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SUMMARY

This work presents a specialization of the integral identities used in the boundary element method. This
modification is especially tailored to deal with three-dimensional elastostatic problems involving geometrics
which contain two parallel planar surfaces (e.g. three-dimensional plate problems). The formulation makes
use of the three-dimensional fundamental solution for a point load acting in the interior of an infinite layer of
uniform thickness (obtained by Benitez and Rosakis®),

It is shown that this procedure is especially suited for the analysis of three-dimensional problems
involving cavities in plate structures. In such problems it is demonstrated that, in addition to the cavity
surfaces, only the lateral surfaces of the structure need to be discretized, with no discretization required on
the traction-free parallel surfaces.

1. INTRODUCTION

The boundary element method (BEM) has become a powerful alternative numerical technique to
the finite element method (FEM). Both numerical methods have been widely used to study
elastostatic, elastoplastic, transient and dynamic problems. In some problems, the BEM has
shown a series of advantages over the FEM. The fact that the discretization is only performed on
the surface of the solid under study implies a reduction of the dimensionality of the problem by
one and, therefore, it is easier to modify the discretization mesh. Once the boundary solution has
been numerically obtained, interior values may easily be determined. This feature is particularly
advantageous for modelling regions with high stress gradients with great accuracy and efficiency,
making this technique an appealing tool for the numerical solution of problems in linear fracture
mechanics. In addition, the BEM is specially well suited to elastic problems involving infinite
regions. Finally, since the formulation is based on fundamental solutions that satisfy the
governing differential equations, approximation of the variables is required only on the bound-
ary. This implies, in most cases, better accuracy.
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The advantages over FEM are more clearly manifested when the ratio of surface to volume in
the solid is low. In particular, this quotient is high for thrce-dimensional plate structures;
therefore, in order to retain the boundary element method capabilities, it is desirable to use the
three-dimensional fundamental solution for an infinite layer. By using this solution the need for
discretization of the two erid parallel surfaces disappears, as long as they are traction-free.

In a number of studies, various boundary integral formulations have been shown to be useful
for particular classes of boundary-value problems. The main difference among them focusses on
the use of diverse Green’s functions fundamental solutions, which are more appropriate for
dealing with the geometry of the problem considered. Thus, for generic two- and three-dimen-
sional elastostatic problems, Kelvin’s fundamental solution derived in 1848' of a concentrated
load in an infinite medium has been widely used.?* This solution is available in close-form
expressions of relative simplicity. Also, for problems involving a single free surface the solution
presenied by Melan,* for the stress distribution due to a point load applied within an infinite
two-dimensional semi-space, or the one given by Mindlin,® for the three-dimensional case, are of
great interest. These latter fundamental solutions have been applied to the boundary element
technique by diverse investigators.®’

The work presented in this paper reports on a specialization of the integral identities used in the
boundary element method appropriate for the numerical solution of elastostatic three-dimen-
sional problems involving plate regions. The formulation makes use of the fundamental solution
of a concentrated load in an infinite three-dimensional elastic layer of uniform thickness, which
was obtained by Benitez and Rosakis.®?

In the first part of this paper, the nature of this fundamental solution and its use into
a boundary element scheme is described. In the second part, the numerical implementation of the
technique is tackled.

2. BASIC MATHEMATICAL CONCEPTS

Let E; denote the three-dimensional Euclidean space. Let x = (x,, x5, x3) be the position vector
of a point in E;. The symbols B, (x) and ¢B,(x) denote an open sphere and its surface, respectively.
The sphere 1s centred at x with a radius #.

Let # be an arbitrary regular region in the sense of Kellogg,'? in E;. The boundary, interfor
and closure of # are 64, # and A, respectively. In the case of xe &, # — {x} represents the set
obtained by the deletion of peint x from #.

Standard indicial notation will be used in connection with the Cartesian components of tensors
of any order. Subscripts preceded by a comma indicate partial differentiation with respect to the
corresponding Cartesian co-ordinates. For functions having more than one vector variable, the
differentiation mentioned above will be understood to be performed on the first vector variable;
thus

£, )
e y) = 1
O (1)

We write g(x)e €(4) if g is defined and is continuous on a region #Z< E,. Moreover, if m is
a positive integer, we write g€ €™ (%) when ge # and its partial derivatives of order up to and
including m are defined as well as continuous on # and they coincide with functions continuous
on &.
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We write
& = [u,6]€&(E,v.5; R) (2

and say that the ordered array &, = [u, 6] of displacement and stress fields is an elastostatic state
on # corresponding to the body force density f, provided
(a) ne®! (.%a”) N C(R), oe(g’@) N E(R), fe €(R), where E (Young’s modulus) and v (Poisson’s
ratio) are constants with E >0, — 1 <v < 3. .
(b) w6, f E and v satisfy the following equations on %:

Vie+f=0, 6=0"
(3)
vE

ST - )

Furthermore, if & = [u, ¢] is an elastostatic state on & and X is a regular surface with the unit
normal n,we call t the traction vector of &% on Z if

[V-u]l + [Vu + VTu]

E
2(1 +v)

*
ti=oyn; ony. {4)

*
where Zis the subset of all points of  at which a normal is defined.
Further, let &% =[u,6']e&J(E,v.;#) and &" = [u",¢"] e &(E, v, {"; #). Furthermore let
t =¢-n t’' =¢"-non é# Then Betti’s reciprocal theorem in elastostatics holds.!’

J- t'(x)-u"(x)dA4 + J f(x)-u'(x)dV = J t"(x)-u'(x)dA4 + J f'(x)-u'(x)dV (5)
oR R ¥ R

oR

3. THREE-DIMENSIONAL ELASTOSTATIC FUNDAMENTAL SOLUTION
FOR THE INFINITE LAYER

3.1. Nature of the solution

The following development, of the necessary theoretical background regarding the problem of
a concentrated load applied at an interior or surface point of a homogeneous, isotropic, linear
elastic body occupying an infinite elastic layer of uniform thickness h, is based on previous
progress by Benitez and Rosakis.'? Several important properties of the solution and the
associated doublet states are also summarized.

Consider now a proper orthogonal Cartesian frame, X = {0;e,,e,,¢e3}. Define the infinite
region # < E; as follows:

P = {x|x€E;,0< x-e3< h}
and let 82 = 02, U é2,, where (6)
0P, = {xIxecE;,x-e;=0}, 0P, = {x|xeE;, x-e3=h}

Let £ e 2 be the point of application of a concentrated load I. Caution should be exercised in
the meaning attached to concentrated load at a point as discussed by Turteltaub and Sternberg.*?
Here we adopt the so-called direct formulation of the concentrated load problem. The problem
can be formulated as follows.
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We seek an ordered array £(x, &,1) = [u(x, &, 1);(s, &, 1)] of displacement and stress fields with
the following properties:

F = [w,6]€&(E, v, 0,2 — (E)) (72)

Vxec® for éej’

7b
Vxed® — [&} for EcdP (7)

t(x, &) = a(x,8)-n=0, {

lim j t(x,8)d4; =1, lim j (x — AL EdA, =0, forEe? (7¢)
P B, (8 P B

n=0 70
u(x) = O(x — &), o(x)=0(x—E ) asx-§ (7d)

where t in (7c) is the traction vector on the side of & ~ B, (§) that faces &
Let % (x, &, 1) denote the elastostatic state satisfying (7a}(7d). Let X = {0;e,,e,, e} be a proper
orthogonal frame. We define

FHx,E) = Z(x,E¢), (k=123 (8)

as the triplet of normal states whose displacement and stress fields are given by the solution
appropriate to concentrated unit loads and equal to e,. We also introduce the notation

FHx, &) = [u*(x, §); 0" (x,8)] = [u“(x, &, ex); 0" (x, &, €)] 9)
Definitions (8) and (9) and the principle of superposition for linear clasticity imply
Fx, 8D =FxEL, Vxe? - &} (10)

or equivalently from (9)

and

u(x, %a l) = (uli‘(x’ E,a) * lk) <€
G(Xa is l) = (O’fj(X, é) " lk) ‘ eiAej

where u¥(x, £) and af‘j(x, E) are the Cartesian components in X of u*(x, &) and ¢*(x, £}, respectively.
It should also be noted that the state #(x, &, 1) also satisfies the following identity known as the
translation identity, ie.,

(11

Lix,a+El)=F(x—-Eal (12)
forall xe# — {§ + a} and for all vectors a, £ 2. If, in particular, for a = 0 and | = ¢, we have
SR, E) = F*x —E0), Vxe® - {E) (13)

Expressions for u}(x, &) and o5(x, &) are provided by Benitez and Rosakis,® ® where it is shown
that the associated state &*(x, £) indeed satisfies the requirements (7a) {7d). The displacement
and stress fields are given with respect to a Cartesian co-ordinate frame X = {0;e,,e,,e;} such
that the origin 0 lies on one of the two parallel traction-free surfaces of the infinite layer (0 € 04,),
and such that e; = — n, when n is the outward normal to 02, (see Figure 1). In addition, the
results by Benitez and Rosakis®® are obtained for § = He;, 0 < H < h, where h is the layer
thickness. Nevertheless, in view of properties (10)—(13), this solution is enough to define ¥ (x,E,1)
completely for any vectors € and L

Although the complete set of expressions for ¥*(x,E), k = 1,2,3 and & = He, are given by
Benitez and Rosakis,” for the sake of completeness they are stated in Appendix 1 with respect to
a Cartesian co-ordinate frame X = {0;e,,e,, €3} such that 0€d#,, and e; = — n, where 02,
={x|xe#, x-e; = 0}, is the lower traction-free surface of the layer, and n is the outward normal
to 04,.
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X3

Xy

Figure 1. Schematic of a concentrated load 1 acting at the interior of an infinite elastic layer of uniform thickness h,
occupying the infinite region &

As discussed in detail by Benitez and Rosakis,” the solution for the concentrated load in an
infinite elastic layer of uniform thickness satisfies requirements (7a)—(7d) for I = e,, and can thus
serve as a fundamental solution to be used in the boundary integral formulation described in the
following sections. In particular, it has been shown that the present solution reduces, for Ee 2, to
the well-known Kelvin state (point load in an elastic body occupying E,) in the limit as x — &
This property is important in the following discussions.

3.2. Doublet states for the three-dimensional layer

Let X = {0;e,,e,,e;} be a proper orthogonal frame and let #*(x,&) = #(x,§, e,). Then the
nine states #*(x, &) defined by

FH(x,E) = % FERE) = FHXE), YxeP — [E) (14)
Xy

are said to be states corresponding to a force doublet applied at &(and to E, v = constant). The
above are also elastostatic states.
We also write

S, 8) = [wh(x, B oti(x. 8] = [u(x, 8k e¥(x,8)], Vxe? — {&] (15)
and note that the following identity holds:
FH(x,E) = FH(x —E,0), Yxe? — [E} (16)

The Cartesian components of displacement and stress belonging to %*(x, &) may be derived
from the results in Appendix T by means of (15).
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Analogous to the preceding layer state discussed in Section 3.1, the layer-doublet states
F*(x,E) have the following properties:

FHx,E) e &(E, v,0,2 — {E}) {17a)

b By e By YxedP if e .

t(x, &) = 6" (x, &)-n(x) = 0, V{weag‘—{g} i Lo (17b)

lim t(x,§)dA, =0, [im f (x — E) AN (X, ) dA, = &ximem (17¢)
70 J#P 2B, (%) =0 JP B

u(x, &)= 0O(x — &%), o"x,&=0(x—& ) asx—§ (17d)

where ¢, is the permutation symbol.

Proof of the above follows by making use of the results in Appendix 1 and the properties of the
three-dimensional layer states #*(x, ). In particular, (17d) follows from the fact that #*(x, &) for
the layer reduces to the well-known Kelvin states as x — &. As a result, #*(x, &), the doublet states
for the layer problem, also reduce to the doublet states for Kelvin’s problem as x — &.

4. ELASTOSTATIC BOUNDARY INTEGRAL EQUATION FORMULATION

The generalization of Betti’s reciprocal theorem involving singular states is due to Somigliana
and has been rigorously proved by Turteltaub and Sternberg.'?

Let # be a regular region and let £ #. Furthermore, let & and &' be two states with the
following properties:
State ' (singular state).

' =[u,6)eE(E VR — (&), Feb(R), (18a)
w(x,E)=0(x—& ") oxE=0(x—E& ) asx—E§ (18b)
lim f t'(x,§)dA, =1 (18c)

70 JRAOB{E = AL

wherel ' are the tractions on the side of A, (&) that faces §
State S (regular state):

& =[u,6]e&(Ev.I;% — (E), feb(H) (18d)
If t'(x,&) = a’(x,8) - n(x), t(x,&) = ¢(x,E) - n(x} and from (5), the following identity holds:
1-u(g) + J- t'(x,&) - ux)d4, + J f'{x)-u(x)dV,
R % — {&}
= f t(x)-u'(x,8)dA, + j fix)-u'(x,E)dV, (19)
o ® - iz}

4.1. Somigliand's identity for the three-dimensional layer state

The specialization of equation (19) using the three-dimensional fundamental solution for
a point load in an infinite layer of uniform thickness will now be presented.

Let X = {0;e,,e,,e;} and let 2 < E; be the infinite layer region of uniform thickness h as
defined in (6). Let 0%, and 02, denote the two infinite planar surfaces of the region (see Figure 2).
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Figure 2. Schematic of the regular cylindrical region #. < 2

Let &, be the closure of the regular region #. = 2 with uniform thickness A, and let IT; and I1,
he the terminal cross-sections of #,. Further, let IT; < 4, and I1, < 0%, (see Figure 2). Let 04,
be the surface of #,. Then the lateral boundary of #, will be defined as follows:

In the following discusston we choose to identify the arbitrary region # in equation (19) with
the regular region £,.

We also choose to identify the singular state &' in (18) with the fundamental solution for the
point load in the infinite layer. We thus get.

P =[u,6'] = FxE) = F(xEl=e) k=123 1)

In addition, we restrict & to be in the interior or #,. The above are indeed appropriate choices,
since ¥¥(x,E) satisfies properties (7a)~(7d) for 1= ¢, and thus also satisfies the restrictions
(18a)-(18c), and also since, by construction, &, = P
In addition, f = 0 on &, — {&}. Also since E€4,, then by (7b) we have

t'(x,€) =t"x,§) =0, Vxell, (x=1,2) (22)
Finally, as in (19) the second state
¥ = [u(x), a(x)] = 6(E, v.£ 4. (23)

is taken to be a regular (non-singular) elastostatic state defined on the region A,. From the above,
equation (19) reduces to

we(8) = —j [Gk(x,ﬁ)-n(X)]-“(X)dAx+j [o(x)-n(x)]-u¥(x,8)d A,
L

Loullyuily
+ f f(x)-uf(x,E)dV, (24)
R, - (&)
where u,(§) = u(g)-e, for E,eg‘i?*.

Expression (24) provides the components of the displacement field for the non-singular state
& at points interior of the regular region #_. These are given with respect to the displacement and
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tractions of . at the boundary ¢, and the three-dimensional fundamental solution for the point
load in an infinite layer of uniform thickness obtained by Benitez and Rosakis.®

A, 1s a regular subset of # (infinite layer of uniform thickness) and is shown in Figure 2. It is
worth noting here that the first integral of (24) involves integration only over the lateral surface of
the region #, c #.

It is very important to point out here that the displacement field, in the intertor of the region,
can be obtained once the displacement and traction on the lateral surface of the region arc
determined. Because of the special fundamental solution and the traction-frec boundary condi-
tions in both the singular and the regular states, the integrals on the two planar surfaces of the
region # of the regular state arc not necessary, which is advantageous in the numerical
implementation, which will be discussed later.

4.2. Stress field integral identity for the three-dimensional layer state

The translation identity of equation (16) implies that

g%u"(x, )= — f v (x,E) = — u*"(x, &)
“em v m {25)
and
6" (x.E) = — =0 (x.E) = — " (x.E)
(’ém CXp
Differentiation of relation (24) and use of property (25) gives
nl®) = | [ 8- 000] w1 dA.— [ [or0-n]- ik Bd4,
I Lol ull,
- J f(x)-u"(x,E)dV, VEed, (26)
9‘* - [é}

Define now a state as follows

Eg‘)km(x’ g) - [ﬁ"”‘(x, g)’ 6km X, E_,)]

_ yE u )
- [(1 i =7 (%.8)0um + 21+ )

where F*(x, &) = F%,(x,E) = [W*™(x, E).6""(x, )] is the three-dimensional layer doublet state
described in Section 3.2. (14){17). Then (26) and (27) imply that.

[F57(x, E) + F™(x, é)]} 27)

Tim(8) = — L [6*"(x,&)-n(x)]-u(x)d A, + f [o(x)-n(x)]- 0*"(x, &) d A,
“ Loty uil,
+ f f(x)-u*"(x,&)d V., V&Eg}* (28)
Hy — (&

Expression (28) provides the components of the stress field for the regular state % at points
interior to the region #,. #, is the regular subset of 2 (infinite layer of uniform thickness) as
defined in Section 4.1 and shown in Figure 2. The stress components are given with respect to the
displacement and tractions on the boundary ¢#, and the doublet state corresponding to the
three-dimensional fundamental solution for a point load in an infinite layer of uniform thickness.
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4.3. Displacement field integral identity for the three-dimensional layer state

Identity (24) for the displacements is restricted to points & € 9? (interior of #,), in which case the
tractions t“(x, &) = ¢*(x, é}- n(x) of the first integral are integrable over the surface. An expression
similar to (24), for E€ 0A,, is obtained directly from the reciprocal theorem (5) by defining the
following region.

Let Z.(n) €2 be a regular subset of 2 defined as follows:

R.(n) =R, — B,E Yn>0 (29)

Then 0R,(7) = 0K, — (64, M B,(§)) + B, (&) " A, (see Figure 3).

Point  is then by construction exterior to this region. Since #,(5) < 2, one can identify, in (5),
state &’ by #¥(x, £) (the point load solution for the infinite layer), where Ee 04, , x € Z, (). Since
E ¢ R.(n), F*(x. &) is non-singular in &,(y), for all > 0. One can also identify %” as any regular
elastostatic state where

¥ = [u(x),6(x)]e&(E v, L R,), fe6(R.) (30
By construction, both choices &’ and " are elastostatic states in %, (1) and we can write

S = FHx.E) = [u*(x.E). 6" (X, E) 1€ E(Ev. 0. K. () VEE€SR, Y >0

S = L(x) = [ux),6(x)] € &(E 1. R, (n) fc€(R,) (31
The reciprocal theorem then gives
J t(x,8)-u(x)dA, = — t“(x, &) - u(x)d 4,
3B (E) J6F4 - (28 ~ BalE))
r
+ t(x)-u*(x,E)d A,
J 8B, (&) N e
+ t(x)-ut(x,E)d A,
J 2R (@ ~ By(E))
+ f(x)-u*(x,&)dV, Vn >0 VEeeR., (32
o Rw-Ba(8)

Y GR. N By6)
!
N

.
~
~

BB NR. —

R.(ap)
(8)

Figure 3. Schematic representation of the region ®.,(s) = #. — B,(&)
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We also recall property (7d) of &' = %% and the regularity (30) of " = % on #, which imply
that there exist constants K, L, M, N, Q, > 0, such that

lu|< K, |o|<L, |fil<M ondBJ(E)nA,

; (33)
N
an | < 2, Hckl|<% on éB,E) "R, as -0
n
By means of the above properties, we can write
J [o(x) n(x)]-u*(x,E)d A, < 4nLNp (34)
8B, (&) m Ha
which implies that
fm [ 0w dd, =0 (5)
70 OB (L) N R

Also because of the smoothness of u(x) (see (30)), we can write, for every xedB,(§) n #,,
u(x) = u() + Va@E)(x — & + O(x — g*) asn—0 (36)
This implies that there exists a constant G > 0, such that
lu(x) —u(E)| < Gy YXEB,E) N A,, -0 (37)

By using (36), one can write

lim t(x,8)-u(x)d A, = “(ﬁ)’{limf th(x, é)dAx}
=0 JEB ()N Re n=+0 o 3B, () ~ Ax
+ lim J t*(x,&)- [u(x) — u(&)]d A4, (38)
70 J B, (&) N Ry

Using (37) and (33), one can now show that the second term of (38) vanishes. This is
demonstrated by observing that

f t“(x,&)- [u(x) — u(E)]dA4, < 470Gy asy— 0 (39)
3B, (8) n R+

This inequality and (38) imply that

lim f t“(x,8) - u(x)d 4, = u(g)- { lim J th(x, é)dAx} = u(&)- C*&) (40)
3B, ~ Ay 3B, () s R

n—0 n—0

Taking the limit of (32) as n — 0, using (35) and (40) and observing that lim,.,[¢#, ~ B,(§)]
=R, — &} and lim,.o[R, n B,(E)] = #. — (&}, we get

u(E) CHE) = — j

O — &}

t“(x, &) u(x)dA, + J t(x)-u“(x,&)d A,

O — (&}

+ j f(x)-u*(x,E})dV, VYEeoR, (41)
K — {8

1
H
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Observing finally that t*(x,&) = 0 on I1, — {&} (see (7b)) and by replacing ¢, by L in the first
integral of the above equation (41) reduces to

ummﬂa=—J wx@muwAf+j ) w(x, E)d A,
L—- & Lol wii;— (&)
+ J f(x)- Ilk(x, EydV, VYE€IR, 42)
Hu— (&}
where
d@=umj €(x, E)d A, 3)
=0 J B, (&) N Ay

C*(E) is a vector whose value depends on the nature of the stress of the fundamental solution
#*(x,E) and on the location of the position vector &

If € lies on one of the end cross-sections 1, (€T1, < §2,) then ¢B,(§) n &, = ¢B,(E) » # and
Ck(€) = e,. This follows immediately from the fact that (43) reduces to the first integral of (7c) for
| = e,. This is not true however for E € L, § € Z. In this case, the integral of (43) has to be evaluated
directly by using the fundamental solution in question. In order to do so, it 1s important to recall
at this point that the present fundamental solution (point load in an infinite layer of uniform
thickness) was shown to reduce to the Kelvin state (point load of an infinite elastic body
occupying E;) at the limit of x — &, § € # (see Reference 9). Given the above property, the integral
of definition (43) reduces to the equivalent integral for the Kelvin state for Ee L, Ee #.For the
specific case of L being a smooth regular surface (a regular surface with a continuously turning
tangent plane), it can be shown that C¥() = Se, for £e L, £ 2. The proof of the above is entirely
analogous to the equivalent result that appears in classical boundary element formulations using -
the Kelvin solution. Expressions for C*(§) corresponding to choices of L containing sharp edges on
corners are expressed as functions of the angles involved.*

4.4. Integral identities for three-dimensional layer regions with traction free terminal cross-sections

Here we discuss some important special cases of the integral identities (24), (28) and (42). These
correspond to a class of three-dimensional boundary-value problems involving regions #, whose
terminal cross-sections I1,, I, are traction-free. We also discuss the special case of zero body
forces (f = 0 on &,). We choose the state & (x) corresponding to the problem under investigation
to have the following properties:

F(x) = [u(x),6(x)] = &(E,v.0;%,)
6(x)-n(x) = i(x), Vxel,

(44)
o{x)-n(x)=0, Vxell, (@=1,2)
and

u(x) = u(x), Vxel,

where 04, = LUTI, OII,, L = L, v L,. We will also assume that the lateral boundary L of the
region 4, is smooth (with unique tangent plane defined). The integral identity for the displacement

at the surface of a regular region #, whose end cross-sections are traction-free is obtained from
(42) and (44) as

ug)-Ce - - |

Lot

t“(x, &) -u(x)d A4, + J‘

L

t(x) - u*(x,E)d A4, (45)
&
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where

(46)

ck@z{ek if Eell, }

le, ifEel, EcP

and t“(x, £} = 6*(x, E)-n(x). The above identity relates the displacements of the entire surface of
the region £, to the tractions and displacements of only the lateral surface L. For the special case
of I.= L, t(x) = t(x), xe L, (traction boundary conditions), (45) assumes a particularly simpie
form since the second integral is known a priori.

Similarly, use of (44) reduces the integral identities (24) and (28) for the displacement and stress
fields for points in the interior of #, to the following simple forms:

(&) = — j (0.8 u(x)d A, + f €00 1(x, E)d A, 47)
L L

where geg‘)e*, tk(x, é) = Gk(x: é) * n(X),

@) = = | Bx 800+ | 1007 D, (@8)
L L

where § eg}*, ™ (x, &) = 6*"(x, &) - n(x). All of the above identities involve integrals evaluated only

over the lateral surface of the region R,.

5. NUMERICAL IMPLEMENTATION OF BOUNDARY INTEGRAL EQUATIONS

In the solution of a particular solid mechanics problems, the solid boundary and the boundary
data will be approximate in order to solve the boundary integral equations (42} or (45) numer-
ically. The approximations involve replacing the lateral boundary (1) and the portion over which
the traction might be defined on the lower and upper surfaces ([1,) by a complete set of surfaces
patches, the so-called boundary elements. The boundary data are then interpolated over each
boundary element. In cases that body forces are presented, the volume integrals imply a discretiz-
ation process of the interior of the considered region in a similar way to the finite element method.
In this case, the advantages of the boundary element method are lost, Nevertheless, when body
forces correspond to the existence of gravity, angular acceleration and other potential fields, the
volume integrals can be transformed into surface integrals, in a way similar to that developed by
Stippes and Rizzo,'® which can be treated numerically in an analogous way to the other integral
terms in the boundary equation (42). The discretized form of equations (42) or (45) for every nodal
point yields a system of linear algebraic equations. Once the boundary conditions are imposed,
the system can be solved to obtain all the unknown values. Consequently, an approximate
solution to the boundary value problem is obtained

For the sake of simplicity, we will study the case of zero body forces and traction free terminal
cross-sections. Also the boundary elements in this investigation are taken to be flat in the process
of discretization, and the boundary data are taken from the element centroid. In other words,
constant elements are used.

It is now more convenient to work with matrix notation rather than carry on with the indicial
notation. To this effect, we can start by defining the displacement and the traction vectors that
apply over the element j by the values at its centroid, i.e.

u(x) = {uy’

((x) = €}/ } Yxeclement j 49)
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where the superscript j denotes the element, and {u}’ and {t}/ indicate the displacement and
traction vectors at the element centroid, respectively. They are usually called the element nodal
values.

Let us now construct two matrices involving traction and displacement components of the
fundamental solution as follows:

HxXE) (8 3(x,E)
[t“(x.8)1 = [t*(x,E)] = | 1 (x, &) 13(x,E) t3(x.§) (50)
8 13(%.E) t3(%,E)

(%8 u3(x,8) u3(x.§)
[u'(x,8)] = [u*(x,&)] = [ u{(x.E) u3(x.E) u3i(x.§) (51)
w8 w3 (%) ui(x.§)

Suppose that the unit concentrated load is acting at the centroid (&) of the ith element.
Substitute the above functions into equation (45), and discretize the boundary to obtain the
equation corresponding to the displacement vector at the nodal point i,

NE NE
(€l + 3 [ (emgnupda - ¥ [ wmEii, (52

where & is the surface of the jth element, NE stands for the number of elements used and [C] is
equal to

(=]
o O

1= (53)

[ ES

S N
o™

Since {u}/ and {t}/ are constants over the jth element, they can be taken out of the integral.
Thus,

[Cl{u}' + Z (J [t*(x,&)]dA, >1u I = (f [u*(x,&)]dA ){t“ (54)

Equation (54) corresponds to a particular node i (centr01d of element i). Once the terms are
integrated, it can be written as

. NE . ) NE o .
(Cl{u} + Y [H7]{u} = Y [GY]{t}/ (55)
j=1 i=1

where the superscript i denotes the position of the unit concentrated load (on the centroid of
element i), and j indicates the element centroid at which the response is computed. Both i and
jvary from 1 to NE. The influence matrices [H”] and [G'/] are 3 x 3 matrices and are defined as

[A] = f [t*(x, E)]d 4, (56)
<5

[Gi] = L» [u* (x, EY]d A4, 57)
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By examining (55), the following holds:
[HY] = [HY] ifi#)

N . (58)
[H]=[AY] +[C] ifi=)
Equation (55) for node i then becomes
NE
Z [H/]{u Z [G]{t} (59

Similarly, the contribution for all the nodes can be written. The equations can then be
assembled into the global system of equations according to the nodes, ie.

[H]{u} = [G]{t} (60)

Matrices [H] and [G] are both 3NE x 3NE matrices, {u} and {t} are 3NE x | vectors.

In the actual situations, the full [H] and [G] matrices are never stored according to these sizes.
As the system of equations is generated, the known boundary conditions are multiplied out to
generate the right-hand side vector; the coefficients of the unknown terms, either the displacement
components or the traction components, populate the coefficient matrix [A],

[AT{x} = {b} 61)

where [A] is a 3NE x 3NE matrix, {x} is a vector of unknowns and {b} is the known right-hand
side. {x} and {b} are both 3NE x | vectors. Equation (61) is the actual form of equations that is to
be solved. The Gauss matrix reduction method will be used to solve the equations.

5.1. Element matrices construction

The evaluation of the element matrices [H] and [G¥] is crucial to the boundary element
formulation. Since the components of the matrices involve the integration of the fundamental
solution, and since the expressions of the three-dimensional layer fundmental solution are very
complex, the integrals cannot be computed analytically.

One way to cvaluate the matrix components is to use the Gaussian quadrature scheme.
However, when an element is very close to the unit concentrated load or when the load is on the
element,the singular nature of the fundamental solution yields high numerical values, and the
variation of the fundamental solution over the integrated element is very high. In such cases, the
Gaussian quadrature is effective only if many Gaussian points are needed. Two different
alternatives have been used to evaluate the matrix components. The first one is a purely
numerical procedure, while the second is an hybrid numerical-analytical one.

5.1.1. Purely numerical procedures The numerical integration of all the above components
over an arbitrary element can be abstracted to the following simple expression:

W= L f(x,E)dA, (62)

By using a mapping of the form

I
Xy = Z Nl(c,n)xl’( Vk = 15253 (63)

i=1

where x;, ¥k = 1,2,3, and ({,n) represent the global and local co-ordinate systems for a point
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inside the generic element L, respectively, xi represents the global co-ordinates of the I corners of
the element and N({, ) are the usual shape functions. Expression (62) becomes

1 el
W= f j e cndcdy (64)

-1

where |J({,n)] is the Jacobian of the mapping and where
£ 1) = Fx(C0). B ) (65)

By using the Gauss quadrature scheme,

N N
w= Z Z JCun)J Cismy) I wiw; (66)
i=1j=1
where N is the number of integration points used, ({;,#;) (i, j = 1, ..., N) are the positions of those
points and w;, w; (i,j = 1,..., N) are the weights,
Equation (66) is the result of the numerical integration of function f(x,&) over an arbitrary
element .%. Therefore, the evaluation of all the components in [HY] and [G"] can follow suit.
In order to compute the integral (62) with the reasonable accuracy, a high number of
integration points should be placed on the element according to the element’s distance from the
integration node (element centroid for constant elements). One way to do this is by numerically
subdividing the element into subelements. This is necessary when the fundamental solution is
expected to vary highly in the element. The following are the rules for subdividing the most
commonly used three-noded and four-noded elements, shown in Figure 4:

(i) Find the mid-points on the edges of an element, i.e. a.b,c and d for an element with four
nodes or q, b and ¢ for an element with three nodes.
(i} Connect the mid-points of the opposite edges, as shown in Figure 4.

3

a 2

Figure 4. Subdivision of quadrilateral and triangular elements into four subelements
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Several criteria have to be used in order to control the subdivision:

1. The length criterion. The subdivision stops when the distance between the loading point and
the subelement is larger than or equal to C,ngp (a prechosen number) times the length of the
smallest edge of the subdivided element.

2. The area criterion. The subdivision stops when the area of the smallest subelement is less
than or equal to C,,., (a prechosen number) times the area of the original element.

3. The above two criteria may both be in effect at the same time, such as in the case when the
loading point is on an element or close to it.

It is important to point out that both criteria must be compatible; otherwise, the singularity
properties of the fundamental solution cannot be captured. The compatibilities of the two criteria
may also mean that they are not independent, i.e. if one criterion is chosen, the other criterion can
be derived as a function of the first. This can be done by the following simple calculation.

Let 4 be the distance between the loading point and the element, L the typical length of the
undivided element, ! the typical length of the smallest subdivided element, C,.ngn the chosen
number for length criterion and C,,., the chosen number for area criterion. Then the area of the
undivided element is of the order of L? and the area of the smallest subdivided element is of the
order of 2.

From the length criterion | = d/Ciepgn, While from the area criterion (2 = C, ., x L2,

In order for the two criteria to be imposed properly, the following equation has to be satisfied:

d 2
Carea =\7 -~ (67)
L x Clenglh

As an example, a four-noded element, as shown in Figure 5, is chosen. In this figure point p is
the point at which the unit concentrated load is acting, while point g is the projection of p along
the direction of the element normal onto the element.

Two subdivision cases will be depicted for different distances, d, between the loading point and
the element. The length criterion will be set to Cypen = 2 for all the cases.

Figure 6 shows the subdivisions for d = 0-0001 and d = (-1, respectively.

2

Figure 5. Dimensions of an element for numerical test
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-

—
—
S

Figure 6. Quadrilateral elements subdivided into 640 (case d = 107*) and 148 (case 10 ') subelements, respectively

5.1.2. Hybrid numerical-analytical procedure Due to the complexity of the fundamental solu-
tion, employment of many integration points, through a subdivision technique, would be very
inefficient from a computational point of view. Therefore, an alternative way would be to evaluate
the matrix components partially analytically and partiaily numerically. This idea can be math-
ematically expressed as follows:

[H/] = J [t*—tx]dAx+J [t)dA,

“ “ (68)
[G¥] = J [u*-uKJdAmf fugldA,

& #;

The subscript K denotes the Kelvin solution, while t* and w* are obtained from the three-
dimensional layer fundamental solution. The first integral of each equation in (68) is to be
integrated numerically, while the second integral of each equation is to be integrated analytically.

Although the fundamental solution and the Kelvin solution deal with totally different prob-
lems, they exhibit the same singular behaviour. When the unit concentrated load is acting in the
interior of the infinite layer, the fundamental solution tends to the Kelvin solution as the point of
observation approaches the loading point. Therefore, when the two points approach, the result of
the subtraction of the fundamental solution by the Kelvin solution (first integral) tends to zero.

The analytical integration of the Kelvin solution over an arbitrary flat element was originally
outlined by Cruse.!® R

Using the proposed hybrid evaluation of the components of the matrices [HY] and [GY], one
can take advantage of the above-mentioned analytical calculation and, thus, obtain the result
with reasonable accuracy by using only a few Gauss quadrature points. This is because the
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integrands of the first terms in equations (68) do not vary very much with distance. Consequently,
a few integration points are expected to capture the variation well.

The above hypothesis can be verified by direct calculation by means of the purely numerical
procedure.

Next, the integration of the three-dimensional layer fundamental solution over the same
element shown in Figure 5 is computed using both the hybrid procedure and the purely numerical
integration with subdivisions.

The materials properties are taken to be £ = 1 and v = (-3, The thickness of the layer is chosen
to be h = 1. Four, 16 and 36 points Gaussian quadrature schemes are used, and the results shown
in Table I for the purely numerical procedure and in Table II for the hybrid procedure exhibit
negligible differences.

The tremendous saving of computational effort introduced by the hybrid procedure is vital to
the application of this boundary element method for computer-time-aware practitioners.

5.2. Numerical evaluation of three-dimensional layer fundamental solution

A close examination of the expressions for u¥(x, £) and a','fj(x, E) presented in Appendix I reveals
that all the expressions for the displacement and stress components can be cast in the general
form shown below:

o 7y /U2 2
l7(xl,x2’x3)= A(E,V,h,X|,xZ)J { g(;L,X»‘/’) J (/L x11+ xl)

L+e (24447 7" h

4]
— B(v. X1, X, 1, w%.—}m (69)

where v(x), x;,x3) may be a displacement or stress component, = H/h and y = x3/h. The
coeflicients A(E, v, h, x, x,) and B{v, x,, X5, ¥, ¥) are simple functions of the variables involved, the
exponent « (1 or 2) depends on the component, J,(x) is the Bessel function of the order p and
g'(4, x, ¥} is a function composed of the finite summation of the products of the following form:

K
GG ) = Y Doyt wsen, (70)
i=1
where p;, Bi, v, i, b; and ¢; are integers. The parameter p; may vary from O to 4, f; and y; are either
0 or 1 and a;x + by + ¢; is always non-positive.
The second integrand in expression {69) eliminates the singularity in A caused by the first one. If
the first integrand is non-singular then B = 0. Hence, the solution is well behaved for every 4.
The basic idea of evaluating the stress and displacement components of the fundamental
solution is to compute them partially analytically and partially numerically. To illustrate the idea,
expression (69) is written in the following way:

e AxE + X2
p(X1, X, X3) = A(E, v, b, x1, X3) U 9’(&,)(#)#(@)%

0 h

* g’(’l’ Xs l//) , 1 X% + x%
[l 58 on 55

e 4
= B(v, x4, %2, 2, 4) e :'di} (71)
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Considering the first integral in the preceding expression, one has

o0 e 2 2 K o - fL2 2
-[ g (At w)Ju (AV‘xlﬁ)d/ = Z Dixﬂil//?iJ‘ ip.»eA(a.Hb,vw+ci)Ju(f\/x—lh+xi)d,1 (72)
0 i=1 0

Each individual integral in the former expression can be computed analytically, and they can
be expressed in the following form:

J Jie g (b2)dA = Gl ab,c) (73)
0

where a, b and ¢ are not functions of /. and are non-negative. Expressions for G{u, a, ¢, b) are found
in Appendix I1. Therefore, equation (71) can then be written in a more efficient way as follows:

< VX4 X
U(xl,X2,X3) = A(Ea v, hvxleZ){ Z Dixﬂl'j’wG(.uﬁ Pi> Ts - (aiX + b,l// + Ci))
i=1
[ Q448 —e M) AV XT+ %3
- gL
+L [1 e @ e md i h
e 4]
- B(V, X1:X2, X lﬁ) —F]d/“} (74)
Define now
g W) = e g (L) (75)
Then
K
GUa )= 3 Dt ybgreitentharte2, (76)

i=1

The most important feature in the previous expression is that a;x + by + ¢; — 2 is always
negative, and it reaches its maximum at - 2. This is a key feature which guarantees the
convergence of the infinite integral in (74).

The integral in (74) cannot be evaluated analytically. It has to be evaluated numerically. After
checking its denominator, one finds that it is not necessary to evaluate the integral over the entire
integration region. Instead, it can be computed approximately over a region from 0 to P with
relatively good accuracy for the first integrand. P is a preset big number. The integration interval
is extended from 0 to 2P in order to achieve the same order of accuracy for the second part of the
integrand. The error caused by truncating the integral will be discussed in the next section. The
truncated version of (74) becomes

2

il X7+ X
D(xl,x;,_,x3) = A(E, v, h,xl,XZ){ Z Dl.xﬂilll‘p.'G(“, Ois B 1h - ,2.,
i=1

g+ b + C,)) N { "[(2 + 442 — e gl ¥) (/L/xf + x‘g)
JO

I +e *—~ 2+ 4i%)e 27 h

e A

- 2Pe-—l
- B(v’xlastX’ lp) A".a Jd;" - B(vvxlaXZa X!&)J‘ /‘a di} (77)

P
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By substituting (76) into (74) and performing variable transformation, one obtains

K VX1 + x5
D.-x”‘lﬁ“G<u, pin 2
=1

v(x17x29x3) = A(E,V,h,xl,XQ){ h s

i=

P 2 + 4/]“2 —e 24 K
—(aix + b + ¢ D
(au( + bxl// + C:)) + Jl) [1 + 6—4/1 . (2 + 4/12)6—21 izzl ¢
2 2
Xﬁiwweua;wb;wf,—2)Ju(’l x1h+ xz)
e—l e—(l+P)
—Boxi o [+ Y |da 78
B(L’xl”cla/{a lp)( /la + (/1 + P)a):' A} ( )

The Gaussian quadrature scheme (GQS) is implemented to evaluate the integral. Since the
integrand varies smoothly inside the integration interval, the interval is divided into equally sized
integration subintervals. The size of the subinterval is crucial for the evaluation of an integral
involving oscillatory Bessel functions. In order to determine the right size for the integration

subintervals, the following parameter transformation is performed on the integration variable 2.
Let

2 2
i =7b and b= NXLFTX (79)

h

For the sake of simplicity, we write A in the place of 1,; then (78) becomes

K
Y DiyPyiGlp, piy b, — (aix + by + ¢)

i=1

1 Pe[ 2+ 4 M2 evZ(Mh) K AV
+ J [ —4(;1/2;)(’,) A 2 —2&/}:2 Dy -
blo [1+e —Q+4He = b

B (A/b)asx +balr+ci = 2) e W e O
x yBiyrigdbia b a0 1 (03 _ B(v, x4, X5, % + da
v 0= 80oxnand (g + e ) |0

U(Xl,XZ,X_?,) = A(Ev v, ha Xl’XZ){

(80)

The only oscillatory function in the integrand is the Bessel function J,(x). By examining the
Bessel functions closely, one finds that although they are not periodic functions, they do have an
approximate period of 27 as x — oc . Considering x to be greater than zero, the distance between
the two adjacent zeros of the Bessel functions is greater than n. Therefore, it was decided to

choose the size of the integration subinterval to be 3. Let N be the number of subintervals used.
Then

N = Int[ Pb/3] (81)

where Int[a] stands for the closest integer to a, ie. Int[a] =1 for a = 12 and Int[a] = 2 for
a = 1-6. The size of the integration subintervals is then Ph/N, and the subintervals are [a;, ;]
with j=1,..., N, where

Pb
a="gl=1 (=L N+ (82)
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Define now

. 2+ 4(;))2 _ e 2 K I\
A o N = — -~ — - D“ -
f(H, X1, X2, % X, w /1-) 1+e 4(ajb) (2 + 4(%)2)6 zu,ig,l h

8 (Ajb)aiy +bog+oi—2 gm W e bl
¥ Il‘//}‘ie ib)aix +bap +ei— 2 y (/q.) —B(U,X , X ,X,lp)( = + — a) (83)
* v @ " G+P
Then
K
U(X],Xz,X3) = A(E’ Vv, hsxlsxl){ Z Dixﬂllp“G(us pis bs - (aix + bl'j/ + Ci))
i=1
1 N dj+1
+ E Z j f(/‘tvxlax27aa X w: A)d)v} (84)
i=1Ja
By performing the following variable transformation
;L:aj+1+aj+9j+1_ajt '
2 2 =1....N) (85)
di=rt =Yg
2

expression (84) becomes

K
U(XIQXZ’XB) = A(E9 v, h’ xleZ){Z Dixﬂi‘//}l‘(;(,u’ Pis ba - (aix + bxl// + Ci,))
i=1

2

N o gt ] J AR
+ Z%[ f(#,xl,Xz,a,x,(//»a"“+a1+aﬂ]2 ajt>d[} 0
ji=1

The standard Gauss quadrature scheme can now be applied, yielding

K
1,7(X1,x2,X3) = A(E, v, hax13x2){ Z Dixﬂile'G(,u’a pia ba - (aiX + bll// + Ci))

i=1

N a: — a; M a; +a. a; —a.;
+ ¥ T Y mxnrn b E I T g (87)
i=1 k=1
where M is the number of integration points used and ¢, and w,, with k= 1,..., M, are the

positions and weights of these points, respectively.

The evaluation of (87) involving different number of integration points has been tested. It is
found that a 36 Gaussian point scheme gives accurate results.

It should be emphasized once more that the numerical part of this integration is covergent due
to the nature of the integrand (see (74)) while the remaining part can be evaluated in closed form.
In addition, the accuracy of the integral in (80) will also depend on the choice of P.

5.2.1. Error analysis of the numerical evaluation. The error introduced in the evaluation of the
stress and displacement components of the fundamental solution is mainly due to the numerical
integration.
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In order to perform an crror analysis, expression (74) is rewritten in the following way:

K
U(x17x2!‘x3) = A(E’ v, hsxlvxl){ DiXBXWWG(#’ Pi b7 - (aiX + b,l‘b + Ci))
i=1

i=

N Pl 24422 —e 2He 2 g (A\/xf + xé,
o T+ e P21 aahe # VI Ty
e*l e"(l"'P) .
- B(V7xl3x21X"//)(/~.a +(/1 + P):z):]d/'
®2+4) —e e M g l\/m da
pItc P (24 aide 29V T
:zne—l
- B(v’xl’XZa Xs KI/)J 111 di} (88)
2P

Comparing the above formula with the proposed expression (78), it is found that the error in
the numerical integration is mainly due to the truncation of the integration interval. The other
part of the error appears because of the use of the Gaussian quadrature scheme. Define the error,
#, caused by the truncation of the integration interval as

2
1

h

A X
£ =

© 2 a—2iya-24
j [ (2+44 e “Me (]'()v,x,l//)Ju(

+x3\ ..
Y 25.-34¢ i d4
l+e ** =2+ 41%e

P

W AT A

di

- B(Vaxl»Xst,lﬁ)J

ap A

(89)

As indicated in (80}, g'(4,x,¢¥) is a summation of terms of the form Afier@x oW +ed with
i=1,..., K Examining these terms carefully, one finds that the dominant term is the one with
zero exponent. The coefficient of this term will be denoted as D/#x*\7, in which p has a maximum
value of 3.

Then the maximum error will be bounded by

¢ < KDyPy

E) (2+4/12_e—2/l)e—21 X
L T3P (g ae-n Juibdd

f e *d
2P

+ IB(vSX'l’XZ: X7 w)l

P (24447 —e Hye ¥
< KDyg* w[ ( s
Y Jpjl+e ™ -2+ 4,12)6—2.1’t |/ (Ab)dA
+ |B(V,x1,X2aX,w)le'2P (90)

For any Bessel function J,(x), with u integer, the following holds:

x))<1, 0<x< o 91)
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Consequently,

x*L

@+422—e e
Lre ™ (24429 27|

+ iB(VsthZsXadI)'efzp

T Q44 e A2
— KDyPy J3ds
i L [ +ec P2 F4i%e 2

+ |B(V,X1,X2,X,l#)le_2P (92)

Since0< I +e ™ —(2+4i%)e <1 +e™* — (2 +4P%e ?Pforany P > 1, the following
holds:

&< KD;(BI//"J

P

1
e *F —(2+4PHe

+ ‘B(vaxlsx27;{aW)1872P (93)
For P = 10 and P = 20, the error ¢ is of the order of 1073 and 1071°, respectively.

&< KDZﬁWl T J- (2 + 447 —e e 2*2%da
P

6. DISCUSSION AND CONCLUSIONS

[n this work a specialization of the boundary element technique, which makes use of the
three-dimensional fundamental solution for a point load acting in the interior of an infinite layer
developed by Benitez and Rosakis,® ? is presented. This new formulation is specially suited for the
treatment of three-dimensional problems whose geometries contain two parallel planar surfaces,
such as in plate problems.

In general, the resulting integral identities {24), (28) and (42) contain surface integrals evaluated
only over the lateral surface L of the plate region of interest. In addition, they also contain surface
integrals evaluated exclusively over the portions of the two parallel planer surfaces (I1;, I1,) in
which tractions are prescribed. In case where the two parallel planes are traction-free, the
integral identities (45), (47) and (48) only contain integrals evaluated over the lateral surfaces of
the region. From a numerical point of view, this makes the case of the identities very attractive for
implementation in numerical boundary element formulations.

For problems with a traction-free boundary condition on the two planar surfaces, numerical
solution of boundary-value problems involving such a scheme need only feature the discretization
of the lateral surfaces of the region, no elements are needed for the parallel planar surfaces.

This formulation is very attractive in the solution of three-dimensional problems involving
cavities such as holes, surface cracks, through cracks, flaws and defects in plates of uniform
thickness. In such cases, the proposed formulation would require discretization over the cavity
surfaces and the remaining parts of the lateral boundary. This results in a considerable saving in
the number of elements required to capture the details of the three-dimensional deformation fields
at the vicinity of stress concentrations. It also provides an attractive alternative to the classical
boundary element (based on Kelvin’s solution) and finite element methods.
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APPENDIX 1

The stress and displacement components corresponding to the state #*(x, &) = [u*(x, &);6*(x, £)]
are presented as

1 v 1 Xy X7 — 3x;3
011X, X0, X3) = —— Fa3(Xx1, X2, X3) + I—v 2
e B N T xf+>€§{( R

A= w y 2 2
<[ it - panan BT g,

A= " 2 2
- j 2B + A3 + (1= V) + 401, (“————V"’*"z)dz} (94)

=0 h

2 2
1 . 1 X5 x3 — 3x7
G12X1, X2, X3) = —

167(1 ~ v)h* /x4 x3 xi + x3

y fm AL — £ ]Js(‘w)dﬂ.

120 h

A=
; j LAY +12(3) + 21501y (——M)u} ©5)

h

G ST o

1
1 = —_—
013(X1,%2,X3) an(l — ")hz{Lzo h

A=
w3 [ o e nann 3R
A=0

2 _ .2 pima
+f—%f (fs(D) — fs (NI (‘f“‘z)da}} (96)

X1+ Xx3 Ji=0

A=0

2 2
A v n 1 Xy xi — 3x35
022(X1,X2,X3) = ——— G31(xy, X2, X3) + v— 1
22(x1, %2, x3) 1 33(x1, X2, X3) 167(1 = v)2h2 e {( )xf—(—xf

Ao A/xI+x3
x f AL —fz(i)]Js(M>di

A=0 h

A= 2 2
- f AL+ 30AMD) — (1 = W f(d) + 4v ()], (‘———M)dz} 97)

A=0 h

1 — X1X3z A= X% + x%
Uzs(xx X3,X3) = an(l — 1)h2 xx T ’Cz L o f?(A)JZ(_—h-‘—)d)v (98)

1 . 1 — X4 A= )V\/xf + x32
Jas(xlsx2,x3)—4n(l E—ye \/——E e fs(ﬁ- N di (99)




2
o11(x1, X2, %3) =

2
T126X1, X2, X3) =

2
T13(X1, X2, X3)

2
732(X 1, X0, X3) = 1=

a6n(l — vk 57132
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1 X - 3x
2 2 1
X1, N - e — 1—_——‘
,033“1 X2,X3) + 16n(1 v)zhz \/X1 % {( ) 1 2

A= /.2 2
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A-0 h
) 2 2
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l+v 1 —x, (%7 ASXE+ X2
3 > P e At Sz
u3(X1,X2,Y3) 4 (1 _ V)hE /X_1‘+ xz J‘A o {f13( ) ( h
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(1 LY “ + 3 29 — 1)%—}&1 (117)

_ 1+ v J; JolA)Jy Axied
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3 1+v e Jxi+x3
uZ(xl’XZaXS) 4% 1 _ V)hE\/mJ; 0 {fQ('t)J ( h >
e *
— 6(1 — v)? ————Vx‘hm(z s }d/t (119)

3 —
uz(x1,x2,x3) = an(l — )hE h FE)

L4+v L [*== AJx3+ x5 24(1 — v)?
f {fm(ﬂ)Jo( 1 2) - (
A=0
24 4
- [mu — WY = =YD+ T =) = 61— xit "2} ei }dA
(120)
where the superscripts 1,2, 3 indicate the direction of the unit load and y = x3/h, ¥ = H/h.

For the sake of brevity, expressions for f«{4, x, ) defined in (94)—(120) are functions of 4, y, ¥, E
and v, and they should be taken as f:(4,y, ¥, E, v). They are given by

2
S1ld) = {13}(('# — Dcosh[A(x — ¥)] + %[(4" = 3)(1 + x — Y)sinh [A(y — )]

1
sinh?{2) — A2
+ (1 — (1 — ¥)sinh[A(x + ¥)] + ybsinh[A(2 — x — ¥)]]
— %[(2(8\)2 —12v + 5) 4+ y — W)cosh[A{y — )] + (3 — 4v)(2 — x — Y)cosh[A(y + ¥)]
+ (3 — 4v)(x + Y)cosh[AQ2 — x — )] + (¥ — pcosh[4(2 + x — ¥)1]

+ %[(sz — 8v 4+ Dsinh[A{y + )] + (8v? — 8v + D)sinh[A(2 — x — )]

+ sinh[A(x — ¥)] — sinh[A(2 + x — 1//)]]}
+ { — Alx — W)cosh[A(x — ¥)] + sinh[A(x — )]} # (L — ) (121)

R .2 00sh(Ay)cosh[A(1 — ¥)]
0= gy 7|~ 40~ |

(122)
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1

S = S22 {1 = v)[sinh [A(x + ¥)] — sinh[A(y — ¢)] + sinh[A2 — 1 — )]
+ sinh[A(2 + ¥ — )11} + { — 4(1 — v)sinh[A{x — ¥)]} # (x — ¥) (123)
fal2) = SahiG) &2 {( 1— v)%[cosh LA + ¥)] — cosh[4(x — ¥)] — cosh[A(2 — x — ¥)]
+ cosh[A(2 + 1 — zp)]]} +{ — A2(1 — v)cosh[A(y — ¥)1} # (x — ) (124)
1 3
fs(%) = SnhZ() — 2 {/‘f‘x(t// — D)sinh[A(x — ¥)] + ’5 [(1 — 01 — g)cosh[A(x + ¥)]
+ ((4v = 3)x + ¥ — Deosh [A(x — )] — ypcosh[A(2 — 3 — ¥)]]
2
+ %[((3 —4v)y + 4(v — 1) + Y)sinh[A(y + )] + (v — 1) — y + ¥)sinh[A(x — ¥)]
+ (3 — 4y + ¥)sinh [A2 — y = )] + (x — ¥)sinh[A2 + ¢ — wm}
+ (A2 — psinh[A(x — Y01} # (1 — ) (125)
o | iy ossinhycosh[A(1 — )]
Jold) = sinh?(4) — )}{ AL =4 sinh(4) } (126)
1 23
fr(2) = sinh2(1) — 42 {/141(!// — Dsinh[A(y — ¥)] + 7[(1 — (1 — y)cosh[4(y + )]

+ {(dv = 3y + v — Deosh[A(y — ¥)] — xycosh[4(2 — x — ¥)]]
22

+ %[((3 — 4y + 40— 1) + ¥)sinh[A(x + )] + (4v — 1) — x + W)sinh [A(x — Y]]

+ {3 — 4y + ¥)sinh[A2 — x — )] + (x — ¥)sinh[2(2 + x — ¥)]]

' sinh(Ay)cosh{A(1 — )]
+2(1 — )23 sinh(}) }
+ {22 — psinh[Ay — )1} # (x — ¥) (127)

1 A3
feld) = ShZ () 02 {ﬂ-“x(l — y)cosh[A(x — )] — ~—2‘[(1 — (1 — ¥)sinh[A(x + ¥)]
+ ((4v — 3)x — ¢ + Dsinh[A(x — ¥)] + xsinh[A(2 — x — ¥)]]

A
+ 74—[((4v = 3)x + 2(1 = 2v) + y)cosh[A(y + )1 + 2(2v — 1) + y — ¥)cosh[A(y — ¥)]

+ (3 — 4‘;)% = y)cosh[A(2 — x — )] + (¥ — y)cosh[A(2 + ¥ — ¥)]]
—(2v — 1)i[sinh [A(x +¢)] + sinh[A(y — )] + sinh[A(2 — y — )] —sinh[A(2 +y — l//)]]}

+ {42 = Y)cosh[A(y — ¥)] — Qv — D)sinh [A(x — )]} # (G — ¥) (128)
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fola) = sinhz(}t) — 3 {ftsx(lﬂ — Dsinh[A(x — ¥)] - %2[(1 = (1 — y)cosh[ Ay + ¥)]
+ (v = 3)(x + ¥ — Deosh[A(x — y}] — ppcosh[A2 — 7 — ¥)]]
+ %[(‘W — 3 — Psinh[Ax + ¥)] + (8Q2v — D — 1) — x + w)sinh [A(x — )]
+ (4v = )W — »sinh[AQ2 — x — )] + (x — Wsinh 22 + x — ¥)]]
+ (2v — (v — Dfcosh[Ay + ¥)] — cosh[A(2 — x — tﬁ)]]}
+ {AY — psinh[A(y — ¥)1}A# (x — ¥) (129)
Jiol2) = ﬁﬁ_(;—f—_ﬁ {/1“)((1!/ — Deosh[A(x — ¥)1 - 112—3—[(1 — (1 — ¢ysinh[A(y + )]

+ (v — 3)y — ¥ + Dsinh[A(; — )] + yysinh[2(2 — y — ¥)]]

32
— %[((41’ =3y + 2(1 = 2v) + y)oosh[A(x + ¥)] + 2Q2v — 1) + x — )cosh[A(y — ¥)]

+ (3 — 4v)x — ¥)cosh[A2 — g — Y)] + (¥ — pcosh[A(2 + x — ¥)]]

-2y — l)i[sinh [A(x + ¥)] + sinh[A(x — )]

+sinh[A(2 — y —¢)] —sinh[AQ2 + y - \//)]]}

+ 4 — 22(x — ¥)eosh[A(x — ¥)] — A2y — Dsinh[A(x — ¥) ]} (x — ) (130)

/'Lj

Juld) = 241 — yysinh [2(; — ¥)] + 5 [0 =0 = ¥)cosha(y + ¥)]

1
sinh2(J) —_,12{
+ ((4v — 3)yx + ¥ — Deosh[A(x — ¥)] — gy cosh[A(2 — x — ¥)]]

22

+ %[((4" =3 + 41 = v) — Y)sinh [A(y + )] + (40 — v) + 7 — P)sinh[A(x — ¥)]

+ ((4v = 3)x — Y)sinh[A2 — x — )] + (¥ — p)sinh[4(2 + 1 — ¥)]]

— {1 = 5[~ cosh[A(z + ¥)] + cosh[A(x — ¥)]
+ cosh[A(2 — y — )] — cosh[A(2 + 3 — I//)]]}

+ {42(x — yisinh [A(x — ¥)] — 22(1 — v)cosh [A(y — ¥)1} A (x — ¥) (131)
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flz('l) =

J13(d) =

1
" sinh2(2) — 22
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/2 .
{Pz(@f! — Deosh[Ax — )] + — [y — Y + x¢ — y — ¥)sinh[A(x + V)]

+(2v = 1)+ (3 — 4 — y)sinh[A(x — ¥)]
+ Qv — 1) + 7y)sinh[A2 — z = ¥)] + 2(v = Dsinh[A(2 + y — ¥)]]

- 2[(2(8»'2 —12v + 5) + 1 — W)cosh[A(x — ¥)] + (3 — 4)(2 — x — )cosh[A(x + ¥)]]
+ (3 — 4v)(x + ¥)cosh[A(2 — x — )] + (¥ — y)cosh[A(2 + x — ¥)]]
+ %[(81}2 — 8v + 1)sinh[A(x + )] + (8v2 — 8y + D)sinh[A(2 — x — ¥)]

+ sinh[A(x — ¢)] — sinh[A(2 + y — ¥)]]

, cosh?(A)cosh(Ay)
+ { — A — ¥cosh[i(y — )] + sinh[2(y — )]} # (x — ) (132)

2

T {M(l — Y)Sinh G — )] = 5[0 = 001 = PreoshliGe + )]
+(3 =401 — g — W)cosh[A(x — ¥)] — nbeosh[A2 = 7 — ¥)]]

~ 4T3 — 4 — W)sinb LAy + )] + B2y — Dy — 1) — 1+ Yysinh (Al — Y]
(3 — 4z — Y)sinh[4(2 — £ = Y)] + ( ~ Y)sinh[AQ2 + 7 — Y]]

+(2v = v — ) eosh[Ax + ¥)] — cosh(4(2 — £ - wm}

+ { = Ay — psinh [y — Y)]} H#(x — ¥) (133)

2

1 A e
Jrald) = sinh?(1) — 22 {PX(I — ¥)cosh[A(y — ¥)] + 5 [(@v = 3)(1 + x — y)sinh[4(x — ¥)]

+ (1 — (0 = y)sinh[A(y + ¥)] + xysinh[A(2 —  — )]

+ %[(2(8»2 — 12v+ 5) + 1 — Y)cosh[A(x — ¥)] + (3 — 40)(2 — x — Y)cosh[A(x + ¥)]
+ (3 = 4)(x + ¥)cosh[A2 —  — ¥)] + (¥ — p)cosh[22 + z — ¥)]]

+ %[(8\72 — 12v + 5)sinh[A(y + ¢)] + (8v* — 12v + S)sinh[A(2 — ¥ — )]

+ (v — 3)sinh[A(x — Y)] — @v — )sinh[AQ2 + z — wm}

+ {4 — ¥icosh [y — ¥)] + (v — 3)sinh[A{x — )]} # (x — ¥) (134)
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where #(y — ) represents the Heaviside function, given by

H(y— )= {1 for y > ¥ {135)

0 for y <y

APPENDIX I

The expressions for the analytical integration G(g, a, b,c), defined in (73), with the structure

G(,l,a,b,c)=j Je~hJ (bi)dl Ve >0 (136)
0
are listed below
1
G(0,0,b,¢) = — (137)
R
G0, 1,b,¢) = k‘g (138)
1 3c?
G(0,2,h,¢) = —R;(l _F> (139)
3¢ 5¢2
, 3 302 35¢¢
G(0,4,b,c)=ﬁ(3—ﬁ+7{4—> (141)
G(1,0,b,¢) = b 142)
P IERR T o) (
b
G(1,1,b,¢0) = e (143)
3bc
G(1,2,b,c) == ES‘ (144)
3b 5¢2
G(1,3,b,¢) = “F(l ,F> (145)
15hc 7¢?
b2
G(2.0,b,¢) = =
2.0.5:)= g R o (147)
G(2.1,b,c) = A P 148
T RAMR + ) R (148)

3p?
G(2,2,b,¢) = o (149)
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15h%e
G(2.3,b,0) = —ov (150)
R
15h Th?
G2,4.b,0) = (6—F) (151)
b3
3,0,b,¢) = — 1
GB.0.0.0)= g s (152)
b3 ¢
GB3,1,be) =3+ = 153
(3.1,b,¢) RZ(R+C')3( +R) (153)
6G.2be =1 g4 00, 2 (154)
U T RMR + o) R  R?
156
G(3,3,b.0 = —= (155)
105h%
G(3,4,b, C) = T (156)
where R = /b% + ¢~
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