimensional Euclidean space. Let x = (xI,xz,x3) be the position vector 
of a point in E,. The symbols B, (x )  and dB,,(x) denote an open sphere and its surface, respectively. 
The sphere is centred at x with a radius q. 

Let W be an arbitrary regular region in the sense of Kellogg," in E 3 .  The boundary, interror 
and closure of W are dW, and 4, respectively. In the case of x E @, 9 - {x} represents the set 
obtained by the deletion of point x from 9. 

Standard indicia1 notation will be used in connection with the Cartesian components of tensors 
of any order. Subscripts preceded by a comma indicate partial differentiation with respect to the 
corresponding Cartesian co-ordinates. For functions having more than one vector variable, the 
differentiation mentioned above will be understood to be performed on the first vector variable; 
thus 

We write g(x) E %(B) if g is defined and is continuous on a region W E  E 3 .  Moreover, if in is 
a positive integer, we write g E %?"'(a) when y EW ,and its partial derivatives of order up to and 
inclyding rn are defined as well as continuous on 9 and they coincide with functions continuous 
on W. 
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We write 

Y = [u, a] E &(E, v, f; a) ( 2 )  

and say that the ordered array Y ,  = [u, a] of displacement and stress fields is an elastostatic state 
on 9? corresponding to the body force density f, provided 

(a) u E V' (&?) n %(.Se), a E $3' (&?) n %(a), f E %(a), where E (Young's modulus) and v (Poisson's 
ratio) are constants with E > 0, - 1 < v < i. 

(b) u, a, f, E and v satisfy the following equations on 8: 
V * a + f = O ,  a = = &  

( 3 )  
E 

[VU + VTU] a =  -[V-u]I  + ~ 

2(1 + v) 
\J E 

( I  + v)( l  - 2v) 

Furthermore, if Y = [u,a] is an elastostatic state on W and C is a regular surface with the unit 
normal n,we call t the traction vector of .4a on C if 

* 
ti = oijnj on C (4) 

* 
where Cis the subset of all points of C at which a normal is defined. 

t' = a'.n, t" = a " . n  on d.3. Then Betti's reciprocal theorem in elastostatics holds." 
Further, let 9' = [u',a'] E &?(E, v ,  f; 9) and 9'' = [u", a"] E 8 J E ,  v, f ;  a). Furthermore let 

P P P P 

J t'(x).u"(x)dA + f (x) .u ' (x)dV ( 5 )  
3 9  

3. THREE-DIMENSIONAL ELASTOSTATIC FUNDAMENTAL SOLUTION 
FOR THE INFINlTE LAYER 

3.1. Nature of the solution 

The following development, of the necessary theoretical background regarding the problem of 
a concentrated load applied at an interior or surface point of a homogeneous, isotropic, linear 
elastic body occupying an infinite elastic layer of uniform thickness h, is based on previous 
progress by Benitez and Rosakis.'2 Several important properties of the solution and the 
associated doublet states are also summarized. 

Consider now a proper orthogonal Cartesian frame, X = {0;el,e2,e3). Definc the infinite 
region 9 c E ,  as follows: 

9 = { x / x € E 3 ,  0 d x - e 3  < h }  

and let 8 9  = ?.Pl u ?P2. where (4) 

d B l  = {x /xcE3 ,  x .e3  = 0), 8P2 = { x / x ~ E , ,  x .e3 = h }  
Let 6 E 9 be the point of application of a concentrated load I. Caution should be exercised in 

the meaning attached to concentrated load at a point as discussed by Turteltaub and Sternberg.I3 
Here we adopt the so-called direct formulation of the concentrated load problem. The problem 
can be formulated as follows. 



3100 F. G. BENITEZ, L. LU AND A. J.  ROSAKIS 

We seek an ordered array Y(x, 6,1) = [u(x, k,l);(c, 6, I)] of displacement and stress fields with 

( 7 4  

the following properties: 

Y = [u, 01 E J?&% C', 0; 9 - (6 ) )  

(x - G)At(x,e)dA, = 0, for 6 ~ 9 '  (7c) 
q+o B n i R , ( S )  

( 7 4  

Let Y(x, 6, I) denote the elastostatic state satisfying (7aH7d). Let X = {O; el ,e2, e,) be a proper 

s lim 1 
q- to  4nil l ,K) 

t(x,6)dAx = 1, lim 

u(x) = O(lx - tl-'), o(x) = O(lx - k1-2) as x -+ 6 
where t in (7c) is the traction vector on the side of P n i?B,,(k) that faces 5. 

orthogonal frame. We define 

P(x, 6) = Y(x, 6, ek), ( k  = 1,2,3) (8) 

as the triplet of normal states whose displacement and stress fields are given by the solution 
appropriate to concentrated unit  loads and equal to eh. We also introduce the notation 

(9) Y V x ,  5) = Cuk(x, 6); ah(x, 611 = [uk(x, 6. ek); crh(x, 6, ek)l 
Definitions (8) and (9) and the principle of superposition for linear elasticity imply 

and 

where uf(x, 6) and o,k,(x, 5)  are the Cartesian components in X of uL(x, 6) and oh(x, t), respectively. 
It should also be noted that the state .V(x, 6 , l )  also satisfies the following identity known as the 

trun,slution identity,  i.e., 
Y(x, a + & , I )  = .Y(x - 6, a, I )  ( 1  2 )  

Yk((x.g) = .P(X - (,0). V X € Y  - {() (13) 

for all x €9 - {< + a] and for all vectors a, k e y .  If, in particular, for a = 0 and 1 = e,, we have 

Expressions for uf(x, 6) and a:(x, 6) are provided by Benitez and R ~ s a k i s , ~ , ~  where it is shown 
that the associated state Yk(x, 6) indeed satisfies the requirements (7a) (7d). The displacement 
and stress fields are given with respect to a Cartesian co-ordinate frame X = (O;el,e2,e3) such 
that the origin 0 lies on one of the two parallel traction-free surfaces of the infinite layer (0 E ?PI), 
and such that e3 = - n, when n is the outward normal to (;PI (see Figure 1). In addition, the 
rcsults by Benitez and Rosakis'." are obtained for 6 = He3, 0 < H d h, where h is the layer 
thickness. Nevertheless, in view of propcrties (lo)-( 13), this solution is enough to define Y(x, 6,1) 
completely for any vectors 5 and 1. 

Although the complete set of expressions for Y k ( x , 5 ) ,  k = 1,2,3 and 6 = He3 are given by 
Benitez and Rosakis,' for the sake of completeness they are stated in Appendix I with respect to 
a Cartesian co-ordinate frame X = (O;e,,e2,el} such that O E W , ,  and e3 = - n, where c3g1 
= (x 1 x GY> x - e3 = 0), is the lower traction-free surface of the layer, and n is the outward normal 
to f W 1 .  
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Ix3 

Figurc I .  Schematic of a concentrated load 1 acting at the interior of an infinite elastic laycr of uniform thickness h, 
occupying the infinite region B 

As discussed in detail by Benitez and Rosakis,' the solution for the concentrated load in an 
infinite elastic layer of uniform thickness satisfies requirements (7a)-(7d) for 1 = ek, and can thus 
serve as a fundamental solution to be used in the boundary integral formulation described '5 the 
following sections. In particular, it has been shown that the present solution reduces, for 6 ~ 9 ,  to 
the well-known Kelvin state (point load in an elastic body occupying E 3 )  in the limit as x + g. 
This property is important in the following discussions. 

3.2. Doublet states t o r  the three-Ltiniensronul lujwr 

nine states Y k ' ( x ,  6 )  defined by 
Let X = to; e l ,  e 2 ,  e 3 )  be a proper orthogonal frame and let Y k ( x ,  6)  = Y(x, 5. ek). Then the 

are said to be states corresponding to a force doublet applied at t(and to E,  v = constant). The 
above arc also elastostatic states. 

We also write 

and note that the following identity holds: 

The Cartesian components of displacement and stress belonging to Yk'(x, 6) may be derived 
from the results in Appendix I by means of (15). 
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Analogous to the preceding layer state discussed in Section 3.1, the layer-doublet states 
Yk'(x,  5)  have the following properties: 

. P y x ,  5)  E b,(E. v ,  0 9 - { S } )  (174 

lim S tk'(X,{)dAx = 0, Iim I (X - @At"(x, 5)  d A x  = &them ( 1  7 4  

u"(x,t) = O(/x - 61 - l ) ,  a"(x,t) = O((x - as x-+ 5 (174 

q + O  s i iAB, (<)  7-0 PnSB,(;)  

where cklm is the permutation symbol. 
Proof of the above follows by making use of the results in Appendix 1 and the properties of the 

three-dimensional layer states ,Yk(x, 5). In particular, (17d) follows from the fact that Y k ( x ,  5) for 
the layer reduces to the well-known Kelvin states as x --+ 5. As a result, Yk'(x, g), the doublet states 
for the layer problem, also reduce to the doublet states for Kelvin's problem as x-+ 4. 

4. ELASTOSTATIC BOUNDARY INTEGRAL EQUATION FORMULATION 

The generalization of Betti's reciprocal theorem involving singular states is due to Somigliana 
and has been rigorously proved by Turte!taub and Sternbcrg.'3 

Let 9 be a regular region and let 4 ~ 9 .  Furthermore, let .Y and Y'  be two states with the 
following properties: 
State .Y'(singular state): 

- 
9' = [u', 0'1 E &,(E, V ,  f'; 92 -~ {S}), f' E%(@, ( 1  8 4  

u'(x,5) = O(Ix - 51d1), a'(x,g) = fi((x - 51-2) as x - +  5 (18b) 

where1 t' are the tractions on the side of A,(k) that faces 5 
State Y(regu1ar state): 

.Y = [u, 61 E &JE, v, f; 3 - g}), f €%?(%) (1 8 4  
If t'(x, 6) = a'(x, 5)  - n(x), t(x, 5) = a(x, 5)  ' n(x) and from (5), the following identity holds: 

4.1. Somigliana's identity for the three-dimensionul layer state 

The specialization of equation (19) using the three-dimensional fundamental solution for 
a point load in an infinite layer of uniform thickness will now be presented. 

Let X = {0 ;e l ,e , ,e3 )  and let 9 c E 3  be the infinite layer region of uniform thickness h as 
defined in (6). Let dB, and d P 2  denote the two infinite planar surfaces of the region (see Figure 2). 
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Figure 2.  Schematic of the regular cylindrical region 9, c PP 

Let &?, be the closure of the regular region B* c 9 with uniform thickness h, and let n,  and n2 
‘be the terminal cross-sections of &*. Further, let n, c W ,  and 112 c ?Y2 (see Figure 2) .  Let C‘W, 
ibe the surface of 9%. Then the lateral boundary of .%* will be defined as follows: 

L = (39, - (n, U n,) (20) 

In the following discussion we choose to  identify the arbitrary reglon .99 in equation (19) with 

We also choose to identify the singular state 9’ in (18) with the fundamental solution for the 
the regular region 9*. 

point load in the infinite layer. We thus get. 

.Y” = [u’, 0’1 = .Vk(x, 5)  = Y(x, 6, I = ek), k = 1,2,3 (21) 

In addition, we restrict 4 to be in the interior or 9*. The above are indeed appropriate choices, 
since yk(x,  6) satisfies properties (7a)-(7d) for 1 = ek and thus also satisfies the restrictions 
(L8a)-(18c), and also since, by construction, &?* .c P. 
In  addition, f = 0 on &+ - (6). Also since ~ E W , ,  then by (7b) we have 

t’(x, 4) = tk(X, 5) = 0, vx E l l ,  ( x  = 1,2) 
Finally, as in (19) the second state 

Y = [u(x), a(x)] = &,(E, v , t  @*\ (23) 

is, taken to be a regular (non-singular) elastostatic state defined on the region @*. From the above, 
equation (19) reduces to 

%(k)  = - [ak(X,5).n(x)].u(X)dA, i- S CO). n ( x ~  * UVX, 6) d ~ ,  
S L  L u n , L , n ,  

+ jB‘ (5; f(x) Uk(X, 5)  d v x  (24) 

where = u(5).ek for SE&?.. 

Expression (24) provides the components of the displacement field for the non-singular state 
Y at points interior of the regular region 9,. These are given with respect to the displacement and 
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tractions o f  Y at the boundary and the three-dimensional fundamental solution for the point 
load in an infinite layer of uniform thickness obtained by Benitez and Rosakkg 

9* is a regular subset of 9 (infinite layer of uniform thickness) and is shown in Figure 2. It is 
worth noting here that the first integral of (24) involves integration only over the lateral surfacc of 
the region 9, c 9. 

It is very important to point out here that the displacement field, in the interior of the region. 
can be obtained once the displacement and traction on the lateral surface of the region are 
determined. Because of the special fundamental solution and the traction-free boundary condi- 
tions in both the singular and the regular states, thc integrals on the two planar surfaces of the 
region 9 of the regular state are not necessary, which is advantageous in the numerical 
implementation, which will be discussed later. 

4.2. Stress Jleld integral identity for the three-dimensional layer state 

The translation identity of equation (16) implies that 

' k  i? 
7 u (x, 5)  = - __ Uk(X, r;) = - Ukrn(X, 5) 
QC, ?X," 

a c 
~ ok(x, g) = - 7 oyx, r;) = - G k r n ( X ,  6) 
35, CX, 

and 

Differentiation of relation (24) and use of property (25) gives 

u k , r n ( c )  =S [ok"(x,Q.n(x)I .U(X)dAx - [cr(x).n(x)].ukrn(x.6)dA. 
1. L 1 1 ,  n2 

- 1 f(x).uk"(x,QdV, V ~ E & *  
3, - :51 

Define now a state as follows 

P y x ,  5) = [U"(x, t,, t i k r n X ,  511 

where .4pkrn(x, 5)  = Yf,,,(x, 5) = [ukrn(x, 6),akm(x, 5)] is the three-dimensional layer doubkt state 
described in Section 3.2. (14H17). Then (26) and (27) imply that. 

+ f(x)-Ukrn(x,r;)dV,, V t ~ h .  (28) 

Expression (28) provides the components of the stress field for the regular state Y at points 
interior to the region 9%. 9. is the regular subset of 9 (infinite layer of uniform thickness) as 
defined in Section 4.1 and shown in Figure 2. The stress components are given with respect to the 
displacement and tractions on the boundary %?* and the doublet state corresponding to the 
three-dimensional fundamental solution for a point load in an infinite layer of uniform thickness. 

1, - ;5: 
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4.3.  Displucement .field integral identity j o r  the three-$iniensional layer state 

Identity (24) for the displacements is restricted to points 6~&?* (interior of 92J in which case the 
tractions tk(x, 6) = ak(x, 5).  n(x) of the first intcgral are integrable over the surface. An expression 
similar to (24), for c ~ 2 , 4 ? * ,  is obtained directly from the reciprocal theorem ( 5 )  by defining the 
following region. 

Let @*(q)€P be a regular subset of .Y defined as follows: 

B ? * ( F T )  = 92, - B&) V q  > 0 (29) 

Then i?%?*(v) = 2 9 *  - (?,4?* n B,(c)) + 2BB,(6) n 92* (see Figure 3) .  
Point 6 is then by construction exterior to this region. Since 9?*(q) c .Up, one can identify, in (5 ) ,  

state Y' by .Vk(x,6) (the point load solution for the infinite layer), where &E(?.B?,, X E ~ * ( J I ) .  Since 
6 .$%*(q), Yk(x.  5) is non-singular in 9 * ( q ) ,  for all q > 0. One can also identify 9"' as any regular 
elastostatic state where 

.Y = [u(x),a(x)] €6JE,V,f,B*), f€%(&!*) (30) 

By construction, both choices Y'  and Y" are elastostatic states in Be,(q) and we can write 

Y' = :vk(X,y = [U"x,~).~k(X,~)]E~~(E,v,0,9?',(~)) V6€(:%* Vq  > 0 

9'' = Y ( x )  = [u(x).a(x)]E$(E,1.',f,B?*(q)) f€%(%?*) (31) 

The reciprocal theorem then gives 

tk(x,Q-u(x)dA, S aR,,(<J 8* s 6.%, -(a#* n B&)) 
tk(X, 6) * u(x)dA, = - 

+ J t(x).u"x,5)dAx 

+I 2B*-(M* P S&,, 

aB,(<)  (1 1, 

t(x) * uk (x, 5) d A ,  

f(x)-Uk(X, ()dVX Vq > 0 VE,€C@* ( 3 2 )  

Figure 3 Schematic representation of the region .@,(ti) 9, - B, (Q 
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We also recall property (7d) of .Y’ = .Yh and the regularity (30) of 9”’ = 9’ on Be which imply 
that there exist constants K ,  L, M ,  N ,  Q, > 0, such that 

and 

By means of the above properties, we can write 

which implies that 

Also because of the 

(33) 

( 3 5 )  

smoothness of u(x) (see (30)), we can write, for every x E ?B,(6)  n &*, 

u(x) = u(6) + VU(~) (X - 4)  + Q(Ix - ti2) as r] -+ 0 (36) 

This implies that there exists a constant G > 0, such that 
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Observing finally that tk(x, 5) = 0 on n2 - 15) (see (7b)) and by replacing c?4?* by L in the first 
integral of the above equation (41) reduces to 

t(x) Uk (x, 5) d '4 x I I u n ,  LJn2- 15; 
t (x, 6) - ~ ( x )  d Ax + 

where 

C'((5) is a vector whose value depends on the nature of the stress of the fundamental solution 
Yk(x, 5) and on the location of the position vector 6. 

If 6 lies on one of the end cross-sections n, (5 EII, c ;Pa) then a&,(&) n .B'* = 3Bq(5) n 9 and 
Ck((g) = ek.  This follows immediately from th? fact that (43) reduces to the first integral of (7c) for 
I = ek. This is not true however for 5 E L ,  5 €9. In this case, the integral of (43) has to be evaluated 
directly by using the fundamental solution in question. In order to do so, it is important to recall 
at this point that the present fundamental solution (point load in an infinite layer of uniform 
thickness) was shown to reduce to tbe Kelvin state (point load of an infinite elastic body 
occupying E 3 )  at the limit of x + 5 , g  E cP (see Reference 9). Given the above property, th? integral 
of definition (43) reduces to the equivalent integral for the Kelvin stale for 5~ L, 5 ~ P . F o r  the 
specific case of 1, being a smooth regular surface (a regular sFrface with a continuously turning 
tangent plane), it can be shown that Ck(Q = $ek for & E  L, 5.~9. The proof of the above is entirely 
analogous to the equivalent result that appears in classical boundary element formulations using 
the Kelvin solution. Expressions for Ck(Q corresponding to choices of L containing sharp edges on 
corners are expressed as functions of the angles i n ~ o l v e d . ' ~  

4.4. Integral identities for three-dimensionul layer regions with traction free terminal cross-sections 

Here we discuss some important special cases of the integral identities (24), (28) and (42). These 
correspond to  a class of three-dimensional boundary-value problems involving regions 3, whose 
terminal cross-sections n,, 112 are traction-free. We also discuss the special case of zero body 
forces (f = 0 on 3.). We choose the state Y(x) corresponding to the problem under investigation 
to have the following properties: 

Y(x) = [U(X),C(X)] = &%(E, v ,o ;  a,) 
o(x).n(x) = i(x), VXEL, 

o(x)-n(x) = 0, V X E ~ ,  (a = 1,2) 
and 

(44) 

u(x) = qx),  vx E L, 

where 8,953, = L u n, u r12, L = L, u L,. We will also assume that the lateral boundary L of the 
region 92, is smooth (with unique tangent plane defined). The integral identity for the displacement 
at the surface of a regular region B* whose end cross-sections are traction-free is obtained from 
(42) and (44) as 
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and tk(x,Q = ck(x, k)-n(x). The above identity relates the displacements of the enrire surfuce of 
the region 9* to the tractions and displacements of only the lateral surface L. For the special case 
of L = &, t(x) = i(x), XEL,  (traction boundary conditions), (45) assumes a particularly simple 
form since the second integral is known a priori. 

Similarly, use of (44) reduces the integral identities (24) and (28) for the displacement and stress 
fields for points in the interior of 9, to the following simple forms: 

where SE.&?., tk(x,g) = d(x,Q.n(x),  

ok,(c) = - fkm(X, 6)- u(x)dA + t(X) - Ukm(X, 6)dAx (48) jL 1̂ , 
where 5 G&, tkm(x, 5) = iikm(x, 6)- n(x). All of the above identities involve integrals evaluated only 
over the Iuteraf surjiuce of the region 9,. 

5. NUMERICAL IMPLEMENTATION OF BOUNDARY INTEGRAL EQUATIONS 

In the solution of a particular solid mechanics problems, the solid boundary and the bwndary 
data will be approximate in order to solve the boundary integral equations (42) or (45) numer- 
ically. The approximations involve replacing the lateral boundary ( L )  and the portion over which 
the traction might be defined on the lower and upper surfaces (n,) by a complete set of surfaces 
patches, the so-called boundary elements. The boundary data are then interpolated over each 
boundary element. In cases that body forces are presented, the volume integrals imply a discretiz- 
ation process of the interior of the considered region in a similar way to the finite element method. 
In this case, the advantages of the boundary element method are lost. Nevertheless, when body 
forces correspond to the existence of gravity, angular acceleration and other potential fields, the 
volume integrals can be transformed into surface integrals, in a way similar to that developed by 
Stippes and Rizzo,15 which can be treated numerically in an analogous way to the other integral 
terms in the boundary equation (42). The discretized form of equations (42) or (45) for every nodal 
point yields a system of linear algebraic equations. Once the boundary conditions are imposed, 
the system can be solved to  obtain all the unknown values. Consequently, an approximate 
solution to the boundary value problem is obtained 

For the sake of simplicity, we will study the case of zero body forces and traction free terminal 
cross-sections. Also the boundary elements in this investigation are taken to be flat in the process 
of discretization, and the boundary data are takcn from the element centroid. In other words, 
constant elements are used. 

It is now more convenient to work with matrix notation rather than carry on with the indicia1 
notation. To this effect, we can start by defining the displacement and the traction vectors that 
apply over the element ,j by the values at its centroid, i.e. 

Vx E element j 
t(x) = {t)' (49) 
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where the superscript j denotes the element, and {u}' and {t}' indicate the displacement and 
traction vectors at the element centroid, respectively. They are usually called the element nodal 
values. 

Let us now construct two matrices involving traction and displacement components of the 
fundamental solution as follows: 

Suppose that the unit conccntrated load is acting at the centroid (6') of the ith element. 
Substitute the above functions into equation (45), and discretize the boundary to obtain the 
equation corresponding to the displacement vector at the nodal point i, 

NE NE 

[C](U)' + 2 j [ t * ( ~ , 5 i ) ] { ~ ) J d A ~  = c jYj [u*(x, Si,lCt)jd'4, (52) 
j y t  Yj j =  1 

where T j  is the surface of the jth element, NE stands for the number of elements used and [ C ]  is 
equal to 

Since {u}' and (t}] are constants over the jth element, they can be taken out of the integral. 
Thus, 

CCl{.I' + J = 1  ? (I9, [t*(X,5')IdAI)o'  = J =  ? 1 ( jy, [u*(x,S.ndA+P (54) 

Equation (54) corresponds to a particular node i (centroid of element i). Once the terms are 
integrated, I t  can be written as 

where the superscript i denotes the position of the unit concentrated load (on the centroid of 
,element i), and j indicates the element centroid at which the response is computed. Both i and 
j vary from 1 to NE. The influence matrices [Hi]] and [Gij] are 3 x 3 matrices and are defined as 

(57) 
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By examining (55) ,  the following holds: 

[H'JI = [Hj] if i # , j  

[H'J] = [ f I i j ]  + [cl if j = j 

Equation (55) for node i then becomes 

Similarly, the contribution for all the nodes can be written. The equations can then be 
assembled into the global system of equations according to the nodes, i.e. 

[HI+) = [ W t i  (60) 

Matrices [HI and [GI are both 3NE x 3NE matrices, {u} and i t>  are 3NE x 1 vectors. 
In the actual situations, the full [HI and [GI matrices are never stored according to these sizes. 

As the system of equations is generated, the known boundary conditions are multiplied out to 
generate the right-hand side vector; the coefficients of the unknown terms, either the displacement 
components or the traction components, populate the coefficient matrix [A], 

"41 Ixl = Ib) (61) 

where [A] is a 3NE x 3NE matrix, {x} is a vector of unknowns and {b) is the known right-hand 
side. (x} and (b} are both 3NE x 1 vectors. Equation (61) is the actual form of equations that is to 
be solved. The Gauss matrix reduction method will be used to solve the equations. 

5.1. Element matrices construction 

The evaluation of the element matrices [H'j] and [G'J] is crucial to the boundary element 
formulation. Since the components of the matrices involve the integration of the fundamental 
solution, and since the expressions of the three-dimensional layer fundmental solution are very 
complex, the integrals cannot be computed analytically. 

One way to evaluate the matrix components is to use the Gaussian quadrature scheme. 
However, when an element is very close to the unit concentrated load or when the load is on the 
element,the singular nature of the fundamental solution yields high numerical values, and the 
variation of the fundamental solution over the integrated element is very high. In such cases, the 
Gaussian quadrature is effective only if many Gaussian points are needed. Two different 
alternatives have been used to evaluate the matrix components. The first one is a purely 
numerical procedure, while the second is an hybrid numerical-analytical one. 

5.1 .l. Purely numerical procedures The numerical integration of all the above components 
over an arbitrary element can be abstracted to the following simple expression: 

By using a mapping of the form 

where Xk, V k  = 1,2,3, and (i,~) represent the global and local co-ordinate systems for a point 
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inside the generic element L, respectively, .x: represents the global co-ordinates of the I corners of 
the element and N , ( [ ,  q )  are the usual shape functions. Expression (62) becomes 

where I J ( [ ,  q )  1 is the Jacobian of the mapping and where 

By using the Gauss quadrature scheme, 

where N is the number of integration points used, (ci, q j )  (i.j  = 1, . . . , N )  are the positions of those 
points and w i ,  wj (i, j = 1, . . . , N )  are the weights. 

Equation (66) is the result of the numerical integration of function f(x, 5) over an arbitrary 
element 9. Therefore, the evaluation of all the components in [H‘j] and [G’j]  can follow suit. 

In order to compute the integral (62) with the reasonable accuracy, a high number of 
integration points should be placed on the element according to the element’s distance from the 
integration node (element centroid for constant elements). One way to do this is by numerically 
subdividing the element into subelements. This is necessary when the fundamental solution is 
expected to vary highly in the element. The following are the rules for subdividing the most 
commonly used three-noded and four-noded elements, shown in Figure 4: 

(i) Find the mid-points on the edges of an element, i.e. a, b,c and d for an element with four 

(ii) Connect the mid-points of the opposite edges, as shown in Figure 4. 
nodes or a, b and c for an element with three nodes. 

3 

Figure 4. Subdivision of quadrilateral and triangular elements into four subelements 
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Several criteria have to be used in order to control the subdivision: 

1. The length criterion. The subdivision stops when the distance between the loading point and 
the subelement is larger than or equal to Clength (a prechosen number) times the length of thc 
smallest edge of the subdivided element. 

2. The area criterion. The subdivision stops when the area of the smallest subelement is less 
than or equal to Car,, (a prechosen number) times the area of the original element. 

3. The above two criteria may both be in effect at the same time, such as in  the case when the 
loading point is on an element or close to it. 

It is important to point out that both criteria must be compatible; otherwise, the singularity 
properties of the fundamental solution cannot be captured. The compatibilities of the two criteria 
may also mean that they are not independent, i.e. if one criterion is chosen, the other criterion can 
be derived as a function of the first. This can be done by the following simple calculation. 

Let d be the distance between the loading point and the element, L the typical length of the 
undivided element, I the typical length of the smallest subdivided element, Clength the chosen 
number for length criterion and C,,,, the chosen number for area criterion. Then the area of the 
undivided element is of the order of L’ and the area of the smallest subdivided element is of the 
order of i2. 

From the length criterion / = d/Clength, while from the area criterion 1’ = car,, x L’. 
In order for the two criteria to be imposed properly, the following equation has to be satisfied: 

As an example, a four-noded element, as shown in Figure 5, is chosen. In this figure point p is 
the point at which the unit concentrated load is acting, while point q is the projection of p along 
the direction of the element normal onto the element. 

Two subdivision cases will be depicted for different distances, d, between the loading point and 
the element. The length criterion will be set to Clength = 2 for all the cases. 

Figure 6 shows the subdivisions for d = 0-0001 and d = 0-1, respectively. 

Figure 5. Dimensions of an element for numerical test 
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Figure 6. Quadrilateral elements subdivided into 640 (case d = and 148 (case 10 ') subelements, respectively 

5.1.2. Hybrid numerical-analjtical procedure Due to the complexity of the fundamental solu- 
tion, employment of many integration points, through a subdivision technique, would be very 
inefficient from a computational point of view. Therefore, an alternative way would be to evaluate 
the matrix components partially analytically and partiaily numerically. This idea can be math- 
ematically expressed as follows: 

,. 

The subscript K denotes the Kelvin solution, while t* and u* are obtained from the three- 
dimensional layer fundamental solution. The first integral of each equation in (68) is to be 
integrated numerically, while the second integral of each equation is to be integrated analytically. 

Although the fundamental solution and the Kelvin solution deal with totally different prob- 
lems, they exhibit the same singular behaviour. When the unit concentrated load is acting in the 
interior of the infinite layer, the fundamental solution tends to the Kelvin solution as the point of 
observation approaches the loading point. Therefore, when the two points approach, the result of 
the subtraction of the fundamental solution by the Kelvin solution (first integral) tends to zero. 

The analytical integration of the Kelvin solution over an arbitrary flat element was originally 
outlined by Cruse." 

Using the proposed hybrid evaluation of the components of the matrices [ H 7  and [G'j], one 
can take advantage of the above-mentioned analytical calculation and, thus, obtain the result 
with reasonable accuracy by using only a few Gauss quadrature points. This is because the 
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integrands of the first terms in equations (68) do not vary very much with distance. Consequently, 
a few integration points are expected to capture the variation well. 

The above hypothesis can be verified by direct calculation by means of the purely numerical 
procedure. 

Next, the integration of the three-dimensional layer fundamental solution over the same 
element shown in Figure 5 is computed using both the hybrid procedure and the purely numerical 
integration with subdivisions. 

The materials properties are taken to be E = 1 and v = 0.3. The thickness of the layer is chosen 
to be h = 1. Four, 16 and 36 points Gaussian quadrature schemes are used, and the results shown 
in Table I for the purely numerical procedure and in Table I1 for the hybrid procedure exhibit 
negligible differences. 

The tremendous saving of computational effort introduced by the hybrid procedure is vital to 
the application of this boundary element method for computer-time-aware practitioners. 

5.2. Numerical eoaluation of three-dimensional layer fundamental solution 

A close examination of the expressions for u!(x, 6) and ofj(x, g)  presented in Appendix I reveals 
that all the expressions for the displacement and stress components can be cast in the general 
form shown below: 

where t’(xI, x2, x3) may be a displacement or stress component, $ = H / h  and x = x3/h .  The 
coefficients A ( E ,  v, h, x I ,  x2) and B(v, x l ,  x2, x, 3) are simple functions of the variables involved, the 
exponent r ( 1  or 2) depends on the component, J, (x)  is the Bessel function of the order p and 
g’(lv, 1, $) is a function composed of the finite summation of the products of the following form: 

where p i ,  /Ii, yi, ai, bi and ci are integers. The parameter pi may vary from 0 to 4, /Ii and yi are either 
0 or 1 and uix + hi$ + ci is always non-positive. 

The second integrand in expression (69) eliminates the singularity in 1 caused by the first one. If 
the first integrand is non-singular then B = 0. Hence, the solution is well behaved for every d. 

The basic idea of evaluating the stress and displacement components of the fundamental 
solution is to compute them partially analytically and partially numerically. To illustrate the idea, 
expression (69) is written in the following way: 
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Considering the first integral in the preceding expression, one has 

Each individual integral in the former expression can be computed analytically, and they can 
be expressed in the following form: 

where u, h and c are not functions of i and are non-negative. Expressions for G ( p ,  a, c, b) are found 
in Appendix 11. Therefore, equation (71) can then be written in a more efficient way as follows: 

Define now 

Then 

The most important feature in the previous expression is that U J  + hi$ + ci - 2 is always 
negative, and it reaches its maximum at - 2. This is a key feature which guarantees the 
convergence of the infinite integral in (74). 

The integral in (74) cannot be evaluated analytically. It has to be evaluated numerically. After 
checking its denominator, one finds that it is not necessary to evaluate the integral over the entire 
integration region. Instead, it can be computed upproximately over a region from 0 to P with 
relatively good accuracy for the first integrand. P is a preset big number. The integration interval 
is extended from 0 to 2P in order to achieve the same order of  accuracy for the second part of the 
integrand. The error caused by truncating the integral will be discussed in the next section. The 
truncated version of (74) becomes 

u ( . x ~ ,  ~ 2 ,  ~ 3 )  = A(E,  V ,  h, XI, xZ) 

i- 1 
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By substituting (76) into (74) and performing variable transformation, one obtains 

The Gaussian quadrature scheme (GQS) is implemented to evaluate the integral. Since the 
integrand varies smoothly inside the integration interval, the interval is divided into equally sized 
integration subintervals. The size of the subinterval is crucial for the evaluation of an integral 
involving oscillatory Bessel functions. In order to determine the right size for the integration 
subintervals, the following parameter transformation is performed on the integration variable A. 
Let 

Jm 
h 

1, = i b  and b =  (79) 

For the sake of simplicity, we write i in the place of A l ;  then (78) becomes 

(80) 

The only oscillatory function in the integrand is the Bessel function J,(x). By examining the 
Bessel functions closely, one finds that although they are not periodic functions, they do have an 
approximate period of 2n as x -+ c;c . Considering x to be greater than zero, the distance between 
the two adjacent zeros of the Bessel functions is greater than n. Therefore, it was decided to 
choose the size of the integration subinterval to be 3. Let N be the number of subintervals used. 
Then 

N = Int [ Ph/3] (81) 
where Int[a] stands for the closest integer to a, i.e. Int[a] = 1 for a = 1.2 and IntCa] = 2 for 
a = 1.6. The size of the integration subintervals is then Ph/N, and the subintervals are [a i ,  uJ+ 1]  

with j = 1,. . . , N ,  where 

Pb 
N a ,=- ( i -  1) ( i =  1, . . . ,  N +  1) (82) 
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Define now 

31 19 

Then 

By performing the following variable transformation 

expression (84) becomes 

The standard Gauss quadrature scheme can now be applied, yielding 

where M is the number of integration points used and tk and wk, with k = 1,.  . . , M ,  are the 
positions and weights of these points, respectively. 

The evaluation of (87) involving different number of integration points has been tested. It is 
found that a 36 Gaussian point scheme gives accurate results. 

It should be emphasized once more that the numerical part of this integration is covergent due 
to the nature of the integrand (see (74)) while the remaining part can be evaluated in closed form. 
In addition, the accuracy of the integral in (80) will also depend on the choice of P .  

5.2.1. Error analvsis of the numerical evaluation. The error introduced in the evaluation of the 
stress and displacement components of the fundamental solution is mainly due to the numerical 
integration. 
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In order to perform an error analysis, expression (74) is rewritten in the following way: 

Comparing the above formula with the proposed expression (78), it is found that the error in 
the numerical integration is mainly due to the truncation of the integration interval. The other 
part of the error appears because of the use of the Gaussian quadrature scheme. Define the error, 
c, caused by the truncation of the integration interval as 

As indicated in (80), g’(A,x ,$)  is a summation of terms of the form Apie’(anX+blJltcl), with 
i = 1 , .  . . , K .  Examining these terms carefully, one finds that the dominant term is the one with 
zero exponent. The coefficient of this term will be denoted as D3,pxfl$7, in which p has a maximum 
value of 3. 

Then the maximum error will be bounded by 

+ I W V ,  X I  > x23 x, $l ie  - 2 p  

For any Bessel function JJx), with p integer, the following holds: 
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Consequently, 

+ I W v ,  X I ,  x2, x, i j )  1 e- zp (92) 

Since 0 < 1 + e - (2 + 4i2)e-2” d 1 + e-4p - (2 + 4P2)eCZP for any P > 1, the following 
holds: 

+ If3(v,xl,x2>%, $)leCZP (93) 

For P = 10 and P = 20, the error E is of the order of lo-’ and lo-‘*, respectively. 

6. DISCUSSTON AND CONCLUSIONS 

I[n this work a specialization of the boundary element technique, which makes use of the 
three-dimensional fundamental solution for a point load acting in the interior of an infinite layer 
developed by Benitez and R ~ s a k i s , * * ~  is presented. This new formulation is specially suited for the 
1 reatment of three-dimensional problems whose geometries contain two parallel planar surfaces, 
such as in plate problems. 

In general, the resulting integral identities (24), (28) and (42) contain surface integrals evaluated 
only over the lateral surface L of the plate region of interest. In addition, they also contain surface 
integrals evaluated exclusively over the portions of the two parallel planer surfaces (nl, H2) in 
which tractions are prescribed. In case whcre the two parallel planes are traction-free, the 
iintegral identities (45), (47) and (48) only contain integrals evaluated over the lateral surfaces of 
the region. From a numerical point of view, this makes the case of the identities very attractive for 
implementation in numerical boundary element formulations. 

For problems with a traction-free boundary condition on the two planar surfaces, numerical 
solution of boundary-value problems involving such a scheme need only feature the discretization 
of the lateral surfaces of the region, no elements are needed for the parallel planar surfaces. 

This formulation is very attractive in the solution of three-dimensional problems involving 
cavities such as holes, surface cracks, through cracks, flaws and defects in plates of uniform 
thickness. In such cases, the proposed formulation would require discretization over the cavity 
surfaces and the remaining parts of the lateral boundary. This results in a considerable saving in 
the number of elements required to capture the details of the three-dimensional deformation fields 
ail. the vicinity of stress concentrations. It also provides an attractive alternative to the classical 
boundary element (based on Kelvin’s solution) and finite element methods. 
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- 12(1 - ~)'(22 - 
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24 x: + "$1 
5 h 

- V)(X + $ - ;c2 - $') + - (1  - v)' - 6(1 - v)' ___ ~ 

(120) 

where the superscripts 1,2,3 indicate the direction of the unit load and x = xj/h, $ = H / h .  

and v, and they should be taken asf:(i, 1, $, E ,  ti). They are given by 
For the sake of brevity, expressions for$& 1, $) defined in (94)+120) are functions of A, x, I), E 

32 
2 

,131($ - l)cosh[A(X - $)I + -[(4v - 3)(1 + x - $)sinh[A(X - $11 

+ (1 - x)(l - $)sinh[A(x + $)] + ~$sinh[d(2 - x - 3/11] 
1" 
4 

- -[(2(8v2 - 1 2 ~  + 5 )  + x - $)cosh[A(x - $)] + (3 - 4 ~ ) ( 2  - z - $)COSh[A(x + $11 
+ (3 - 4 ~ ) ( x  + $ ) c o s ~ [ " ( ~  - z - $)] + ($ - x ) c o s ~ [ ~ ( ~  + - I))]] 

1 
4 

+ - [ ( S v 2  - 8v + l)sinh[l(x + $)I + (8v2 - S v  + l)sinh[i(2 - x - $)I 

1 + sinh[A(X - $)I - sinh[3,(2 + x - $)]I 

+ { - 4 x  - $)cosh[4x - $11 + sinh[A(x - $Np% - $) 
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1 
sinh2(A) - i2 ' "&(A) = 7- ' (1 - v)[sinh[i(x + $)I - sinh[A(x - $)I + sinh[A(2 - x - $)I 

+ sinhCA(2 + x - $)]I) + { - 4(1 - v)sinh[A(;C - $)I) ;Y;(x - $) ( 1  23) 

i 
(1 - ~ ) j [ c o s h [ i ( ~  + $)] - cosh[i(X - $)] - ~ 0 ~ h [ i ( 2  - x - $)I sinh2(?.) - i2 f'(/-) = 7-- 

sinh(IvX)cosh[i(l - $)] 
sinh (3,) 

+ 2(1 - 4 2 3  
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A2 iS3x($ - I)sinh[i.(x - $)] - T[(l - x)(1 - $)cosh[i(x + $)I 

+ ( 4 ~  - 3) (x  + $ - l)Cosh[I.(x - $)I - x$cosh[A(2 - - $)]] 

I. . 
- (2v - l)i[sinh[i(X + $)I + sinh[A(x - $)I 

+ sinh[2(2 - x - $)] - sinh[A(2 + x - $)]I 

+ { - R 2 ( x  - $)cosh[i-(x - $)I - i(2v - l)sinh[R(x - $)]}H(x - $) 

A3 
j ;  I ( A )  = 7- {A4,(l - $)sinh[I-(x - I))] + ~ [ ( l  - x)(1 - $)cosh[i(x + $11 

sinh2(2.) - R2 

+ ((411 - 3)x  + $ - l)cosh[I-(X - 11/11 - x$cosh[J.(2 - x - $)I] 

2’ + -$[((4u - 3)x  + 4(1 - vj - $)sinh[A(X + $)] + (4(1 - v) + x - $)sinh[A(x - $)] 

+ ((4v - 3 ) x  - $)sinh[A(2 - x - I))] + ($ - ~ ) s i n h [ i ( 2  + j !  - ib)]] 

i 
2 

- (1 - v ) - [  - cosh[i(X + $)] + cosh[i(X - I))] 

i + ~0~h[3 , (2  - 31 - $)] - ~0sh[A(2 + x - I))]] 

+ { A 2 ( x  - t+b)sinh[A(x - $)I - R2(1 - v)cosh[A(X - I))]}%(x - $) (131) 
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1) +x41/ - 3 1 -  

+ ((2v - 1) + (3 - 4v)($ - X))sinh[A(X - $)I 
+ (2(v - 1) + ~41/)sinh[A(2 - - $)I + 2.0) - l)sinh[A(2 + x - 41/11] 

i, 
4 

- -[(2(8v2 - 1 2 ~  + 5 )  + - 41/)cosh[A(x - I))] + (3 - 4 ~ ) ( 2  - - $)cosh[i-(X + $)]I 

+ (3 - ~ v ) ( x  + 41/)~0~h[i.(2 - x - 41/)] + (41/ - ~)cosh[A(2 + x - $)]I 

1 
4 + - [ ( 8 v 2  - 8v + l)sinh[A(x + 41/11 + (8v2 - 8v + l)sinh[1(2 - x - $)I 

+ sinh[i.(X - $)I - sinh[A(2 + x - $)]I 
cosh’(A)cosh(AX) 

sinh(A) 
+ 4(1 - v)A2 cash [A( 1 - I//)] 

41/)sinh[i(X - 

A 
- -[(3 - 4v)(x - $)sinh[A(X + $)I + (8(2v - l ) ( v  - 1) - x + $)sinh[A(x - $)] 

+ (3 - 4v)(x - 41/)sinh[A(2 - x - 1/41 + (x - 41/)sinh[A(2 + x - $)]I 
4 

(133) 

I + ( 2 ~  - l)(v - 1) [cosh[;l(x + $)I - ~0sh[A(2 - x - $)]I 

+ { - 441/ - x)sinh[i(x - $)l}Wx - $1 
A 2  
2 

A3x(l - $)cosh[A(x - $)] + -[(4v - 3)(1 + x - $)sinh[i(X - $)I f14(’) = sinh2(A) - A 2  ‘ i  
+ (1 - x)(1 - $)sinh[A(x + $)I + ~$sinh[A(2 - x - $)]I 

A + -[(2(8? - 1 2 ~  + 5 )  + x - $)cosh[A(x - $)I + (3 - 4 ~ ) ( 2  - x - $)cosh[A(x + $)] 
4 

+ (3 - ~ v ) ( x  + $)c0sh[A(2 - x - $)I + ($ - x ) c o s ~ [ ~ . ( ~  + x - +)]I 
1 
4 + -[(8v2 - 12v + 5)sinh[A(~ + $)I + (8v2 - 12v + S)sinh[A(2 - x - $)] 

+ (4v - 3)sinh[A(~ - $)] - (4v - 3)sinh[A(2 + x - $)I] 

+ {A(x - $)cosh[A(x - $11 + (4v - 3)sinh[A(~ - $)])X(x - 3) 
I 

(1341 
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where S ( x  - $) represents the Heaviside function, given by 

3129 

(135) 

APPENDIX I1 

The expressions for the analytical integration G(p,a, b,c), defined in (73), with the structure 

Aae - c l  ( 1  36) J,(hi)d% Vc > O  G(p ,  u, 6, c)  = lom 
are listed below 

1 
G(O,O, h, C )  = - R 

h 
G(l,O,h,C) =-_I- 

R ( R  + c )  

b 
G(l , l ,b ,C)  = - R3 

3bc 
G ( 1 , 2 , b , ~ )  = -5- R 

b2 
G(2,0,6, C) = -___ R(R + c)2 

R2(R + c ) ~  

3b2 
R 

G(2,1, h, C )  = 

G(2,2, h, C )  = 7 
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1 5b2c 
R 

G(2,3, h, C )  = 7 

G(2,4,h,c) = T(6 R 

G(3,0, h, C )  = 

- $1 
h3 

R ( R  + c ) ~  

G(3,1, h, C )  = 
R2(R + c)j 

15b3 
R7 

105b3c 
R’ 

G(3,3,b, c) = - 

G(3,4, h, C) = _________ 

where R = ,/b2 + c2. 
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