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ABSTRACT 

In this paper we review recent theoretical and experimental 
developments related to the investigation of dynamic and transient 
crack-tip deformations using a new coherent optical technique- 
coherent gradient sensing (CGS). CGS is a full-field, lateral-shearing 
interferometric technique with an on-line spatial filter. This full-field 
optical method has been used both in transmission and repection modes 
to study deformations in transparent as well as opaque solids. Its ability 
to produce fringes in real time is used advantageously to map dynamic 
crack-tip deformations in PMMA and AISI-4340 steel specimens as well 
as in bimaterial combinations of PMMAlAl and PMMAlsteel. The 
technique measures either in-plane stress gradients (transmission) or 
out-of -plane displacement gradients (reflection). 

INTRODUCTION 

In experimental fracture studies, coherent gradient sensing (CGS),‘,* 
photoelasticy,3*4 caustics,5 geometric moire6 and moire interferometry7 
are some of the methods used to measure crack-tip deformations or 
deformation-related quantities and hence the stress-intensity factor. In 
these techniques, interpretation of the measurements is based on the 
premise that a K-dominant or a J-dominant two dimensional asympto- 
tic field description exists in the vicinity of the crack tip. However, in 
reality, the situation has not been that simple. Recent studiePl have 
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brought to light the shortcomings of such interpretations because of the 
three-dimensional nature of the crack-tip deformation and the inade- 
quacy of the purely singular fields to model the region outside the 
three-dimensional zone (lack of K- or J-dominance). 

From these experimental and analytical investigations,x-” it has 
become increasingly evident that a two-dimensional K-dominant crack- 
tip field description for general specimen configurations should be used 
cautiously, keeping in mind the near-tip three dimensionality and 
possible lack of K-dominance. Furthermore, in dynamic loading situa- 
tions, these complexities are compounded by the transient nature of the 
fracture phenomenon which may inhibit the establishment of a Kf- 
dominant region.9,‘o In view of the above, besides demonstrating the 
applicability of CGS to dynamic fracture studies, we will also examine 
some aspects related to lack of KY-dominance. 

Since CGS fringes are related to either in-plane stress gradients 
(transmission) or out-of-plane displacement gradients (reflection), the 
technique can be thought of as the full field equivalent of the optical 
method of caustics (for both the transmission and reflection cases). The 
sensitivity of the method to the same deformation or stress quantities 
responsible for the formation of caustics provides a unique opportunity 
for comparison. In particular, for transient dynamic fracture studies 
where the accurate interpretation of caustics has been questioned,“.” 
dynamic CGS has allowed for the direct investigation of the causes that 
lead to problems with caustics. In addition, the capability of CGS to 
investigate dynamic fracture problems in opaque materials (no severe 
light limitations resulting from exposure times of the order of nanosec- 
onds) make this full-field technique a strong contender to caustics. 
Caustics by reflection have so far been the dominant optical method 
applied to the study of dynamic crack growth problems in opaque 
structural materials.5~‘“~‘4 

Finally, in the last part of this paper we describe the initial steps of an 
investigation aimed towards the understanding of the mechanics of 
dynamic initiation and dynamic crack growth in interfaces between 
materials characterized by high mechanical property mismatch. 

THE PHYSICAL PRINCIPLE OF CGS 

Consider a planar wave front normally incident on an optically and 
mechanically isotropic, transparent plate of initial uniform thickness h 
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laser beam 

Fig. 1. Schematic representation of the experimental set-up for (a) transmission CGS 
and (b) reflection CGS. 

and refractive index n. The specimen occupies the (x,, x2) plane in the 
undeformed configuration (Fig. 1). If the plate is deformed, the 
transmitted wave front will be expressed as S(x,, xz, x3) =x3 + 
AS(x,, x,) = const., where AS is the optical path change acquired during 
refraction. As discussed in detail by Rosakis,’ AS is related to the 
deformation state by the relation 

AS(x,, x,) = 2h(n - 1)~“*e,&,~) + 2h(“*A&(x,ih) (I) 
0 0 
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The first term of eqn (1) represents the net optical path difference due 
to the plate thickness change caused by the strain component Ebb. The 
second term is due to the stress-induced change in refractive index of 
the material. This change in the refractive index An is given by the 
Maxwell relation:13 

where D, is the stress optic constant and (T;~ are Cartesian components 
of the stress tensor. The above relation is stricly true for isotropic linear 
elastic solids. For such solids the strain component .533 can also be 
related to the stresses and eqn (1) becomes? 

AS@,, x2) = 2hc, 

where 

033 

EGG + 022) 

4xJh) (2) 

c, = D, -; (n - 1) 
[ 1 

D,= - 

E, Y and c, are the Young’s modulus, the Poisson’s ratio and the stress 
optical coefficient of the material, respectively. 

The CGS set-up described below is sensitive to in-plane gradients of 
optical path changes AS@,, x,). For CGS by reflection, an equivalent 
relation for AS is obtained. The optical path difference in this case is 
associated with non-uniform surface elevations of an initially flat 
undeformed 
out-of-plane 
solid AS is 
Rosakis’). 

specimen surface. For this case, AS = 2u,, where u3 is the 
displacement on the specimen surface. For a linear elastic 
still given by eqn (2), with c, = -v/E and D, = 1 (see 

THE EXPERIMENTAL SET-UP 

The schematic of the transmission and reflection experimental arrange- 
ments are shown in Fig. l(a) and (b). When the transmitted or reflected 
wave front emerges from the specimen after refraction or reflection, it 
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is processed by a pair of high-density gratings, G, and GZ, separated by 
a distance A. In a typical set-up, the gratings have their rulings parallel 
to either the x1- or the x,-axis. The grating pitch is denoted by p. 

The light field emerging from G, is collected by the filtering lens L, 
and its frequency content (diffraction spots) is displayed on its back 
focal plane. By locating a filtering aperture around either &l diffraction 
orders, information regarding the gradients components of AS@,, x,) 
along either the x1- or x,-axis is obtained on the image plane. The 
camera consisting of the lens L, and image plane, is kept focused on the 
object plane. For gratings rulings perpendicular to the x,-axis the 
resulting fringe pattern are proportional to J(As)/&,, (Y = (1,2). 

More specifically, and as demonstrated by a first-order analysis 
described by Tippur et a1.,2 the resulting fringes can be related to 
gradients of As@,, x,) as follows: 

a(as>=kp 
dx, A’ 

(Y = (1,2) 

where 

k = m for (Y =l, m=O, *l, *2 ,... 
a 1 II for (Y = 2, yt = 0, +l, l 2, . . . 1 

and m and n are the fringe orders for the x, and x2 gradient countours, 
respectively. 

INFLUENCE OF THREE-DIMENSIONALITY ON DATA 
ANALYSIS 

The discussion of the previous section was intentionally kept as general 
as possible within the assumptions of isotropic linear elasticity. For 
either a homogeneous or a bimaterial cracked linear elastic plate of 
uniform thickness and finite in-plane dimensions, the optical path 
difference AS in general will depend on the details of the three- 
dimensional elastostatic or elastodynamic stress state that would exist at 
the vicinity of the crack tip. This will be a function of the applied 
loading and the in-plane dimensions and thickness of the specimen as 
well as on the material properties mismatch in the case of bimaterials. 

Given the lack of full-field, three-dimensional analytical solutions in 
fracture mechanics, experimental information can strictly be extracted 
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by means of detailed numerical calculations. Nevertheless, there exist 
certain non-trivial special cases for which available asymptotic solu- 
tions, based on two-dimensional analyses, may provide adequate 
approximations for AS(x,, x,) at certain regions near the crack tip. In 
particular, it has been argued that conditions of plane stress will 
dominate in thin, homogeneous cracked plates at distances from the 
crack front larger than half the specimen thickness. This would imply 
that if only fringes outside the three-dimensional zone are analyzed the 
results could be interpreted on the basis of a plane stress analysis.5-11,‘3 

To visually illustrate the extend of the near-tip three-dimensionality, 
reference is made to Fig. 2, which shows a three-dimensional represen- 
tation of the ratio (T~~/Y((T~~ + g2J for a three-point bend specimen of a 
linear elastic, homogeneous material. It should be noted that this ratio 
appears in the second term of the intergrand of the optical path 
difference relation eqn (2). The ratio is often called the degree of plane 
strain. This ratio is a measure of near-tip three-dimensionality and is 
obtained by means of three-dimensional finite element calculation 
which models a stationary crack in a three-point bend specimen 
subjected to dynamic loading. In regions where the deformation is 
locally plane stress, this measure is equal to zero. When the deforma- 
tion approaches the plane strain-like condition the ratio approaches the 
value of 1. In the figure, only one-half of the specimen thickness is 
shown. The top surface corresponds to the mid-plane of the specimen. 
The traction-free crack face is on the left-hand side of the picture. The 
maximum extent of the three-dimensional zone is approximately 
O-4-0*5h, (f3 = 0), whereas at approximately 6 = 120”, the plane stress 
approximation is adequate very close to the crack tip r - 0*lh.5 

For points outside the three-dimensional region, a plane stress 
approximation will be applicable ((T~~/Y(u~~ + a& + 0). Indeed, for 
such points, the optical path difference AS (eqn (2)), which involves the 
ratio a,,/v(~,~ + (T&, will simplify to 

where c, = (Q - (v/E)(n - 1)) and &I1 and 8,, are thickness averages 
of the stress components in the plate. In the above expression c, is 
called the stress optical coefficient. 

Indeed, for points outside the near-tip three-dimensional zone the 
CGS patterns assume a simple interpretation in terms of two- 
dimensional stress field approximations. In particular, eqns (3) and (4) 
now indicate that the fringes obtained from regions surrounding the 
three-dimensional zones can be related to the in-plane gradients of 
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B,, + 8,, as follows: 

A. J. Rosakis 

0 
Wll + k2,) mp 

dx2 =T (5) 

or 

c,h 
461 + 622) np 

dx, =h 

In practical applications of the technique, only fringes outside the 
three-dimensional zone should be analyzed, since this is a variable 
sensitivity method (for fixed p, sensitivity is increased if the spacing 
between gratings, A, is increased); this can be achieved by choosing a 
ratio A/p such that enough experimental data are obtained outside the 
near-tip three-dimensional zone (Y 2 O-Sh). 

If the plane stress region surrounding the near-tip three-dimensional 
zone is well described by the asymptotic expression for the stresses 
(conditions of K-dominance) then relations (5) can be used to estimate 
fracture parameters. 

DYNAMIC CRACK GROWTH IN HOMOGENEOUS SOLIDS 

Consider a mode-1 crack propagating dynamically in a thin plate 
composed of a homogeneous isotropic, linear elastic solid. The crack-tip 
velocity and the dynamic stress intensity factor are both allowed to be 
arbitrary functions of time. If a generalized plane stress assumption is 
made, then the thickness averages of the stresses at the vicinity of the 
propagating crack are asymptotically proportional to r-In, where r is 
the distance from the propagating crack tip. In particular, the thickness 
average of the first stress invarient &,, + eX2, which is of relevance in 
both CGS and caustics, is asymptotically given by? 

K-V) 
G’11+ 62, = F(u) - =cos (8,/2) + O(1) as r-,+-O 

I 

where 
2(1 + aS)(cXY: - Ly?) 

F(u) = [4Qa, - (1 + as’)‘] 

(6) 
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v(t) is the instantaneous crack speed; cI,S are the longitudinal and shear 
wave speeds, respectively; K:(t) is the instaneous value of the dynamic 
stress intensity factor; 

r, = (x7 + ((YIX2)*)1’2; f3, = tan-’ ((~,x,)/x,) 

and the distorted polar coordinate system (rr, 0,) translates with the 
moving crack tip. Stationary cracks in linear elastic solids are a special 
case for v = 0. 

For laboratory specimens of finite dimensions, the above field can be 
valid only within a region near the crack tip of small extent compared 
with any relevant characteristic dimension of the body. On the other 
hand, the assumption of a two-dimensional field cannot be valid right 
up to the crack tip. As shown in the previous section, within some 
region near the tip (closer than half the specimen thickness) the 
two-dimensional field must give way to a region of severe three- 
dimensionality where the plane stress assumption breaks down. Altho- 
ugh the above restrictions are competing, there may be cases where 
there is some finite annular region surrounding the crack tip such that 
the stress field is square-root singular and (ell + 6,) is described by 
eqn (6). In such cases we say that we have a situation of Kt-dominance 
and we assume that the stress-intensity factor characterizes the fracture 
process. The classical analysis of caustics,13 for both statics and 
dynamics, assumes that Kf-dominance always exists and attempts to 
relate the dimensions of the caustic curve to the instantaneous value of 
K;‘. 

From a mathematical standpoint, eqn (6) is only the leading term of a 
transient asymptotic expansion for the stresses, which will be presented 
in the following section. As will be seen in that section, only the leading 
l/G, term of the transient expansion has the same form as the 
corresponding term of an expansion obtained if steady-state conditions 
are assumed. Indeed, the 0(1/G,) term of the transient problem is 
obtained if the constant values for Kt and v of the steady-state case are 
replaced by their time-varying counterparts. However, this is not true 
for terms of higher order. For the transient crack-growth problem, such 
terms will in general contain time derivatives of u(t) and K;‘(t). As a 
result, their importance relative to the leading term will depend on the 
nature of the time history of crack-tip speed and stress intensity factor 
as well as on the distances from the crack tip where measurements are 
performed. In addition, the 8, variations of the transient higher-order 
terms are found to be different from their steady-state counterparts of 
the same order in r,. 

The situation in which the near-tip stresses are square-root singular 
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and, thus, eqn (6) provides an adequate representation of the first stress 
invarient at some annular region surrounding the crack tip is called one 
of Kf’-dominance. 

For the sake of analyzing CGS fringe patterns and in view of eqns 
(6), let us now define the quantities Yf(r,, 6J,, t) and (Yi(r[, &, t), related 
to the x1 and x2 partial derivatives of 6,, + &22, as follows: 

Ydp(c, 6, t) = 
4&l + a221 2V5 rTi2 

dx (7) 

a &)[6 
,a cos-+ 

‘2” 
a2a sin- 

30, 1 2 

where F(u), r,, 19, are as defined in eqn (6); a,, is the Kronecker delta 
and (Y, /3 have the range {1,2}. Y”,(r[, 0,) are constructed by normalizing 
the actual x1- and x,-gradients of &II + eZ2, as measured by CGS, by the 
same gradients corresponding to the asymptotic field of eqn (6) divided 
bythe stress intensity+letor~4n tmremsmntssuchthat~ 
prevails (i.e. times such that there exist regions near the crack tip where 
eqn (6) describes the stress field), Y”,(r[, 0,) are both equal to K;‘(t), for 
any choice of r, and 8, within the region of K;1-dominance. At time 
instants during crack growth such that K,-dominance fails (the KP- 
dominant region vanishes), Yi(r[, &, t) are not in general constant but 
rather are expected to be functions of position. 

For situations of Kf-dominance, eqn (7) can be used to estimate the 
stress-intensity factor from CGS fringes by observing that use of eqns 
(5) and (6) results in the following relations for K;(t): 

where 

K;‘(t) = Y”,(r,, e,, t) 

kP Yd,(yI, e,, t> = 7. 

2V5 r:/= 

chF(v) 
[ 

30, 38, 
I 

(8) 
S1, cos y+ S2a sin -2- 

k = mfora=l,m=O, *1,*2 ,... 
OL 

1 y1 for (Y = 2, y1 =O, *l, *2,. . . 1 

c,, for transmission 
C= 

- vl E for reflection 

The right-hand side of eqn (8) can be experimentally measured from a 
CGS interferogram. A, p, c and h are constants related to the 
experimental set-up material and specimen. Also, if u(t) is known, r,, 8, 
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can be computed from the position (r, t9) of any point within the 
K;‘-dominant region while m or II are fringe orders. 

.-..----.- _ __ __. ___ --.. “_ _-_.__,___ ._. __ 

EXPERIMENTAL INVESTIGATION OF Kfl-DOMINANCE 

The question of K,d-dominance has been investigated in detail by Tippur 
et al.,2 Krishnaswamy et al.,’ and by Freund and Rosakis’ for both the 
quasistatic and dynamic cases by using the method of CGS. Here we 
present a summary of their results. Our goal is not only to observe 
situations of lack of K;-dominance but also to examine the nature of 
the near-tip field when this assumption fails. Our specific aim is to 
verify the hypothesis of Freund and Rosakis’ regarding the validity of a 
higher-order transient elastodynamic expansion for the near-tip defor- 
mation field. We begin our experimental investigation of this phenome- 
non by considering a set of experiments performed on precracked 
PMMA and AISI-4340 steel specimens in both transmission and 
reflection modes. 

The specimen geometry was of the three-point bend type. The 
nominal specimen dimensions were length 2Z= 30.4 cm, width 
w = 12.7 cm and thickness h = 1 cm. A band saw, approximately 
O-75 mm thick, was used to cut an initial notch of length a = 25 mm in 
these specimens. In the transmission mode, no further specimen 
preparation was needed. In the reflection mode, an aluminimum 
coating was applied to the PMMA specimen surface through a vacuum 
deposition technique in order to make it reflective. The 4340 carbon 
steel specimens were lapped so that their surfaces became optically flat. 
Then they were polished by a diamond paste to a mirror finish. An 
aluminum coating was also applied to increase the reflectivity.8 

The specimens were loaded in a three-point bending configuration. 
The loading device used to dynamically load the specimens was the 
Dynatup 81OOA drop-weight tower. The experimental configuration is 
such that the crack is under mode-1 loading conditions. 

A rotating-mirror type, high-speed camera set-up was used to obtain 
a sequence of dynamics CGS interferograms. A Spectra Physics (model 
166) argon-ion pulse laser (output power 2W at h = 514 nm in con- 
tinuous wave mode) was used as the light source. The later beam was 
expanded and collimated to obtain a beam 50 mm in diameter which 
was centered on the initial notich tip of the specimen. The transmitted 
or reflected object wave-front was then processed through a pair of line 
gratings of density 40 lines/mm with a separation distance A = 30 mm. 



14 A. .I. Rosakis 



Application of CGS to dynamic fracture problems 15 

The gratings were oriented with their principal direction parallel to the 
crack line in order to obtain the x,-gradient information of the crack-tip 
fields. The resulting diffraction wave fronts were then collected, filtered 
and imaged onto a rotating-mirror high-speed camera through a series 
of lenses, The pulsing circuit of the laser was set to give 50 ns exposure 
every 5 to 10 ,us for a total of 1 ms from the time of an input trigger, 
which was synchronized to the moment of impact of the drop-weight 
with the specimen. 

Figure 3 shows a representative sequence of CGS (transmission 
mode) interferograms for the case of a dynamically propagating crack 
in a PMMA specimen. Figure 4 shows a CGS pattern corresponding to 
a time 20 p.9 after initiation. 

It was found that the crack propagated with an essentially constant 
velocity of about O-3 the shear wave speed of the material. These fringe 
patterns correspond to the case when the diffraction gratings were 
oriented with their principal directions parallel to the xl-axis. Thus, the 

Fig. 4. Transmission CGS, x,-gradient pattern (enlarged). The crack propagation 
direction is x,. time is 20 ps after initiation. 
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Fig. 5. Radial variation of Yy(r, 0) along various values of 8 for a dynamically 
propagating crack in a PMMA, corresponding to 20~s from crack initiation, when 

crack length to plate width ratio is instantaneously equal to a/w = O-2. 

fringes surrounding the crack-tip at each instant of time represent the 
x,-gradient of AS. In regions where plane stress conditions prevail, 
fringes are proportional to the x,-gradient of 6,, + eZ2. 

The fringe patterns were digitized for analysis to get fringe order (m) 
and location (T,, @) with respect to the crack -tip at each instant in time. 
The quantity Yy(r/, Q,, t), defined in eqn (7), can now be plotted from 
the experimental data obtained from each CGS interferogram. If the 
field if K$dominant Y& 8,, t) shouldbe a~ co&a&V@, 0) and equal 
to K;. 

Figure 5 shows a typical plot of Yp against normalized radial distance 
(r/h) for one particular specimen for a time instant a few microseconds 
after crack initiation and for different radial lines 0, = 0”, 15”, 30”, 45”, 
105”, 120” and 135” around the propagating crack tip. 

The crack tip velocity at that time is approximately 300m/s. As is 
apparent from Fig. 5, there appears to be no region around the crack 
tip over which the function Yf is consistant. Indeed, the spread in Yy 
values from different locations is as much as 400%. Obviously, 
extraction of the dynamic stress-intensity factor value cannot be based 
here on a simplistic assumption of near-tip KP-dominance; see eqn (8) 
for K:(t). One other interesting point must be made. The instantaneous 
crack length a to plate width w ratio at the time shown in Fig. 5 was 
a/w = 0.2. The immediate question that arises is: Would there be a 
region of static K,-dominance around a stationary crack of the same 
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Fig. 6. Radial variation of Gtatlc(r, 0) along various values of 8 for a statically loaded 
crack in a PMMA specimen with crack length to plate width ratio of a/w = 0.2. 

length in a statically loaded specimen of the Same geometry? The 
answer is provided in Fig. 6, which shows a plot of the static 
counterparts of the quantities plotted in Fig. 5 for the case of a 
specimen with a/w = O-2 in an identical specimen to the one tested 
dynamically. 

In the region (r/h) < 0.5, vc does not seem to be constant and, 
thus, the field in this region does not appear to be K,-dominant. This 
is consistent with other experimental investigations using caustics, 
wherein such deviation has been attributed to near-tip three- 
dimensionality.” Outside this three-dimensional region, however, there 
appears to be a sizable region of constant ystatic in the range 
O-5 I (r/h) I l-25. Further, the constant value of ystatic in this range is 
in good agreement with the static stress-intensity factor KfD as obtained 
from boundary load measurements. This is a clear indication that even 
though a stationary crack might exhibit a sizable region of K,- 
dominance under static loading conditions, there might be no corres- 
ponding region of K;1-dominance when a crack of the same 
instantaneous length is propagating dynamically in an identical speci- 
men subjected to dynamic loading. 

It should be noted at this point that the reflection experiments 
performed on PMMA and 4340 steel, reported by Krishnaswamy et al,* 
corroborate the above conclusions. The results are entirely analogous. 

The observed lack of dynamic Kf’-dominance outside the near-tip 
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three-dimensional region using CGS is consistent with the observation 
of lack of &‘-dominance observed by Krishnaswamy and Rosakis,16 by 
means of a bifocal caustics arrangement. 

In the next section we provide an explanation of Yf(r,, 0,) values 
presented in Fig. 5. Our goal is to demonstrate that the observed spread 
in Yf values is governed by the specific structure of the transient stress 
field near the crack tip and is not due to random experimental error. 
Consequently, we investigate the interpretation of dynamic CGS fringes 
on the basis of a transient higher-order expansion. 

INTERPRETATION OF CGS ON THE BASIS OF A HIGHER- 
ORDER TRANSIENT ELASTODYNAMIC ANALYSIS 

While dynamic caustic patterns have traditionally been analyzed under 
the often unverified assumption of Kf’-dominance, the use of higher- 
order terms has been recent practice in the method of dynamic 
photoelasticity (Dally et aZ.17). However, all available high-order elas- 
todynamic solutions thus far have been for the case of steadily 
propagating cracks and the applicability of such solutions to highly 
transient problems may be questioned. Indeed, the main criticism of this 
approach has been that such a procedure may result in inappropraite 
time-averaging of field quantities. Nonetheless, use of a higher-order 
steady-state expansion in the analysis of optical data is bound to be an 
improvement over the assumption of strict Kf-dominance. 

In the following, we will relax the assumptions of near-tip 
K;1-dominance and steady-state crack propagation. We will show that if 
these assumptions fail, the experimentally obtained transmission and 
reflection mode CGS interferograms can be successfully interpreted on 
the basis of a transient, higher-order stress field for a propagating crack 
that has become available recently (Freund and Rosakis;’ Rosakis et 
al.‘“). This procedure allows for the accurate measurment of Kf’(t) even 
in the presence of highly transient crack growth events. 

TRANSIENT HIGHER-ORDER FIELDS 

Freund and Rosakis and Rosakis et al. have extended the earlier 
interior asymptotic solution of Freund and Clifton to provide a 
higher-order description of the transient stress-state at the vicinity of a 
dynamically propagating crack. The most general form of this expan- 
sion corresponding to non-uniform crack velocities and stress intensity 
factor histories is briefly discussed below. 
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Consider a planar, mode-1 crack that grows dynamically through a 
two-dimensional homogeneous, isotropic, linearly elastic solid, which a 
non-uniform speed u(t), along the positive x,-direction; (0; x1, x,) is a 
proper orthogonal coordinate frame which translates with the non- 
uniformly moving crack tip. In terms of the displacement potential 
functions @(x1, x2, t) and Y(xl, xz, t) the equations of motion in the 
absence of body forces can be expressed as 

(9) 

where c, and c, are the longitidinal and shear wave speeds, respectively. 
For the special case of constant velocity crack growth ti = 0, the third 

term of eqns (9) vanishes while the last two terms are in general 
retained. In such a case, one speaks of constant velocity transient 
growth where an observer moving with the crack tip may still observe 
time changes in field quantities even if i)(t) = 0. If in addition to G(t) = 0 
also J/&@(x,, xz, t) = 0 and ~/SlJ(x,, x2, t) = 0, then we speak of 
steady-state conditions and the above equations reduce Laplaces 
equations for Cp and Y with respect to the scaled coordinate system 

( x1, Q, x,) (first two terms of eqns (9)). The higher-order expansion for 
@ and Y that appears in Dally et al.” corresponds to the solution of 
these scaled Laplace equations. 

Here we discuss a higher-order expansion where none of the 
simplications are used. Indeed, for the general transient crack-growth 
case, Freund and Rosakis” and Rosakis et al. “’ have expanded @ and Y 
in powers of r = v/(x: + x:) substituted in a complete version of relation 
(9) and obtained expressions for the asymptotic stress field. In what 
follows, expressions for (TV,, uz2 and g12 are given up to the third term 
in r as follows: 
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)( @{A,(t)} + ; ( a:y; --$’ _ “(’ - “,p + 38a’)B,(t)] cos; 

D;{A,(t)} _; ( a’f; --$) + 3(1 - a;) - 2a’)B,(‘)] 

30, 1+2a:-a; 

x cosz+ 8 
B,(t) cos 7 

I 
r-y 

+ 2ws I 15cq 
- ygL(t) - 

s-3a: 

8(1+ a;) 
D:{&(t)1 + W,(t) 1 8s cos - 

2 

+ ;(D:{A,(t)} + $B,(t)) 3es 
79s cos 1 + A B,(t) cos -y r-y2 -t 

I - w-,,A (10) 

C’(t) 1 
u --- 
22-l&D { - (1 + ayp cos ; + 4ajcy,r;~‘* cos +) 

15(lqigu’)2 A*(t) _ (s _ ~)D:iAg(r)~ 

11+27a: 

16 

: 3-5a 
7 D;(A,(t)} + ; (s - +)B,(t)] cos : 

+ 1+ a2s 
--y B,(t) cos : r-y2 

- 2P(.us 
15ff, 

- +,(t) - 8;l-+3$) D:{A,(t)} + Be,(t)] cos ; 
s 

+ ii(D:{Ao(t)l + iBs(t)) 
38s 7es 

cos z + &B,(t) cos -j- (11) 

K;(t)2d(l + a:) r;1,2 . e, 8 
u -- 

12-6i D 
sin - - r;1’2 sin 2 

2 2 

- 2w 15(ii “)A2(t) - hDj{A,(t) - &B,(t)] sin z 

- Q(D:{A,} + tB,(t)) 3e’ 
7e, 

sin y - &B,(t) sin y rj’2 

1+ a: 5 - 11a: 
A&) - 8 DXAJ + 32 B,(t)] sin 2 

B,(t) 
I 

38, i+a: 
sin y - -B,(t) sin F 

32 
rs112 

+ WJ (12) 



Application of CGS to dynamic fracture problems 21 

where 
4 1+a2 

A,,(t) = -i 
3&G D(u) 
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D(u) = 4Cr,(;Y, - (1 + C$)” 

and A,(t), A2(f) are functions of time undetermined by the asymptotic 
analysis. 

In the above expressions, A,(t) is determined by the dynamic 
stress-intensity factor history, K:(t) and the propagating speed of the 
crack tip, u(t); D:(A,(t)) and D,‘(A,(t)) depend not only on K?(t) and 
u(t) but also on the time derivatives of these quantities. Besides K:(t) 

and u(t), B,(t) and B,(t) also depend on the acceleration of the crack. 
If the crack-tip speed u(t) is a constant, i.e. C(t) = 0 and, therefore, 

B,(t) = B,(t) = 0, we can obtain the asymptotic stress field correspond- 
ing to transient crack growth under constant velocity and varying stress 
intensity factor (Freund and Rosakis’). A classical example of such a 
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transient crack problem is the one analyzed by Broberg (see Freund’“; 
Freund and Rosakis’). Furthermore, if the time derivative of the 
dynamic stress intensity factor, KY(t), it also zero, D:(B,(t)) will be 
zero; then we obtain the familiar results of the asymptotic stress field 
for the steady state up to three terms. 

A useful special case of the above expansion is the one corresponding 
to transient but constant velocity crack growth. For the purpose of 
analyzing the constant velocity CGS experiments discussed above, we 
present here an higher-order expansion for &,, + eZ2 corresponding to 
this case. This is given up to six terms as follows: 

6’11 + 522 3u2 
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and 

D’(A,) = - ‘kc;a;)“$ (Ak), k = 0, 1,2, . . . , 

D2(A,) = ~‘(D’QL)), 

and p is the mass density of the material. Although the above 
expression is for the special case of constant crack velocity, the 
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coefficients A, in the above transient field are allowed to be time- 
varying as opposed to the steady-state approximation where the 
corresponding coefficients must be constant. Note also that only the 
terms associated with coefficients Ak are identical to the ones that 
would be obtained form a higher-order steady-state analysis with A,(t) 
being proportional to the dynamic stress intensity factor, and so on. 
Furthermore, it is seen that the higher-order transient expression 
contains additional terms whose coefficients depend on time derivatives 
of lower-order coefficients. As a result, the net spatial variation shown 
in the above expression is diferent from the steady-state higher-order 
expansion used by Dally et al. l7 An illustration of the interdependence 
of the coefficients of higher- and lower-order terms is provided if one 
observes that D’(A,) is proportional to the first time derivative of the 
stress-intensity factor history, since 

4 G(t) (1 + d> 
A0(t) = 3 nfi [4ay,a, - (1 + CXI)‘] (15) 

Substituting the transient field given in eqn (14) into the x,-gradient 
transmission-mode fringe eqn (5) and using eqn (7), we get an 
expression for Yf(r,, t&, t) of the form 

YXr,, &, t) 
mp 1 2VZ 3/z r, 
-_ 

= A F(v) c,h cos(38,/2) 

cos (W2) cos (58,/2 
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1 
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cos (8,/q 
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cos (78,/2) 

cos (38,/2) cos (38,/2) cos (38,/2) 
r? 

r:/2 + O(r3) (16) 

where Kf, the dynamic stress-intensity factor, as well as p2 - * * p8 are 
time-dependent coefficients to be determined. Under K;1-dominance, Y;’ 
would have been a constant, for every (r,, e,), and would be equal to 
the instantaneous stress-intensity factor Kfl. If significant higher-order 
transient terms exist, then the variation of Y;’ would be given by the 
right-hand side of eqn (16), which for simplicity will be denoted by 
GXr,, 8,; K’, P2 . - - Pd. 

A least-squares procedure analogous to the one described by Tippur 
et al. was used to fit the above function G’: to the experimental data Yf 
obtained from the CGS interferograms. Since eqn (16) is obtained from 
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Fig. 7. Comparison of the radial variation of the experimental data Y$r, 0) and the 
analytical fit Gy(r, 0) for various values of 0 for the same data presented in Fig. 5. 

a two-dimensional analysis, data from the near-tip three-dimensional 
region were excluded. The three-dimensional region excluded was 
based on a cut-off value for the degree of plane strain (which, strictly, 
should be zero in regions of plane stress) as shown in Fig. 2. 

Figure 7 shows the results for one particular time instant during crack 
propagation in a specimen 20 pus after crack initiation. The agreement 
between the fitted function G? (based on the transient expansion (15) to 
0(r2)) and the experimental data in Fig. 7 is seen to be remarkably 
good. It is seen that the transient analysis agrees very well with the 
experimental data in the range (0.5 < r/h < 2.0, -n < 13 < n), whereas 
the KP-dominance assumption is clearly inadequate. This was the case 
for most interferograms obtained at times close to crack initiation. 

This strongly suggests that the observed lack of Kf-dominance in the 
two-dimensional region outside the near-tip three-dimensional zone is 
due to the important contribution of higher-order terms to the total stress 
and deformation fields around the crack tip. The importance of these 
terms relative to the first term of the expansion is found to be intimately 
related to the transient nature of the crack-growth event. 

Equivalent conclusions can be obtained when CGS is applied to the 
investigation of crack growth in opaque materials (see Ref. 8). 

To further illustrate the transient nature of the crack-tip fields, the 
time histories of the stress-intensity factor K;(t) and of the coefficients 
Pk(t) inferred from the data during a representative dynamic fracture 
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Fig. 8. Time histories of KY(t) and P*(t), each normalized by its mean value, for the 
duration of a particular crack-propagation event. (Crack growth in PMMA.) 

experiment are shown in Fig. 8. Each of the quantities are normalized 
by means value for the entire test. Even though the crack speed was 
very uniform during the entire observations, Fig. 8 clearly shows the 
transient nature of the crack-growth process. For at least the first 50 ,XS 
after initiation of a crack growth from a stationary blunted notch, there 
is significant fluctuation in the values of fit(t), k = 2, . . . ,7. 

Figure 8 clearly shows the inadequacy of a steady-state higher-order 
expansion at times less than approximately 50 pus after initiation. As 
evident from the above results, the assumption of K;1-dominance may 
fail in the plane stress region surrounding the near-tip three- 
dimensional zone. This is expected to be true at times shortly after 
initiation or during the arrival of stress waves from the specimen 
boundaries when transient effects increase the importance of the 
higher-order terms relative to the singular term of the asymptotic 
expansion. This phenomenon is expected to influence the inter- 
pretability of other optical techniques applied to dynamic fracture, such 
as photoelasticity and caustics. For caustics, for example, it is expected 
that optical caustic patterns obtained from near-tip regions and 
analyzed by using the classical KP-dominant analysis (see Rosakis and 
co-workers’4 and Beinert et al.13] would not necessarily yield the correct 
value of stress-intensity factor. (For an improved analysis of caustics 
using the transient higher-order expansion presented above, see Liu et 

al. 12) 
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Fig. 9. Effect of wave reflection on caustic shape. A visual demonstration of the 
destruction of Kf-dominance by transients. Material, AISI-4340 steel; specimen, double 

cantilever beam. 

A visual illustration of the effects of transients on the shape of the 
optical caustics is shown in Fig. 9. Here a crack is propagating 
dynamically in a wedge loaded, ‘narrow’, double cantilever beam 
specimen which acts as a wave guide. As the crack initiates, unloading 
waves, visible as bright lines, are generated (first two frames). The 
waves are reflected from the specimen sides and interact with the 
propagating crack tip, distorting the caustic shape (third to seventh 
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frames). After this time, multiple wave reflections help create a less 
transient environment in the specimen and the caustic curve attains a 
shape more closely resembling that predicted by KY-dominant analysis. 
Although the above example is clearly extreme compared with crack 
growth in a large three-point bend specimen where wave reflections are 
not so important, it helps visualize the effect of transients in destroying 
KY-dominance. 

The experimental and theoretical results summarized above lead us 
to the following general conclusion regarding experimental dynamic 
crack-growth studies: 

‘Contrary to conventional wisdom, strict K;1-dominance in the vicinity 
of dynamically propagating crack tips appears to be the exception 
rather than the rule. It is thus critically important that interpretation of 
the experimental data under assumed Kp-dominance, steady-state or 
two-dimensional conditions be carefully justified prior to attributing 
physical credence to the observed phenomena.’ 

This observation may have important consequences in resolving a 
number of controversies that have arisen in experimental dynamic 
fracture studies of the recent past. In particular, this realization may be 
relevant in the resolution of the debate concerning the existence of a 
unique relation between dynamic fracture toughness and crack-tip 
velocity (uniqueness of the Kf versus u relation). For further discussion 
on this point see Refs 9 and 12. 

APPLICATION OF CGS TO THE INVESTIGATION OF 
DYNAMIC FRACTURE IN BIMATERIAL INTERFACES 

In this section we describe the initial steps of an investigation aimed 
towards the understanding of the mechanics of dynamic crack initiation 
and growth in bimaterial interfaces. Our goal is to perform direct 
optical near-tip dynamic measurements of deformation fields in real 
time and to study the effects of inertia and rate sensitivity on the 
initiation and propagation throughness of bimaterial systems. Here we 
report on our initial investigation regarding the interpretability of CGS 
fringes obtained at the vicinity of cracks in bimaterial interfaces. We 
concentrate on the influence of near-tip three-dimensionality on the 
interpretation of the optical patterns. Our aim is to identify regions 
near the tip where existing two-dimensional theories may facilitate the 
inference of relevant fracture parameters. We also present the results of 
some preliminary dynamic crack growth experiments in impact-loaded 
PMMA-Al specimens and PMMA-steel specimens. 
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Fig. 10. Experimental arrangement for dynamic crack growth in bimaterial interfaces. 

The specimen configuration is of the three-point bend type and is 
shown in Fig. 10. The bimaterial combinations tested were those of Al 
and PMMA and of steel and PMMA. Initial cracks existed on the 
bottom of the specimen along the bond line. In the dynamic experi- 
ments the specimens were impacted by means of a drop-weight tower. 

DATA ANALYSIS 

The data analysis in this case proceeds in a similar manner to the one 
described above for the homogeneous case. As noted there, it is very 
important to first identify the regions near the crack tip where a 
two-dimensional asymptotic field dominates. Once this is achieved, 
available analytical two-dimensional descriptions of the deformation 
field can be used to extract the relevant dynamic fracture quantities. 

We start by considering the nature and extend of the near-tip 
three-dimensional zone for the case of a crack in the PMMA-Al 
interface, three-point bend bimaterial specimens. In what follows we 
present three-dimensional numerical results for the ratio 
(TJY~((T~~ + a,,) (Y = (1,2), at the vicinity of the crack tip. In this 
expression, Y, and y2 correspond to the Poisson’s ratio in the PMMA 
and Al parts of the specimens, respectively. 

In Fig. 11 the ratio is plotted for the specimen mid-plane. The top 
side corresponds to PMMA and the crack line is visible in the left-hand 
side of the picture. Figure 12 gives a three-dimensional view of the 
PMMA side which is relevant for the analysis of the transmission CGS 
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patterns. As is obvious from a comparison of Figures 2 and 12, the 
nature of the three-dimensional deformation of bimaterials is different 
from that of homogeneous systems. The top surface of the three 
dimensional mesh corresponds to the specimen mid-plane. As is 
obvious from Figs 11 and 11, the three-dimensional zone extends along 
the PMMA-Al bond line. Unlike the homogeneous case, there exists 
no plane stress region at any visible distance directly ahead to the crack 
tip. Here, plane stress conditions are achieved above a strip of height 
roughly equal to O-4 h lying ahead of the tip in the PMMA side. In 
addition, there exists a narrow wedge of plane stress defined by 
100“ < 8 < 150”, Y < 0.1 h. (For details see Lee and Rosakis”.) 

For points out the three-dimensional region, a plane stress ap- 
proximation will be applicable ((T~JY,((T~, + uZ2)+ 0). Indeed for such 
points the optical path difference for the PMMA side, AS, (eqn (2) 
which involves the ratio (T~JY~((T~~ + (T& will simplify to 

AS, = ch(&,, + && 

For cracks propagating dynamically in bimaterial specimens, Yang ef 
al. I9 observed that near the crack tip the stress field assumes the form 

&3 (17) 

where r, 8, are polar coordinates of a coordinate system translating with 
the crack tip at velocity u and Kd = Kf + iKf is the complex dynamic 

stress-intensity factor. The oscillatory index I = E(u) is now a function 
of crack-tip speed and the moduli of the materials of the bimaterial 
combination. Analytical expressions for a$$ and I?$! are given by Yang 
et al.‘” 

By using eqn (17) and after some algebraic manipulation, 6,, + eZ2 
can be written as 

i?~*+c?**= &. [U+d - 27~~~) exp [.s(n - e,)] cos (z - C#J - E In r,) 

+ (1 + ~yi + 2nc~,) exp [-e(Z + &)I cos 

where 
r-to, 05e5n (18) 

A=(4 

(CX: - CX:) IKdl 

(Y,(Y, - (1 + (Y:)‘) cash ETC 

ff/,s = 8, = tan-’ [(w,)/x,], 2 2 l/2 r, = (x: + (y/x2 > 

K*(t) = K?(t) + iK:(t), +(t) = tan-’ (K$(t)/Kf(t)) 
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c/,, are the longitudinal and transverse wave speeds, respectively; and 
E = E(V), 7 = +j (u), are functions of the crack-tip speed and of the 
moduli of the materials involved in the bimaterial combination. These 
functions are given by Yang et al. I9 and are such that E+ go, 77 + 1 and 
u + 0. The bimaterial constant E,, is called the ‘quisistatic’ mismatch 
parameter and is given by 

where k, = (3 - v)/(l + v~) for plane stress and Y, and E_L~ are the 
Poisson’s ratio and shear moduli for material 1 and material 2, 
respectively. 

It should be emphasized here that as u + O(q + 1, LY/ -+ l), 
1 + (r: - 277’~, vanishes and eqn (18) becomes 

&-,,+* =2expM+~)l 
22 I&ii cash (ZE) 

x[K,cos(i+elnr)-K,ji+elnr)], r-0, 

where K, = lK1 cos 4, K, = 1K1 sin 4. This is the expression appropriate 
for the analysis of CGS patterns in quasistatic bimaterial crack 
problems as described by Tippur and Rosakis.2” 

Also when the bimaterial system approaches the homogeneous limit 
E = 0 and since growing cracks in a homogeneous material can only be 
of the mode-1 type, (4 = 0), then eqn (18) reduces to 

6,, + 6.22 = 
~K;(cY; - LX:)@ + cu;>cos (8,/2) 

(4a,a, - (1+ @Z)2) v5& ’ 
r-+0 

which is the expression appropriate for the analysis of CGS patterns for 
the case of elastodynamic crack growth in homogeneous materials (see 
Rosakis’). 

The field quantity of interest in analyzing the CGS patterns in 
material 1 is ch d(G,, + S,,)l&,. By differentiating eqn (18) with 
respect to x, we have 

ch W*,, + C.22) = chr;3’2 exp (--~(n - &)]A 

JX, 29% 

X (1 + (Y: - 27~~) exp [2c(rc - 0,)] cos T - 4 - E In r,) 
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- (1+ Ly: + 277(Y,) cos ( 30, 
y+++clnr, 

1 

+ 241 + (YE - 277~~~) exp [21(x - @)I 

X sin ( 30, 
y - 4 - E In r, 1 - 2&(1 + a: + 277’~~) sin ( 38, 

T+4+clnr, )I 
(19) 

where A is defined in eqn (18) and 0 I 8 I Z. 
From the above discussion it becomes obvious that extraction of 

parameters is now possible provided that experimental data are 
gathered from a region near the moving crack tip characterized by the 
structure presented in eqns (18) and (19) (mixed-mode Kd-dominance). 

Guided by the shape of the three-dimensional zone (see Figs 11 and 
12) one expects that such a IKd]-dominant region may exist for the 
wedge 100” < 8 < 150”. Indeed, our numerical calculations show that the 
plane stress description is accurate in this wedge for O-1 h < r < h. For 
r > h, a higher-order plane stress expansion seems to be necessary. In 
addition and as will become obvious from the fringe patterns presented 
later, this region is characterized by a high density of CGS fringes. Use 
of eqn (19) in relations (5) for CGS allows for the estimation of the 
time variation of the parameters ]K”(t)l and 4(t) during crack growth. 
This is done by fitting the experimental data (in regions of expected 
IKd]-dominance) to the expected analytical form. This becomes possible 
provided that the crack-tip speed v(t) is independently measured during 
the dynamic event. Finally, knowledge of IK”(t)] and u(t) allows for the 
estimation of the dynamic energy release rate Gd(u). 

DYNAMIC EXPERIMENTS 

Bimaterial specimen preparation 

Bimaterial specimens used in the dynamic experiments are of the 
symmetric three-point bending configuration (Fig. 10). They are made 
from equal two thickness sheets (thickness h = 9 mm) of commercially 
available polymethyl methacrylate (PMMA) (material 1) and Al 
6061-T6 or AISI-4340 (material 2). The two halves of the specimen are 
machined to ensure square edges and the bond face of aluminum or 
steel is sand-blasted using lo-20 pm glass beads. The bond between the 
two materials is created using a commercially available (see Tippur and 



34 A. _I. Rosakis 

Rosakis’) methacrylate monomer (MMA) which polymerizes at am- 
bient temperature when mixed with a catalyst. This results in a bond 
material with stiffness characteristics similar to that of material 1. The 
two-part compound is mixed in the ratio of 100 parts by weight of 
MMA monomer and 13 parts by weight of the catalyst. The aluminum 
or steel face of the bond is coated with a thin layer of the mixture and 
held against the PMMA with a uniform pressure. The bond is cured at 
ambient temperature for 48 h and the resulting thickness is approxim- 
ately 100pm. More details regarding the bonding procedure can be 
found in Tippur and Rosakis.*” 

Since it is essential to ensure that the stiffness characteristics of the 
bond material conform with that of PMMA and in order to describe the 
specimen as a bimaterial system, a quasistatic, bond-calibration test is 
performed. This test uses three-point bend specimens in which both 
halves (materials 1 and 2) of the specimen are made of equal thickness 
(h = 9 mm) PMMA sheets and are bonded together using the above 
prescribed procedure. The experimental results obtained from these 
specimens are compared with those of a homogeneous PMMA speci- 
men (no bond) in the same three-point bending configuration, as 
described in detail by Tippur and Rosakis.20 

The calibration tests reveal that cracks in the PMMA-PMMA 
bounded specimens have quasistatic toughnesses very close (up to 5%) 
of those of homogeneous PMMA. This testifies to the strength of the 
proposed bond and becomes important in the discussion of the dynamic 
results presented below. 

Preliminary observations of dynamic crack growth, results and 
discussion 

The bimaterial specimens used in the dynamic experiments have a 
25mm long pre-cut edge notch along the interface. After the initiation 
event, the crack propagates dynamically along the interface. The 
bimaterial specimens are impact-loaded in a drop-weight tower 
(Dynatup-8100A); see Fig. 10. Intense stress waves generated by the 
impact and reflected by the specimen boundaries load the notch tip up 
to crack initiation and the initiated crack propagates dynamically along 
the interfaces at speeds up to 800m/s for the PMMA-Al bond and up 
to 950 m/s for the PMMA-steel bond. The transmission CGS technique 
is used in conjunction with high-speed photography to record dynamic 
crack-tip fields in a region approximately 50 mm in diameter around the 
notch tip. A rotating-mirror, high-speed camera (Cordin 330A) is used 
to photograph the fringes. Discrete images corresponding to different 
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stages of crack growth are formed by using a pulse laser as the light 
source. The light source is a Spectra-Physics Argon-Ion pulse laser 
(model 166). Short pulses of 20ns duration produce sharp interference 
patterns during crack growth. The interval between successive light 
pulses is set as 1 ps (lo6 frames/s). The high-speed turbine is brought 
up to the required speed and the camera shutter is triggered open 
before the falling weight makes contact with the specimen. When the 
drop-weight contacts the specimen, the laser starts pulsing and the 
event is recorded on the film tract. 

Unlike dynamic crack-growth experiments in homogeneous specim- 
ens, experiments conducted with bimaterial specimens pose an addi- 
tional degree of complexity in conducting the tests. In reality, it is very 
difficult to impact the specimens exactly along the thin (100pm) 
interface. Any slight experimental asymmetry results in an impact 
either side of the aluminum or steel half or the PMMA half of the 
specimen. Due to the differences in the wave-propagation speeds in the 
two materials, the dynamic loading histories of the crack tip corres- 
ponding to these situations differ vastly from one to the other. Thus, we 
had to choose to impact either the metal or the PMMA half of the 
specimen. In this preliminary report, we describe one set of results from 
dynamic experiments in which impact occurs on the metal half of the 
specimen at a small distance (5 mm) away from the interface. A typical 
sequence of crack-tip interference patterns (A = 44 mm) of the field 
quantity ch d(&,, + iT2J/dx, in PMMA is shown in Fig. 13. The 
bimaterial combination shown is PMMA-steel. The time t = 0 corres- 
ponds to crack initiation. At this point we refrain from reporting the 
complete time histories of Gd and 4 during dynamic crack growth 
before a critical mass of experiments are analyzed and before definite 
statements regarding a dynamic crack-growth criterion can be made 
with confidence. However, we feel that we can report on our observa- 
tions regarding the crack-tip velocity measured in the first set of 
experiments (six tests in PMMA/Al; six tests in PMMA-steel). 

When the crack imitiates (G - 150nlm, 4 - 50”) intense stress 
waves emanate from the crack tip. These waves are visible in Fig. 13 as 
discrete kinds in otherwise smooth CGS fringes. This observation is a 
reliable sign of the existence of very strong dynamic effects and of high 
velocities of crack growth that are a large fraction of c’,‘) (the Rayleigh 
wave speed of PMMA). It should be noted that such waves are not 
usually visible after crack initiation in homogeneous PMMA specimens 
of the same configuration and loading where the observed maximum 
crack-tip speeds are 0.35 cK. However, such waves appear in optical 
CGS or caustic patterns of crack growth in high-strength materials (see 
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Rosakis’), when crack-tip velocities are in excess of 0.4 CR. (See also 
Fig. 9.) 

A representative data set for the velocity and acceleration histories 
for a crack in a PMMA-steel specimen are shown in Fig. 14(a) and (b). 
Figure 14(a) reveals very high crack-growth velocities at times larger 

Velocity versus time for PMMA /steel fracture specimen 
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Fig. 14. Velocity and acceleration histories for the initial states of crack growth in a 

PMMA-steel interface. (From Lambros and Rosakis”.) 
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than 20 ps after initiation. The maximum recorded velocity is ap- 
proximately 95% of cLMMA (cEMMA - 9.50 m/s). 

Crack-tip accelerations (shown in Fig. 14(b)) are also very high in the 
initial stages of crack growth (of the order of 106g, where g is the 
gravitational acceleration). The above observations are consistent with 
the visual evidence of the existence of intense stress waves emanating 
from the crack tip after the crack initiates. 

The observation of very large crack-growth velocities was rather 
surprising given previous experience with dynamic crack growth in 
homogeneous PMMA specimens of the same configuration and loading 
(maximum speeds -0.35 cEMMA ). Attributing such phenomenon to the 
existence of a weak bond is not very convincing since our bond- 
calibration technique revealed a bond-fracture toughness very close to 
that of PMMA. As a result we believe that the reason for such high 
speeds of propagation is intimately related to the strong material 
properties mismatch between PMMA and steel. This mismatch is 
expected to produce a complicated mechanism of energy storage in the 
Al side and subsequent energy transfer from the steel to the PMMA. 

The observation of very high crack-tip acceleration indicates that 
transient effects may play a crucial role in the formation of the fringe 
patterns. Thus it is expected that in this case a transient higher-order 
expansion for the near-tip field for bimaterial cracks would need to be 
developed and applied to the analysis of the CGS patterns. The need 
for this step seems to be far more important than in the fracture of 
homogeneous solids. 

Our experimental observation of high speeds of crack growth are 
corroborated by recent theoretical results by Yang et al.,‘” who studied 
dynamic crack growth along perfectly bonded bimaterial interfaces. One 
very important conclusion of this study is that as the crack-tip velocity 
approaches the lowest of the two Rayleigh wave speeds, say cg), where 
CC) < c$$), a finite amount of energy has to be transmitted to the crack 
tip to maintain extension at c g) if IKdl is non-zero. This is unlike the 
homogeneous case where an infinite amount of energy has to be 
transmitted to the crack tip to maintain extension at cR if llYdl is 
non-zero. This obviously makes it energetically impossible for a crack, 
in a homogeneous solid, to exceed the material Rayleigh wave speed. 
Since no such energetic restriction exists for bimaterial systems and 
since the present experiments have already produced large propagation 
velocities, we intend to investigate the possibilities of bimaterial cracks 
propagating in the range c$j’ < u < c,). 

The experimental results reported here are very preliminary. We are 
currently in the process of developing a transient high-order expansion 
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for the dynamically growing crack in a bimaterial. This expansion will 
be used to analyze the dynamic optical CGS fringe patterns so that 
definite statements can be made regarding the velocity dependence of 
fracture toughness and mode mixity. 
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