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ABSTRACT 

A HIGHEK OKDEK asymptotic analysis of the transient deformation field surrounding the tip of a crack 
running dynamically along a bimaterial interface is presented. An asymptotic methodology is used to 
reduce the problem to one of the Riemann~Hilbert type. Its solution furnishes displacement potentials 
which we used to evaluate explicitly the near-tip transient stress field. Crack-tip ticlds corresponding to 
crack speeds up to the lower of the two shear wve speeds are investigated. An experimental study of 
dynamic crack growth in PMMA steel interfaces using the optical method of CGS and high speed 
photography. is also described. TrdnSOniC terminal speeds (up to 1.4c, FMM’) and initizll acceleralions 
(- IO’ m s ‘) arc reported and discussed. Transient effects are found to be severe and more important than 
in homogeneous dynamic fracture. For subsonic crack growlh. thcsc experiments arc used to demonstrate 
the necessity of employing a fully transient expression in the analysis of optical data to predict accurately 
the complex dynamic stress intensity factor history. 

1. INTR~IxJCT~~N 

ADVANCED MULTIPHASE materials such as fiber or whisker reinforced composites have 
seen widespread applications in recent years. It has been recognized that interfacial 
fracture may play an important role in determining the overall mechanical response 
of such multiphase systems. It is the low fracture toughness of these materials, 
which may result from debonding between different phases, that limits their use in 
engineering applications. Therefore. the scientific understanding of the mechanics of 
crack formation, initiation and crack growth in bimaterial interfaces is essential for 
the effective study of failure processes of these advanced composite materials. 

The earliest study of interfacial fracture appears to be by WILLIAMS (I 959). who 
examined the local fields near the tip of a traction free semi-infinite interfacial crack. 
lying between two otherwise perfectly bonded elastic halfspaces. He observed that, 
unlike in homogeneous materials, the interfacial crack exhibits an oscillatory stress 
singularity, Since then, SIH and RICE (1964) and RICE and SIH (1965) have provided 
explicit expressions for the near-tip stresses and related them to remote elastic stress 
fields. The works of ERDoGAN (I 965), ENGLAND (1965) and MALYSHEV and SALGANIK 
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(1965) have also further examined two-dimensional singular models for single or 
multiple crack configurations in bimaterial systems. Recent progress in static intcr- 
fiicial fracture includes work by RI(F (198X), HLJTC.HINSON and Suo (1991) ;lnd SHIH 

(1991). 
Depending on the nature of loads that the composite structure is subjected to. the 

debonding process may take place dynnmically. If the interface is alrektdy wcakencd 
by pre-existing flaws, these flaws may serve as sites of initiation of cracks which 
propagate unstably along the interface under the right circumstances. Such situations 
have motivated attempts to analyze dynamic crack propagation in intcrlilces. 
However, due to the complexity of the problem. thus far. only ;I few theoretic:)1 results 
of dynamic bimaterial crack growth have been obtnined. Among others, C;OI.‘IXHIJ-1% 
( 1967). BROCK :tnd ACHENBA(.H ( 1973). WII.LJS (I 971. 1973) and ATKINSON ( 1977) 
have provided crack line solutions of particular fracture problems. Although thcsc 
:inalytical results have provided some insights of the near-tip dynamic behavior. 
in order to effectively formulate and apply crack initiation and growth criteria in 
bimaterial systems. WC need knowledge :ibout the complete spatial structure 01‘ 
the field surrounding the moving interlilcial crnck tip. 

More recently, cxperimcntal investigations of intcrf:Gul cr;ick-tip deformation 
fields have been carried out by TIPPUR and ROSAKIS (1991) and ROSAKIS ct d. (1991~1) 

using the optical method of Coherent Gradient Sensor (CGS) (ROSAKIS. 1993) :ind 
high speed photography. The bimaterinl system they used ws ;I PMMA aluminum 
combination. They observed substantial crack-tip speeds (up to 90’%/,(.I;Mh”‘) associated 
with crack initiation and growth. Motivated by thcsc observations, YAF+(; c’f (I/. (1991) 
provided the asymptotic structure of the most singular term of the steady-stntc 
clastodynamic bimaterial crack-tip fields. In the work of Wrr (1991). similar con- 
clusions were reached. In addition. DENG (1992) obtained the asymptotic scricb 
representation of the stress field ne;lr the tip of ;I running interfGnl crack in ;I 
bimaterial system under steady-stnte conditions. Also motivated by the cxperimcnts 

of TIPPUR and ROSAKIS ( 199 I ). Lo c’t (I/. ( 1993) have performed a numerical analysis 
of the s;tme bimaterial system as w;~s used in the cuperiments. 

The question of whether there exists ;I K”-dominant region surrounding the crack 
tip (i.e. u region where the stress field can be well described by the leading singuku 
term only), or in fact whether steady-state truck propagation constitutes ;i good 
;issumption in imalysis. are issues to bc veriticd by experimental observations. New 
experimental evidence. described in this paper. emphasizes the existence ofsuhstanti;tl 
cr:ick-tip accelerations in addition to very high crack-tip speeds. The existence of high 
accelerations violates the conditions under which the steady-state :lssumption may 
confidently be applied. Motivated by the above cxperimcntal evidence, in this paper, 
we investigate the asymptotic structure of the near-lip field in :I bimaterial system, 
where 21 highly transient clastodynamic crack growth history has occurred. To do so, 
WC employ the Lisymptotic procedure proposed by ~lU:LNr> (1990) and utilized by 
FIIEUND and ROSAUS (1992) in studying the transient growth of ;I mode-l crilck in ;I 
homogeneous isotropic material. The same procedure WZG employed by Lru and 
ROSAKIS (1992) in studying the mixed-mode transient growth of a crack along an 
arbitrary curved path in a homogeneous isotropic solid. FOI- anisotropic solids. tran- 
sient crack growth under mode-l conditions W;IS recently explored by WII.IJS (1992). 
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In Section 2 of the present study, the general formulation and properties of the 
asymptotic procedure are described. By using this asymptotic methodology, the equa- 
tion of motion is reduced to a series of coupled partial differential equations. In 
Section 3. the solution for the higher order transient problem is obtained. By imposing 
the boundary conditions along the surface of the interfacial crack and the bonding 
conditions along the interface ahead of the crack tip, our problem can be further 
recast into a Riemann-Hilbert problem. Upon solving the Riemann-Hilbert equation 
and evaluating the Stieltjes transforms, the higher order near-tip transient elasto- 
dynamic asymptotic field can be obtained. In Section 4, the asymptotic elastodynamic 
stress field surrounding the interfacial crack tip is studied. The first stress invariant is 
provided explicitly. The properties of the interfacial mismatch parameters are studied 
in Section 5. These depend on the properties of the bimaterial combination and the 
crack-tip speed. In some of the available experiments by ROSAKIS et ~1. (1991a), and 
the experimental evidence described in this paper. it has been observed that an 
interfacial crack can reach speeds amounting to a considerable fraction, or even 
exceeding the lower Rayleigh wave speed of the two constituents of the interface. 
Recognizing that our analysis need not be limited to a velocity regime below the lower 
Rayleigh wave speed, in Section 6, we extend our solution to the case when the crack 
is traveling at a speed between the lower Rayleigh and shear wave speeds. Finally, in 
Section 7, recent experimental evidence of a transient higher order stress field in 
bimaterial fracture specimens is presented. The transient theoretical fields obtained 
in previous sections are used to analyze quantitatively optical interferograms obtained 
in real time high speed photography of dynamic bimaterial experiments in a PMMA- 
steel system. In addition. we present experimental evidence of transonic crack growth 
histories involving maximum speeds between 60 and 80% of the clilutationol wave 

speed of PMMA. For comparison purposes, one should note that typical terminal 
crack-tip speeds in homogeneous PMMA are of the order of only 20% of the dila- 
tational wave speed. 

7 GENERAL FORMULATION -. 

Consider a planar body composed of two homogeneous, isotropic and linearly 
elastic materials which are bonded along a straight line interface. A crack propagates 
non-uniformly along the interface, see Fig. 1. Introduce a fixed orthonormal Cartesian 
coordinate system (x,, .r2) so that the .u,-axis lies on the interface and coincides with 
the direction of the propagating crack. Suppose that the crack propagates with a non- 
uniform speed, z>(r), and the crack faces satisfy traction free boundary conditions. At 
a time f = 0, the crack tip happens to be at the origin of the system, so the growth of 
the interfacial crack at any t > 0 is characterized by the length /(t) (t.(t) = i(t)). which 
is the distance from the origin to the moving crack tip. If the deformation is assumed 
to be plane strain, for each of the two materials comprising the interface, the dis- 
placement field may be generated from two displacement potentials, 41(~~,, .Y?, t) and 
$,>(s,, _Y:, t),where k~ { I. 2) Here, the integer k is assigned to distinguish between 
the two different materials. In Fig. 1, material- 1 is the one shown above while material- 
2 is the one shown below the interface. Then, in either one of the two materials, the 
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two non-zero displacement components can be expressed as 

U,(.Y,, X2. 1) = &(.\-,. .Y:, t) +C,,,&,;(.Y,> _*2, ,). (1) 

where X, /))E {I. 2) and the summation convention has been used. 07,i is the two- 
dimensional alternator defined by 

(‘12 = -C’2, = I. C’,, = C” = 0. 

The components of stress for each material can be expressed in terms of the dis- 
placement potentials by 

where p is the shear modulus, and c ,. c, are the longitudinal and shear wave speeds 
of each elastic material above or below the interface, respectively. In terms of the 
shear modulus ~1. mass density p. and Poisson’s ratio 11, for each of the two materials. 
(‘I and C, are given by 

where 

i 

3 - 4\,. plane strain 

li = 3 - \' 

I +,” 
plane stress 

(3) 
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The corresponding plane stress solution can be obtained by changing the definition 
for the longitudinal wave speed in (3). Meanwhile, C, and C, in both plane strain and 

plane stress, are related by 

(4) 

The equation of motion in the absence of body forces in the fixed coordinate system, 
in terms of c$(.Y,, s:, t) and $(.Y,, s?, t). reduces to 

(5) 

Equations (5) hold for each material above or below the interface. 
We further introduce a new moving coordinate system, ([ ,, r?), by 

t, = .Y, -I(t), <? = x2. (6) 

This system is such that its origin is translating with the crack tip. In this new system. 
the equations (5) for c#I(~,, r2. t) and tj(<,, <?, t) become (FREUND, 1990) 

Notice that in (7), the differentiation with respect to time, t, is distinct to that in (5). 
Here. (i;,, Cz) are held fixed. whereas in (5), (x,. s.) are held fixed. Throughout this 
study, we will use (7/Zr, or ( ),, to denote differentiation with respect to time, t, when 
the moving spatial coordinates (<,. cz) are held fixed. The notation 1’) denotes the 
same operation when the spatial coordinates (I,, .Y?) are held fixed. 

At this point, we employ the standard asymptotic device used by FREUND and 
ROSAKIS (1992) for the analysis of transient crack growth in homogeneous materials. 
We assume that 4((,, l?, t) and $(<,. t?, t), for each material. can be asymptotically 
expanded as 

as r = (t:+(i)’ ’ -+ 0, where 11~ = &/E, 3 E { I, 2), and E is a small arbitrary positive 

number. The parameter E is used here so that the region around the crack tip is 
expanded to fill the entire field of observation. As E is chosen to be infinitely small, 
all points in the (l,, i”?) plane except those very close to the crack tip, are pushed out 
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of the field of observation in the (rf,, 71~) plane. and the crack line occupies the whole 
negative J/,-axis. By taking J: = I, the above equations will provide the asymptotic 
representation of the displacement potentials in the unscaled physical plane for each 
of the materials. respectively. 

In the asymptotic representation (8). the powers of I: itrc SLICK that 

pi,, / , = p,,, + ;. 177 = 0, I. 2. (9) 

Since the displacement should be bounded throughout the region. but the stress may 
be singular :tt the crack tip. /J,, is expected to be in the range I < p,, < 2 (FRI-USI). 
1990). We ;tIso should have 

I:“,‘, ’ ,,(i,,,> + (/(J/ 1 . q 2. f ) ---) () 

‘:“““/),i,(r/, . ‘1:. I) . 
as i: + 0. (I()) 

for ;\ny positive intcgcr 17. Returnin g to the unscaled physical plane, wc will have 

for any positive integer 77. so that in the physic;tl plane. (< ,. &). (/I,,~(< ,. c2. 7) ;II-c 
ordered according to their contributions to the near-tip deformation hcld. The ~tbovc 
propertics for c$,,, hold for I),,, as well. 

Substituting the asymptotic I-eprcsentations for c~(<,, <,, 7) and I//(<,. i2. I), (8). 
into the equations of motion. (7). we obtain two equations whose left-hund side is ~111 
inlinitc power series in I: and whose right-hand side vanishes. Since 2: is an arbitntry 

numbur. the coefficient of each power of ;: should be /cro. Therefore, the equation\ 

of motion reduce to ;I series of coupled ditfcrential equations for c/J,,,(r/ ,. JI?_ 7) :IIKI 
1//,,(71,_ JI ?. 7) 21s follows (ROSAKIS ~7 (I/., I99 I b : FI~I.LAI) ;~nd ROSAKIS. 1997) : 

for 777 = 0. I. 2, . and the quantities X, and x, depend on the crnck-tip speed, and 
therefore on time f through 

(13) 

Also 

(l),,i 
for 717 

> 
0 

+,,, $,I, 
for 777 > 0 

(I),,, = = 
0 for 777 < 0’ 0 for 777 < 0’ 

(14) 

In what will follow, for our convenience. WC drop the subscript which is used to 
distinguish between the two mitterials. However, we should keep in mind that the 

above ;tsymptotic form of the equations of motion ( 12) hold for each of the materi;tls 
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with the appropriate elastic constants. The term “coupled” is used above in the sense 
that the higher order solutions for 4,,, and $,Iz will depend on the lower order solutions 
for the same quantities. It is noted that, for the special case of strudy-stute crack 
growth. the crack-tip speed, P, will be a constant, and at the same time, c$,,,,, = ti,?,,( = 0, 
for nz = 0, I. 2.. . This means that 4,,, and $,,, depend on t only through the spatial 
scaled coordinate ‘1,. In such a case, the equations in (12) are not coupled anymore. 
and each one reduces to Laplace’s equation in the coordintes (kl,. ~~9~) for +,,, and 
(rl,, cc,rl,) for tj,,). For steady-state conditions, the functions c$,!! and $,!, are independent 
of time in the moving coordinate system. For the transient case, however, the crack- 
tip speed, l,(f), may be an arbitrary smooth function of time, and also @,,, and $,,, may 
depend on time explicitly in the moving coordinate system. The only uncoupled 
equations are those for tn = 0 and II? = I. For tn > I, we can see from (12) that the 
solutions for c$,,! and 11,~~ are composed of two parts. One is the particular solution 
which is wholly determined by lower order solutions for $,,,. and $,!,. The other part 
is the homogeneous solution which satisfies Laplace’s equation in the corresponding 
scaled coordinate plane. The combination of the particular and homogeneous solu- 
tions should satisfy the traction free conditions of the crack faces as well as the 
bonding conditions along the interface. In the following sections, we will solve for (b,,, 
and $,,, for the most general transient situation, and for both materials. 

It should be noted that the steady-state problem could be solved using the efficient 
Stroh formulation. This formulation reduces the two spatial and one temporal vari- 
ables to only two spatial variables and takes advantage of a well known formalism to 
solve the steady-state crack problem (YANG et rd.. 1991). However, this approach, 
although it can easily be extended to anisotropic solids, is strictly restricted to steady- 
state conditions and cannot be used for our present purposes. 

3. SOLUTION FOR THE HIGHER ORDER TRANSIENT PROBLEM 

As we have discussed in the previous section, the only uncoupled equations in (12) 
are those for nl = 0 and no = I. For 172 > I, the solutions for 4,!, and $,,, will be affected 
by the solutions with smaller m. In this section, we consider the situation of m = 0 
and 171 = I first. After we get solutions for m = 0, and I, we will subsequently solve 
for higher order q5,,, and $ ,,,. 

3.1. Solution.s,fbr &(q,, 7y2, t) w7d $,,,(q,. 7y2, t),fbr m = 0 ~ii7ri I 

For n? = 0, or 1. (I 2) reduce to 
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The above equations are Laplacc’s equations in the corresponding scaled planes 

(q,. x,I~~) for 4,,,, and (rl,, SI,Y/?) for $,,,. As we have mentioned earlier. the subscript 
k is omitted here, but the above equations hold for both materials that constitute 
the bimaterial body. 

The most general solutions for ( 15) can be expressed us 

(/I,,~(v,.v~.~) = Re (I%(--,;I)). $!),(II,.JI~.~) = Im (G,,,(z, it)). 

where the two complex variables 2, and 2, are given by 

(16) 

:, = ~7, +ic/.,q2, 2, = ,I, +icr,rl,, 

and i = V’ - 1. For the bimatcrial system. F,,,,(I, ; 1) and G,,,,,(z,; /) arc analytic in the 
upper half complex zli-. or :.,-planes for /C = 1 (upper material). and analytic in the 
lower half complex zli-, or -_,i, -planes for li = 2 (lower material). The complex con- 
jugates of these functions are also analytic on the plane obtained by reflection along 
the real axis. e.g. F ,,,, (_I ; t) is an analytic function on the f, plane. Since Y, and x, art‘ 
difl’erent for each material. the scaled complex variables 3, and r, will also be different. 
For fully transient problems. in the analytic functions F,,,,(T,; t) and G,,,,(:,; I). time t 
appears as a parameter. This suggests that these functions will depend on time t not 
only through the complex variables. 2, and z,. but also directly through time I itsclt‘. 

The displacement and stress components associated with these yi(,, and lb,>!, are giccn 

bY 

a n d 

cr’,“;‘=l(Re ((1+3ri--~)F:;,(-,:~)+2%,(1‘::,(~,;t)) 
,,I?) _ ci?? _ - -11 Re [(I +x:)F::,(3,:t)+3%,~;::,(_,;1)) . (18) 

illi) _ 
(511 - -1LIm 1(2r,I;::,(_,;r)+(l+cnt)G::,(-,;/)j I 

where primes denote the derivative with respect to the corresponding complex argu- 
ments. 

For any analytic function R(z). define the following, 

For rl, < 0 and 11~ 4 0 ‘, the traction free condition on the upper crack fact gives 

or, in terms of the complex displacement potentials F,,,(r, 1) and G,,,(r, : I). 
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Fort!, <Oandv3-+0 , the traction free condition on the lower crack face gives 
, (IV)> r O?I)I 
\c22, z = (0 12 j2 - - 0, 

or 

(~c(l+~t)[F::, (~,;t)tF::,i(~, ;t)l+2~~,[G::,~(‘1,;t)+~~:,+(~, ;Ol).z =O 

(2px,[F::, (q, it)-F::l+(y, ;t)]+~(l+r:)[G::, (,I, ;f)-(?:,‘h, ;r)l]? = 0 i 
(20) 

The above equations, (19) and (20), hold for rl, < 0. 
Along the interface, or tl, > 0 and q2 = 0, the bonding conditions should be satis- 

fied, which implies that 

( (III)) 
1g22, I - I ,c2212 - (ml 1 - () , on) I 

, (gl2J1-1 ‘0’;;‘) 2 = 0 

[U’I”“) , -{u y)2=o, 
I 

{L4’i”‘),_(L~y]2=0 ’ vv, >o, ‘12=(x 

or, in terms of F,,,(z,; t) and G,,,(z,; t), from traction continuity, 

M~+~“)K+(v, ;t)+F::i (7, ;01+2~4G::,t(vl, ;~)+G::,L(v, ;Ol}, 

:P( 1 + d[K (9 I ; t) + FE,+ (‘1, : r)l + 2,w[G::, (~j, ; t) + e::r+ (11, ; [)I; 2 = 0 

(2/m [CJ’ (v I ; t) - R, (17 , :r)l+p(l +$)[G::,+(v, ;r)-G::,- (a, :t)]), 

-(2~r,[F::, (ul,;r)-F;:,+(r?,;r)l+,1(1+~~“)[G::, (vl,;r)-G::l+(~?,;t)l}?=O 1. 

and from displacement continuity. (21) 

([F:,:(v, ;~)+%(JI, ;f)l+~,[G:v+(~~, :O+f%,, (v, ;Ol) I 

-([Cl (11,;t)+~~~:(rl,;f)l+~,[G;,, h;f)+~:,:h;t)])z =O 

11x1 K: (ul I ; 1) -FL- (v I ; f)l + [GA: (9, ; 0 -(?,, (v I ; 01) I 

I 

. (22) 

- (2, [Cm (v I ; r> - c,: (1? I ; t)] + [Gil (?I 1 ; t) - G;: (YI 1 ; 01) 2 = 0 

The above equations, (21) and (22), hold for 11, > 0. 
For simplicity, define the following matrices for each material. k E [I, 2). 

Also define the following complex vector for each material, 

La (: ; t) = (F,,,i, (2; f)> G,,,A t-t O)‘, 

where z = q, + ilIz. From the above definitions, the boundary and bonding conditions, 
equations (19), (20), (21) and (22), can be rewritten as 

P, f::,: (‘11 ; t> + Q ,% I (rl I ; f) = 0 

PZf:;,? (Y, ; r) + QJ::,t (VI, ; t) = o ’ 
v’1, < 0, (23) 



an d 

P,~::,:(‘I,:/)+Q,T::,,(~~,;~)-PP~::,~(~~,:I)-Q~T::~:(I~,:/) =o 

U,fb,:(q :t)+V,T:,,,(ry, :/)-Uyf;,,2(ry, :I)- v,T;,,‘2(ty, ;I) = 0 ’ 
V”I, >o. (74) 

Further, the bonding conditions in (24) can be rearranged as 

P,f:;,:(rj, ;t)bQ&t(t~, :I) = Pzf::,y(q, ;I)-Q,?:;,, (!I, ;/) 

u,f,;:,(rl, ;I)-v2T;$(IJ, ;t) = U:f;,,l(ll, ;t)-V,Tb,,(rj, :1) . 
v+ >o. (25) 

In the above equations (25). the left-hand sides arc the limiting values of functions 

which are analytic in the zapper halfplane. The right-hand sides are the limiting values 
of functions which arc analytic in the loafs halfplane. Since the limiting values arc 
the same along the positive real axis, the function Plf::,2(:; t) - Q ,f’::,, (I: 1) defined 
in the lower halfplane. is the analytic continuation of the function P,fii,, (3: I) ~ 
Ql~;~,,(z; /) which is defined in the upper half plant. and vice versa. This results from 
the continuation properties of analytic functions. As a result, Ke can write 

P,f;:,,(r;1)-Q2f‘::i~(-;t) = K,,,(T:/). ZES’ 

P,f:;,,(r:r)-Q,T::,,(_:/) = K,,,(z;~). -ES 1 ’ 
(26) 

and 

where 

u,f;,,,(_;f)-v~~;,,(_;/) = @,,,(:;I). 1E.S’ 

u’f,~i2(~;/)-V,~:,,,(~:t) = O,,,(z;/). 3e.s 1 ’ 
(27) 

K,,,(I; 1) and O,,,(r; 1) are analytic functions throughout the z-plane except along the 
cut C’ which is the entire non-positive real axis. From the above equations, it can be 
seen immedicatcly that (24) arc satisticd identically. So. the question now is to find 
the analytic functions k,,,(r ; 1) and U,,,(z ; f) in the cut-plane S ’ u S 

Solving for f:ili (z : t) and f::,, (z ; t) for (26) and (27). we get 

f;;,, (I; I) = P, ‘H ‘(0:,,(-:t)-i,2K,,,(-;~)I 

fs:;,, (:;t) = Q2 ‘H i ‘18:,,(_:t)~I,,K,,,(I;I)) ’ 

-ES’. 
- 

(28) 

and 

f:;,, (: ; t) = - P2 ’ li ’ jBk,(T;r)~i,K,,,(r;t)j 

T;;, , (z ; t) = -Q, ’ fi 
-E‘s 
- ‘(8:,,(1;/)--I,2K,,,(-:f)l 

The definitions of matrices IJL. i,. H and as well as the properties of these matrices 

are given in Appendix I. Matrices PA and Qk have been defined above. In obtaining 
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(28) and (29), we have assumed that the inverse matrices P, ’ and Qk ’ exist. Notice 

that the determinants of P, and Qk are both equal to D/,(1’), where 

Da(V) = j4r,cc,-(l+Gct)‘Ji. 

Therefore, in this analysis, we exclude the situation where the interfacial crack propa- 
gates with either of the two Rayleigh wave speeds of the bimaterial system which are 
the real roots of Da(~) = 0. This ensures the existence of P, ‘and QA ‘. 

Substituting (28) and (29) into the traction free conditions on the crack faces, (23), 
we get 

~:e:,:(rl,;t)-i~~,;:(~,;f))-Hje:,, (rl,;f)-L,K,,,()j,;t)) =O 

H(O,:, ()~,;t)-i,K,~,()I,:t))-iijeg:(rl,;r)-L,K,tj(I?,;t)} =O ’ 
vq, < 0. (30) 

Adding the two equations in (30), and using the fact that HH # o for a crack 
propagating with a non-zero speed, we obtain 

K,:(V, it)--K,,,(~?, :t) =o, vr/, < 0. (31) 

This implies that K,,,(z; t) is continuous across the cut except at the crack tip and 
therefore K,,!(I; 1) is analytic in the entire complex plane except at z = 0. However, 
the condition of bounded displacement requires that IK,,,(z; t)/ = O(lzl") for some 
c( > - I, as I,-/ + 0, so that any singularity of K,,,(z; t) at the crack tip is removable. 
Therefore, K,,,(z ; t) is an entire function. Now, both equations in (30) become 

where 

%,(V I ; t) = ‘d (YI I ; t) = Km (II I ; f) 

I R=jIi2-HL2=fiL,-Hi, 

Equation (32) constitutes a RiemannHilbert problem. Its solution &,,(z; t) is 
analytic in the cut-plane S+ u S Along the cut, &,(r; t) satisfies (32) for some 
arbitrary entire function K,,,(z ; t). Also, from the requirement of bounded dis- 
placements at the crack tip, as 1~1 -+ 0, 

for some 5x > - I. 

lK,(=;~)I = o(l:l”), (33) 

In (32), the solution &,(z; t) is composed of two parts, the homogeneous solution 
&,,(z; f), and the particular solution &,(z; t). We will consider these two solutions 
separately. 

Hwno,yeneous solution. The homogeneous solution is obtained by solving 

%::,:(v, it)-Hftj:,, (q, ;t) = o. VY/, < 0. (34) 

By using the solution given in Appendix 2 and by imposing restriction (33), we can 
write the solution to the above equation as follows : 

&:,,(z;r) = z-’ 2+q,I(I; t)[+z -’ 2 ~~2z,,,(2; t)i, (35) 
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where 

c. LIL (‘I trl. 

and I!,,,(:; t). B,,,(:; t) are arbitrary entire functions. The parameters x and ‘1 defined 
bet-e arc known functions of crack-tip speed. I’, and material properties. Their func- 
tional dependence on these variables is discussed in Appendix I and Section 5. For 
I’ = 0. z:(r) reduces to t:() which is the oscillatory index that appears in the quasi-static 
interf&5al crack problems (WILLIAMS. l9S9; RKJ:. 1988). 

By substituting (35) into (28) and (19). we get 

and 

Notice that the following identities hold. 

and 

1+/i= c .I- 
cash r:n ’ 

I _-p = e” 
cash r:n 

Without losing generality. we may absorb the factor V~1~lJt2,((lzi, -/7,T/13,) into 
the entire functions, A,,,(:; t) and B,,,(:; /). By taking the conjugate of the function 
f::,, (: ; 1) in (37) and comparin g it with the function !::,,(z: t) in (36), and also by 
using the properties of matrices PI and QL, WC c:m obtain a relationship between the 
entire functions A,,,(: ; 1) and .!?,,,(I ; I) as follows, 

: 
B,,,(.T ; t) = ~ .A,,i(T; t) 

Meanwhile. by using the fact that 

P,\ ‘i = Q,, ‘i. Q1. ‘4 = PA ‘5. 

we can get the solutions, 
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or. in terms of F,,,(z,; t) and G,,,(z,; t), for the material above the interface, 

For the material below the interface, the solution is also given by (39) with the 
parameter E~C changed to --ETC. 

Purticulur- .solution. Since K,,,(T; t) is an entire function, the particular solution 
db,(z; 1) can be easily constructed. Suppose e:,,(;; t) is also an entire function, 
which implies that 

6,: (rl I ; t) = e:,, (rl I ; t) = &,,(vl I ; t). 

then from (32), we get 

&,,(u], ;t) = {ii-H} I RK,,,(~, ;t), V’rl, < 0. (40) 

By using the identity theorem for analytical functions. it can be shown that for 
any I, 

e:,,(r;r) = {lk-HJ~‘R~,,,(z;t). (41) 

By substituting this particular solution into (28) and (29), we have 

f;;,,(g) = P, ‘jtkHj ‘(iz-LI)~,,,(z;t) 

f;;,&;t) = -Qr’{ri-H)~‘(i,-L,)K,,,(;;~) ’ 
-ES+, 
- 

(42) 

and 

&(z;t) =P2 ‘j&H) ‘(i,-L,)K,,,(z;t) 

i;;,,(z;/) = -Q;‘{ji-H) ‘{i2-L?)K,,,(,_;t) ’ 

-ES 

- 
(43) 

Notice that 
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If the entire function K,,,(: ; t) is expressed as 

ti,,,(z: t) = (/<;,;‘(z: /). /i:,;‘(z: I)) , 

then, it can be shown that by comparing the conjugate of T::,,(r: t) in (43) with 
f::, , (z; t) in (42). we have 

ti1,1’(1;t)+/l),l)(=;l) = 0, ~j,L)(_;t)~Jf1,2)(3:t) = 0. 

Define a new entire function A^,,,(: : t) by 

A,,,(:;f) = ~~[/i~,!‘(-;/,~k.j,,i’(~:t)]+[/ij,~)(~:I)+lij,~)(-:I)]). 

Also let 

By relating K,,,(T; f) to A,,,(z; 1). and by using the above definition. (42) and (43) give 

I;:,,(:; t) = P, ‘w,A,,,(z; t)-Q, ‘w2i,,,(z; I). IES” 

f::,,(z;t) = P2 ‘w,A,,,(z;t)--Q? ‘w,&,(z;t). ;ES I 
(44) 

In order to express the particular solution in terms of F,,,(z,: t) and G,,,(z,; I). WC‘ 
riced to define two parameters, CO, and (11, that only depend on the crack-tip speed, 

Then, for the material above the interface, the particular solution can be expressed as 

c::, (q ; t) = 
1 

,lD(tl) ic I 

4 

22, 

I f(J), 
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For the material below the interface, the particular solution is also given by (45) with 

CO, and w, changed to w,- ’ and CO, ‘, respectively. 
By adding the expressions in (39) and (45), and by integrating with respect to the 

corresponding arguments, the final solutions of F,J,r, ; t) and G,,,(z, ; t) for the material 
above the interface, for m = 0, I, can be obtained as 

and 

G (-, t) = it!? -d’+cr”)] e: _3,‘2+,i.~ (_. . fj 
18, I\’ 

pD(o) cash 1:~ -’ “’ -’ ’ 1 
+ C24+11(1 +dle ” _? 2 ,i.A (_ . tj 

pD(v)coshcn -’ “’ -” 
i 

I 
+ -~ 

1+x; 
(47) 

.~~~ 
/lD(l,) 1 + (0, 

B,,,(r,; t) 

where the entire functions, A,,,(;; t) and B,,,(z; t) are defined by 

and they can only be determined by the far field conditions. The solutions for the two 

displacement potentials, &,,,(q,, q2, t) and $,,,(g,, q2, t), will be given by (16). 
Since A,)?(: ; I) and B,,,(z ; t) are entire functions, they can be expanded into Taylor 

series, 

Ao(z; t) = i ‘4\;‘(t),“, &(z; t) = i Bjl”(f)Z” 
II= 0 ,i= 0 

1. 

(48) 

A, (z; t) = i A’;‘(t)?, B,(z; t) = i B:“‘(t)-_” 
II = 0 H = 0 

As we have mentioned in the previous section, in the unscaled physical plane. (t ,, [Jr 
(b,1z(4,, rz, t) and ll/,,([,, r?, t) should be ordered according to their contributions to 
the near-tip deformation field. By imposing this property, i.e. (1 I), to the rep- 
resentations of ~$,?>(q,, q2, t) and $,,,(q,, v2, t). for m = 0 and 1, we can obtain 
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restrictions on the entire functions A,,,(:; I) and B,,,(:; t). In the Taylor expansion 
(48). A\/“(r) # 0 and B’,“‘(t) # 0, but A’,“‘(t) = 0. In other words, the leading terms ol 
(b,, and 1c/,) are of order ; 3’2, whereas the leading terms of 4, and $, are of order z2. 
Meanwhile, it can be shown that the coefficient of the leading term, A\:“(r). in (46) 
and (47), is directly related to the complex dynamic stress intensity factor K”(r) defined 
by YANG rt rrl. (I 991) through the relation 

A;;“(/) = ~ 
I K”(t) 

2,‘~~ (;+ir:)(I+ii:)’ 
(49) 

As a matter of fact. in the unscaled plane, (<,, r2), and for 111 = 0. (46) and (47) are 

identical in spatial structure to the complete solution for the .stwr!)~-stutc propagating 
interfacial crack in a bimaterial. By using an entirely different methodology. the most 
singular solution of the steady-state problem was obtained by Y AN<; ct ~1. ( I99 I ) and 
the complete solution of the steady-state problem was given by DENG ( 1992). However, 
in the present analysis the functions A!‘:‘(f) and B!‘:‘(t) are allowed to be functions of 

time. 

For 111 = 2, the equations of motion (12) are coupled. They take the form. 

where I;,,(:,; /) and G,,(r,; t) correspond to the solution of (I 2) for 111 = 0 and are 
given by (46) and (47). 

In order to obtain the next most singular term in ~/)~(q ,. q2, t) and $2(tl,, rl,, I). WC 
should only consider the most singular terms in F,,(r, : t) and G,,(z, ; t). Therefore. for 
the material above the interface, 

F,,(z,;r) = N,,(t)A,j(t)z,3 2”J +h,,(t)A,,(r)r,’ z ” 

G,,(:,; t) = c,,(t)A,,(t)z,’ ‘+ ‘I +d,,(r)A,,(t)r ’ ” ’ 
(51) 

where A,,(r) = A$“(r), given in (49). and 

N (,) = _ [(I + 3/.,2) -2r~] e’” 
0 

@(l.) cash 1:~ ’ 

h (r) = _ [(I +~3+%4e ” 
0 

,ufl(~) cash 1:~ ’ 

c’,,(t) = D, -v( 1 + $11 CK 
pD(v) cash cn ’ 

rl (t) = PT+‘l(l +dlc ‘.I 0 ,tD(r, cash 1:71 
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For the material below the interface, we need to change the parameter 87~ to -UC. 
Substituting (51) into (50) and carrying out the differentiation with respect to time, 

A,,(f) = ($+ie)A,,(r), B,,(r) = (~+k)(J+ic)Ao(r). 

The most general solutions to (52) and (53) are 

~#~~(q,,q~,r) = Re(FZ(-,;t)-_,~(-_,;f)-_,~~(~,;(=l)l)) 

$2(tl,,q2,r) = Im(Gz(=,;r)-,~(L,;r)-_“~(=,;r)J I ’ 

where 

P(z;t) = D,{ql(r)}z3 Z+l’+D,{h,(r)];‘~2-” 

+i{K,(r)a,,(r)z3 ?+I’: +K,(t)b,,(t): 3’2m1’.j In z 

G(z; t) = D,(co(r)}r’;?+‘“+D,~d,,(r)lzl”-“: 

+dj~,(r)~o(t)z3”+t”: +$(t)d,,(r)z 3’2 ‘“} In ,- 

(52) 

(54) 



F(z: t) = B,(r)u,)(t);’ 2-‘t + B,(t)h,)(r)r ’ ? ‘j 

G”(z: t) = B,(r)c,,(r); ’ 2 + ‘/ + B,(t)d,,(r)z ’ 7 ” I 
The two operators D, (*) and D,{ *) are given by 

(2 + ii:) Id dt[~.’ ‘p(t)(~+i~)A,,(t)] 

I z 

+ Y!.‘ 
p(r)(i+ir:)A,,(r)+icr’ ‘p(t)A,,(t) 

I.5 

where p(t) is a real function of time f. Also 

B,,,(t) = ~ ,Ly’;I (1 +ii:)A,,(t) 
I,\ .I.\ 

illA,, 

In (54). $(z,; t), F(z(-,; 0, 6(z,; 1) and G(z,; /) arc totally determined by I;,,(:,; I) 
and G,,(z,; t), given in (51). The coefficients of functions E(r,; f), F(z,: t), 6(:,: t). 
and G(z,; t) are related to the crack-tip acceleration, the time derivative of A,,(t). as 
well as the crack-tip speed and A,,(t) themselves through the definitions of D,,, (A ,,( I)) , 
B,,,(r) and K,,,(t). It should be noted at this point that these definitions reduce to the 
equivalent ones corresponding to the transient crack growth in homogeneous 
materials. Indeed, if c is set to be zero, the expressions for D,,,( A,,(t)) and B,,,(t) that 
appear in FREUNII and ROSAKIS (1992) are obtained. Once again, it is clear that for 
the steady-state situation, functions 6’(:, ; t), p(r, ; t). 6(:, ; t) and (?(I,; I) will vanish. 
The undetermined functions F,(z, ; 1) and G2(r, ; t) are analytic in the upper half plane 

for the material above the interface and in the lower half for the material below the 
interface. These functions are at the moment unknown and will be determined below 
by using the boundary and bonding conditions. 

Associated with ~$Jrl,, q2, t) and ,b2(q ,. >I?, t), the components of displacement will 
be 

u’,~’ = Re (Fi(~,;r)+a,G’,(~,;t) 

- [a:,; I) +~,T(:,; I) +P(:,; t)+E,F(z,; r)] 

~r,[r,d,(~,:t)+-“G’(~,;1)--(r,;/)--2_,G(I,;t)]) 1 
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and the components of stress 

CT’,‘/ = PRe 
i 

(l+2ccl’-x’)F’:‘(3,;t)+2~,G3(=,;t) 

-(1+2sIf-CA,Z)[~,~(-_,;f)+~f~(~,:t)+2~((r,;r)] 
7 7 

-2 (1 -a’)+ ~-~ , _x-fc’ 2x,(x,-z3 [E,(_,;f)+2-,~,(=,;t), 
I 1 

-2x,[,G”(Z, ; t)+~~,‘G”“(z, ; t) -2&, ; t)] 

-2 

L 

(, _a’)_ Z(:f-M,2) 

I 1 
[F’(z, ; r) +2$‘(z, ; t)] ’ \ * _a2 

-2r,[,~“(_,;t)+~~,‘(I\;f)-2G(-,;t)] 

I905 

(56) 

(57) 

and 

CJ(~~ = -$m i2~,FI(_,;t)+(l+rt)G~(-,;t) 

- 24 [Z,E”(Z, ; 1) + $,zi;‘(z, ; t) - 2@, ; r)] 

I 

-(l+al)[-,6”(=,;f)+~~~(=,;t)+2~(-_,;t)] . 
(58) 

-2(1 -at)[d’(-,;t)+2,;~(z,;r)]) 

To produce a more compact form for the boundary and bonding conditions, one 
1, I. * 

needs to define the following quantities. First let P,, QR, Uk and V, be obtained from 

matrices P,, QA, U/, and VA. respectively, by changing the sign of the off-diagonal 
elements, and let 

where 
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Also. define complex vectors. 

f/,(-;t) = (F2,,(-;1).(;2~(z;1)) , 

f&f) = (F,\(r:t).e,\(z:r)) , 

T,(a) = (~,~,(-:t),~,~(r:t))!. 

Then, by using the above definitions. the traction free condition on the crack t&es 

The continuity of traction along the interface will reduce to 
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and the continuity of the displacement along the interface will be 

I907 

(61) 

Similar to the procedure in the previous section, by rearranging the bonding con- 
dition (60) and (61), we may introduce two new functions ~(2; t) and 0(z; t), which 
are analytic in the cut-plane S + u S In order to keep our notation short, we define 
some new quantities, 

gn(:;r) = f;(=;t)-=~~(=;t)--_?T;:(I;f) 

-2P,~‘M,[I;(=;t)+2zT;(~;t)]-2P,‘E;,T,(z;r) 
liG{1,2}. 

Therefore, we can write that 

and 

where 

and 

~(z;t) = P,g,(,_;t)-Q&(z;t) 

W’(z;t) = u,g,(Z;t)-Vzg~(~;t)+~,(=;t)-42(-;t) ’ 
-ES+, 
- 

K(-;t) = Pzgz(z;r)-Q,g,(z;t) 

/I”(Z;t) =uzgz(z;t)-V,g,(z;r)+q~(l;r)-4,(-_;t) I 
’ 

ZCS, 

q,(:; t) = 2(Lh.M, -L)[^f;(Z; t) +2,-T;& f)] +2(L,& -ti,)&(Z; t) 

&(-;t, = 2(i,N,-J)[^f;(-;t)+23T;(I’;t)]+2(ia~x-\;/,)2(;;r) ’ 

I=[(: :], J= [A i),]. 
Vector &(z; t) is related to vector qk(z; t) by 

(62) 

(63) 

(64) 

;I&; t) = (qi”(_‘; t), -qp(z; t))‘, qr(z; t) = (qi’)(-; t), q:?‘(z; t))T. 

This notation will be used throughout the paper to signify this operation. In cal- 
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c&tin& {,(z ; 1) and q,(r ; t) in (64), we have used the fact that 

P,\ ‘WI, = Q,, ‘Ni, P,\ ‘lj = Q,< ‘&. lie 11.1; 

By solving (62) and (63) for gn(z; I) and &(r: /). WC obtain 

g,(s;r) = P, ‘H ‘ie’(~;t)-i2K(I:f)-[q,(~;,)~(i2(-;f)]~ 
-ES’, 

’ - 

(65) 
&(I; t) = Q2 ‘H ‘le’(_;t)--~,K(r:t)-[[q,(_;t)-cE2(_:1)]) 

and 

g2(z; t) = -P, ‘iI ‘jO’(I;f)-i~,K(3;f)-[q2(_;t)-(il(r:f)]) 
-ES 

g,(r:t) = -Q, ‘li ’ - 

(66) 

It can be seen that the above equations are very similar to (2X) and (29) with the 

exception of terms q,(z: t) -{I(r; f) and q,(z; I) -(I ,(:; f), which arc totally dctcr- 
mined by the solution for 1~7 = 0. 

By substituting (65) and (66) into the boundary condition (59), one can show that 
K(T; f) is an entire function. As a result. the boundary condition (59) will reduce to 

Equation (67) also represents a Riemann~ Hilbert problem for W(: ; t). It requires 
that 0’(r ; 0 is analytic in the cut-plane S+ u S , and along the cut satisfies the above 

equation. By using the properties of our asymptotic expansion. (9) (I I). it can be 
shown that @‘(r ; I) should vary as 

for some CY > 0. The complete solution of (67) is generated by splitting the problem 
into the following two parts. 

To obtain the first part, let &(I; t) be an analytic function in the cut-plane S- u S . 
such that 

Ad’+(r1,;r)-Hd’ (rl,;t)=R~(k~,:/). v r/ , < 0. (60) 

This is exactly the same as (32). One basic diff‘erence, however, is that unlike the 
previous case. here &(r ; t) has to satisfy (68) (recall that before, 2 > - I). As a result 
of this observation. in the material above the interface, the solution for g,(z; 1) is 
given by 
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and 

where 

g,(z;f) = (g(,‘)(=;t),.~(,?‘(_;t))‘, 

and the entire functions A2(z; t) and L??(z; f) can only be determined by the far field 

conditions. Similarly, the solution for &(-7; t), in the material below the interface, can 
be obtained by changing the corresponding parameters in (70) and (71). 

The second part of the solution is obtained by letting 

Then, &(z; t) will be analytic in the cut-plane St u S -, and satisfy 

&‘+(q,;t)-H& (~],;t)=IZ(q,;f), Vv], <O. (72) 

Because the right-hand side of (72), R(y, ; t) is totally determined by the solutions 

40(vl~ YE 4 and 3&,, v2, 4, 8’(z; 4, and therefore, &(z; t) are also completely 
determined. 

By using the results in Appendix 2, we can write 
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where 

The explicit dependence of qa(-I ; 1) on r can be obtained from (64). 

qA(--;t) = t~lr~,,(t).(.,,(/):-’ 2-ii +i, {h,,(t).d,,(t))~ 2 ‘I 

+ii(3+2ii:)(I,,~M~-I)k,~~r,,,(~),c.,,(~)j-’ ’ ” In: 5 (74) 

+ ii(3-2il:)(LIM,,~I)i;~ ~h,,(~).~/,,(/))z’ ’ ‘, In; 

where operators like ti (o,,(t). c,,(f)) and kA [rro(t). c,~(/)), etc. are given in Appendix I 

From the definitions for Gn(r; /) and the above, one can get 

q,(z;t)-&(::t) = /k’ ?‘I, _;:I 1 “+ri<_l 211, ]nr_ii;rl 2 I< In: 

q’(z;f)--&(z;t) = y-1 “li _;_I 2 (2 +&I ?+I? ,,,_&I 2 I< In_ i . 
(75) 

where quantities of /?, y. 5 and g are also given in Appendix I It should be noted here 
that p and y depend on the crack-tip speed and the complex parameter A,,(t). as well 

as their time derivatives. However, 5 and s depend only on the crack-tip speed and 
the complex parameter A,,(r). The right-hand side of (7X), ~?(rl, ; I). becomes 

rZ(111 ; r) = iio,,(-rl,)’ ‘+I, In (-~,)+ii&,,( -ry,)’ 2 1’ III(-~~,) 

+w,(-,I,)’ ?+‘I +;,(-,?,)I 2 ‘) 
1 

. ti ‘1, < 0. (76) 

where 

Once again, it can be seen that w,, does not depend on the time derivatives of the 
complex parameter A,,(t) and the crack-tip speed, while w, depends on these quantities. 
The functions inside the integrand of (73) can be rewritten as 

20?, ; f) 

L’ 01,) 
= -ie”‘(iio,,In(-rl,)+ii;,,(~rl,) ‘irIn-r7,) 

1 

In order to obtain the solution for f?(z: I), we recast (73) into the form of a Stieltjes 
transform by using (77). However. one can see that for our case, a closed form 
evaluation of the Stieltjes transform integral is very difficult. At the beginning of this 
section, it was mentioned that only the most singular terms in the solution of F,,(z ; 1) 
and G,,(z; r) are considered. This implies that we are only interested in the t-c&ion 
where 1~1 + 0, i.e. very close to the interfacial crack tip. As a result. instead of 
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evaluating the entire Stieltjes transform, we only need to study the asymptotic behavior 
of that transform as 1~1 -+ 0. The details of this asymptotic analysis are given in 
Appendix 3. If only the leading terms in the Stieltjes transform are retained, by using 
the results provided in Appendix 3. the solution for e’(z; t) can be obtained as 

&(:; t) = i[[,,= “z+U &I 2 “](lnz)2+[~,_l 2tlr_;,;l 2 “.]In; 

+ [<,[Z’ 2+1J,-;,,;1 1 “,]-tO(l;l) 

where in developing the above equation, the relation 

en’ _, e”’ 
1.2 E. , 

has been used, and the following notations have been defined : 

(78) 

. 

In constructing the entire solution for g,(z; t) and g?(r; t), the leading terms in (70) 
and (7l), areconsidered. This isconsistent with the fact that (78) contains only leading 
terms of the same order. The final solutions for g,(z; t) and gz(r; t). are therefore 

g,(3;t) = d[P, ‘Hm’[,r’ ~+‘.._Q;l+~,,& 2 “](lnz)’ 

+[p, ‘Hm’([,-ct)z”‘+” -Q, I& ml(5;-E<)z’ ?-“.I In- 

+[PI’H~‘(~,,-~)~‘,~+‘~ _Q+‘(i;,_~)-_12 “] , :ES+, 

(79) 

-ES , . 

(80) 
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Our final target is to find the complex potentials fk(-_; t) = (F,,(z;t), G?Jz; t))T_ 
After some manipulations, f’; (z ; f) and fl(r ; 1) can be expressed as 

f’;(:;/) = i(P; ‘H ‘[,,-’ 2+LQ, $ Is;,=’ 2 “) (I,,:)’ 

+ ([P, ‘H ‘(&6{)+iiw,,, (rr,,(t),(,,,(~))];’ ?+I, 

-[Q, ‘fi I(<,-ii<)-r%,,, (h,,(/).d,:(l)j]z’ ’ “) In: 

+ i[P, ‘H ‘(C,,-P)+wl, (~,,(t).~,Jr))]z’ ‘+I, 
-ET. . - (81) 

-[Q, ‘li ‘(i;,-Y)-w,,:h,,(t).r/,,(t)l]-‘? “1 

+ 

and 

where the operators w,,~(* . *) and w,~(*. -) are given in Appendix I. By integrating the 
above two expressions with respect to the complex argument I, we can finally obtain 
the complex potential fL(r; t) = (F?,>(:; t). GzA(z; t))- for both materials. 

Since (81) and (82) are directly related to the stress components around the inter- 
facial crack tip, some of the noteworthy features of the asymptotic field can be studied 
through them. The most interesting feature is that there exist two terms in the above 
equations. which are totally different in nature from the terms found in the solution 
of a crack propagating transiently in a homogeneous material. The first of these terms 
is that associated with z’ ‘(In z)‘. This term is clearly associated with the interfacial 
nature of crack growth since it is proportional to the quantity 6. This quantity is also 
related to the transient nature (existence of non-7ero accelerations) of the problem. 
Ry observing that 

one can easily see that il, and thus the z’ ‘(In T)’ term, vanishes either when the crack- 
tip speed is constant and/or when the material mismatch parameter L vanishes. 

The second term is that associated with z’ ’ In z. The coefficient of this term is 

related to the complex parameter A,,(r) and also depends on the crack-tip speed. as 
well as on their time derivatives. So it depends on both C(r) and I?‘. It can be seen 
that for constant speed transient crack growth (r: = 0. k” # 0). this term will still be 
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present. Indeed the Y”’ In r term has been observed by WILLIS (1973), who studied a 
particular constant velocity, transient interfacial crack growth problem. Both of these 
two terms which include logarithms will vanish at the same time only if the situation 
is strictly stew& .state. Otherwise one or both will be present. These logarithmic 
singularities are the consequences of the existence of both the interface and the 
transient nature of the propagating crack. For the case of crack growth in a homo- 
geneous material (E = 0), p = y and g = s, see Appendix I. This is true even if 
crack propagation is transient. As a result. it can be shown that w,, = o, = o, and 
consequently, [,,, [,, and [,, will vanish. The logarithmic terms also disappear. In this 
case, the transient field reduces to the one obtained by LIU and R~SAKIS (1992) which 
does not feature any logarithms. It should be stated at this point that transient higher 
order terms involving logarithmic singularities have also been observed in the solution 
of dislocation lines propagating transiently in elastic solids (CALLIAS rf ul., 1990; 

MARKE~SUWF and NI. 1990). These terms were shown to vanish when the dislocations 
propagated with constant speed. 

In this section, we have provided a procedure which allows us to investigate higher 
order transient effects systematically. By imposing the boundary and bonding con- 
ditions on the complex potentials, the problem was recast into the Riemann-Hilbert 
problem. By solving the Riemann-Hilbert equations, and by evaluating the Stieltjes 
transforms, the higher order terms were obtained. This procedure can be repeated to 
any order, and we may therefore claim that it is constructive. 

4. THE ASYMPTOTIC ELASTODYNAMIC FIELD AROUND A NON-UNIFORMLY 

PROPAGATING INTERFACIAL CRACK TIP 

For planar deformation of a homogeneous, isotropic. linearly elastic material, the 
ordered array [II,. c,,~, gl,]], M, /I E (1,2}, is said to be an elastodynamic state in the 
absence of body force density, if the following conditions are satisfied 

G/l = t(%,, + +,,) 

where /, is the mass density and 3,, ,U are Lamk constants of the material. In addition, 
the field quantities u,, c,,~ and a,,{ must satisfy the smoothness requirements outlined 
in WHEELER and STERNBERG (I 968). 

In the Cartesian coordinate system (<,, t2). let 4,J<,. t2. t) and $,,!( t,, r2, t) be 
solutions of (12). PIZ = 0, 1, 2,. . . , such that 

asr=J&i”+o, m=o.1.2 ,..., (84) 

for any positive integer n. Thus, 4,,,(( ,, 4>, t) and 1),,~(4,, rz, t) will be two asymptotic 



(85) 

Then, the array [u,, E,,~, oXii], c(, /IE [ I, 2), will constitute an us~~ptotic~ elastodynamic 
state as i’ = (cf + <i)’ ’ + 0, if it satisfies 

Now, consider a planar body composed of two homogeneous, isotropic and linearly 
elastic materials bonded along a straight interface. Let the two displacement potentials 
for each material be given by (8.5), where each term of the asymptotic series is the 
solution which has been discussed in the previous section. The asymptotic clasto- 
dynamic state near the non-uniformly propagating interfacial crack tip can then he 
obtained from relations (86). 

For its importance in the experimental investigation described in Section 7, WC only 
provide the asymptotic expression of the first stress invariant around the interfacial 
crack tip. However, in order to shorten our expression. some notation needs to be 
detined first. In the expressions below, the superscript (1) or (2) denotes the com- 
ponents of the vectors defined in Appendix 1 and in previous sections. For the 

material above the interface, we may define the following quantities. 

-[(I +%,~)/~,?+2cc,/l,,](i)i’-/i’~‘)] +,~.j”jcr,,(t).(.,,(I)), 
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+[(l+n*2)I?,?+2crs/?,,](%j,~‘-~‘”)i -l~l”ih,~(t),do(t):. 

Now. one can show that by using (46) and (81), the first stress invariant in the material 

above the interface will be given by 

Cl I +a22 
2,L($ -X,2) 

= Re {i,,(t)u,,(t)z, I Z+K+&r)h,,(t)l, 1’2 II 

2% 
~(A,(t)+~,(t))+ii:(t)ao(r)=,,“+~~+~Z(t)hO(t)_7,,~2 It 

+ Jqr)(l+w,) 

+[A,,(+,' ?+I1 +B,,(t)Z,z,- "2+'1 +C,,(t)5,5, 3 2"1 > (87) 

_;l,,(r)_,l 2 “:_j&)~,z, I ? “:_~,,(/)=f_, 1.2-I>] 

+[A,(+, 2’“~+B,(t)~,z, ’ ?+I1 -;lr(f)r,’ 2-1r _b,(f)z,~,~ IL2 “‘1 In=, 

+i[cl,,(t),_,’ lilt -ii,,(t)=,, ‘m”] (ln;J2}+O(Iz,I) 
J 

where 

2(1+4) 

2(l+cxf) 
Jw) = fi,(f)+ jj&? ((3 -k)D,{h,,(t)} +CK,(t)h,(t)} +2B,(t)h,(t), 

I 

2(1 +a;) 
B,,(r) = -(~+ie)(i+i~)D,{u,,(t))-2$I+i~)K,(t)u,,(t)- -i_uf (i+k)B,(f)a,,(f), 

h,,(r) = (1-k) (f-k)D,{ho(f)) +2C(l -ic)E,(t)h,(r)+ 
2(1 +zf, 

,--G~ (4 - ic)f%t)h,,(t), 

C,,(1) = (h+c’)B,(t)cr”(t), P,,(t) = -(:+EqB,(t)h,,(t), 

2(1 +af)ti 

2( I + nf)i 
A,(r) = h,(t)+ ~~_~~(:-i~)~,(t)h,(t), 

I 

B,(t) = -its+ ic) (f+ic)K,(r)u,,(t), 

h,(1) = i(j-k) (I-ie)K,(t)h,,(t), 

In expression (87), functions of time k,(t), R ,(t) and A,(t) are undetermined by 
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the asymptotic analysis. On the other hand. functions A,,(/), B,,(I), C,,(l). .i,,(,). . 
are known in terms of k,,(r), the crack-tip acceleration c’(t) and the time dcrivativc of 
k,,(r). As a result, these functions arc also undetermined by the asymptotic analysis. 
However. their dependence on time derivatives of ~(1) and ,2(,(l) constitutes the 
mathematical demonstration of transient etfects. 

It is often convenient to express the first stress invariant in terms of real quantities. 
FOI- any complex function of time W’(t). let its magnitude be denoted by 1 M/I, and its 
phase be denoted by Q(W). Meanwhile. a scaled polar coordinate system (K,, 0,) 
centered at the moving crack tip is defined b) 

The first stress invariant in the material above the interface can therefore be expressed 

21s 

* 
+~ijC,~(O~)cos(i:lnr,)+C,,(fI,)sin(r:Inr,)j r,’ ‘(In,-,)’ (88) 

t 
+ [C,(O,) COs (I: IIll.,) +Z,(fI,) sin (i:In v,)) K,’ ‘111 q 

I 

* 
+ (C,,(H,)cos(i:In~,)+C,,(O,)sin(r:In~,)) K,’ ’ 

+lk2(f)i jC~(~l,)cOs(~:In~~,)+~z(ff,)sin(i:Inr-,)~~,’ ‘+O(r,) 

where 
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- IA,(t)l emcul cos 
i 

(: +a(a,))+~i,(t)~e’ulcos($ +@(;L,))JR, 



The first term in (X8) has a square root singuarity and oscillatory nature. It is 
associated with the complex dynamic stress intensity factor K”(t) [defined by YANG 
PI I//. (1991)] which is related to the complex coeficient A,,(t) by 

K’(t) = -?,;,27&([) 

The second term is the so-called T-stress term. :lnd is independent of position. The 
first two terms have the same spatial form as those obtained under steady-state 
conditions by DEN<; (1992). However. the remaining four terms, proportional to 
the square root of the radial distance from the crack tip. are more complicotcd and 
have some unusual features. The part associated with ik’?(t)l has the same form 
;IS that predicted by the steady-state solution and is of order 1.’ ?. The term of order 
1.’ ’ (In r)’ has a coefficient proportional to I: = c:‘(r-)6(t). This term vanishes eithcl 
when I’ = 0 :indlor I: = 0. The remaining two terms contain the functions C,(I),). 

X,(0,), C,,(O,) and c,,(1),) which depend on the time derivatives of the complex dynamic 
stress intensity Clctor and the crack-tip speed. i.e. they depend on transient cfTects. 
These parts also vanish for steady-state crack grobvth. The term of order 1.’ ’ In I’ IV;IS 
first observed by WILLIS (1973) who analy;led the stresses in the case of constant 
speed, transient interfacial crack growth. In this case, 1: = 0. hi” # 0. ~tnd the only 

surviving terms will be of order 1.’ ’ In I’ :ind 1.’ ‘, If the two elastic materials that 
constitute the himalcrial system become identical, the terms associated with 1.’ ’ (In 

v)’ and 1.’ 2 In I’ will disappear. However. in this CUSL’, the functions C,,(O,) and i,,(f),) 
do not vanish and reduce to the ordinary transient terms given by LIL. and ROSAKIS 
(1992) in studying the transient growth of ;I crack in homogeneous mntcrials. It is 
significant to note at this point that transient efli-cts may noticeably change the I’ ;lnd 
0 structure of the field from that predicted by the steady-state approximation [e.g. 
existence of logarithmic 1.’ ’ In I’ and V’ 2 (In 1.)’ terms]. 

5. PROPERTIES OF THE MISMATC.H PAKAXETERS IN DYNAMIC‘ INTE:RI;AUAI. FIUC~TURI: 

In the analysis of ;1n interfacial crack dynamically propagating along the intcrlacc. 
there ;irc two mismatch parameters which depend not only on the propertics of the 
materials that constitute the bimaterial system, but also on the crack-tip velocity. The 
properties of these parameters are very important since WC have seen that the :tsymp 
totic representation of the crack-tip field is drastically changed due to their presence. 
One of these parameters is defined by 
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and the other one by 

(90) 

In the above definitions. 

(91) 

where 

To illustrate the properties of the mismatch parameters. we choose a bimaterial 
system composed of PMMA and AISI 4340 steel. We denote PMMA as material-l 
and ATSI 4340 steel as material-2. The mechanical properties for these two materials 
are listed in Table I. 

For both plane strain and plane stress, Fig. 2 presents the variation of the parameter 
ye with respect to the crack-tip speed. We can see that r] varies smoothly from I .O for 
the stationary interfacial crack, to 8~ as the crack-tip speed approaches the shear 
wave speed of PMMA (c:“). However, the situation is different for the parameter /j. 
In Fig. 3, we can observe that if the crack-tip velocity is less than the Rayleigh wave 
speed of PMMA (c’,“), [i varies smoothly and tends to - 1 when the crack-tip speed 
is very close to c k”. Since D,(V) will change sign as the crack-tip speed crosses c!:), [I 
jumps from - 1 to 1, and then tends to x as the crack-tip speed tends to c:“. Figure 
4 shows the variation of /I when the crack-tip speed is bigger than c/I’). Figure 5 
presents the behavior of the parameter i;’ when the crack-tip speed is below the Rayleigh 

TABLE 1. Properties of '.rulecteci muterialsl_ 

Paramctcr /l(GPa) 1’ c,(m s ‘)$ c,(m SC’)S; c,(m s ‘) (.K(m s- ‘) /I (kg m ‘) 

PMMA I .20 0.35 2081.7 1761.5 1004.0 937.8 1 190.0 
AISI 4340 80.0 0.30 5978.8 5401.9 3195.8 2959.X 7833.0 

t The parameters for PMMA are from CYRO Industries. Woodclif Lake. NJ 06675: the parameters 
for AISI 4340 steel are from Aera~pucr S/rucrurtr/ Mc~& Hundhook, Battelle Columbus Laboratories, 
Columbus, OH. 

1 Plane strain, #plane stress. 
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wave speed of PMMA. It shows that I: tends to x as the crack-tip speed is very close 
to (,k”. However, as the crack-tip speed crosses the speed (,i:‘, since /j is larger than 
I. E will become complex. and thus c can be written as 

r:=Yz+!i * . 2: = 
1 ,*,/~-I 

27-l /I+l’ 
(92) 

Figure 6 gives the variation of the real part of 2: (i.e. i”:) with respect to the crack-tip 
speed when the interfacial crack is running at speeds between (,i<’ and (,I”. We can 
see that the real part of 8: changes from - SY, to 0 when the crack-tip speed is in the 

range of ck” < 1’ < (,i”. 

6. THE ASYMPTOTIC FIEI.I) OF AN INTER~AC‘IAI. CKA<‘K PROPAGATING AT A SIV+U 

BETWEEN THE LOWER RAYLEIGH AND SHEAR WAVE SPEHX 

In recent experimental investigations, described in Section 7, bimaterial specimens 
composed of PMMA and AlSI 4340 steel have been tested dynamically. This bi- 
material combination exhibits a remarkable stifincss mismatch. It was observed that 
under impact loading conditions, interFacial cracks may propagate at speeds exceeding 
cl:‘, see Section 7. This experimental observation motivates our attempt to investigate 
dynamic crack growth in interfaces at speeds exceeding the lower Rayleigh wave 
speed. In homogeneous materials, an infinite amount of energy has to be transmitted 
to the crack tip to maintain extension at the Rayleigh wave speed if the dynamic stress 
intensity factor is non-zero (FREUND. 1990). This makes it impossible for a crack in 
a homogeneous solid to exceed the Rayleigh wave speed of that material. However, 
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for a crack growing along a bimaterial interface, it has been shown that as the crack- 
tip speed approaches the lower Rayleigh wave speed, say cc’, only a finite amount of 

energy has to be transmitted to the crack tip if the dynamic stress intensity factor is 
non-zero (see YANG et ul., 199 I). Accordingly, there is no energetic restriction for an 
interfacial crack to exceed the lower Rayleigh wave speed. Indeed, the experimentally 
obtained velocity histories reported in Section 7 (see Fig. 14) are seen to largely exceed 
the Rayleigh wave speed of PMMA. 

In the analysis of previous sections, the governing equations hold for crack-tip 
speeds in the range 0 < z: < c, (I), if material- 1 is more compliant than material-2. Also, 
the development of the asymptotic stress field around the tip of a non-uniformly 
propagating interfacial crack is dependent on the complete solution of the Riemann 
Hilbert problem. However, from the procedure provided in Appendix 2, we can see 
that there are no restrictions imposed on crack-tip speed from this procedure. The 
only consequence of the restriction that the crack-tip speed is in the range of 0 < 13 < 
CL’), is that all parameters appearing in the solution are real. Nevertheless, the math- 
ematical approach is not limited by this restriction, even if some of the parameters 
become complex. Therefore, we can directly extend our solution to the case where the 
crack-tip speed exceeds the lower Rayleigh wave speed. 

Suppose the properties of the materials constituting the interface are such that 
(.t” < <.(K2), and (‘(Kr) < 11 < c(‘) As we have shown in the previous section, the par- 
ameter ‘1 remains real, but c becomes complex and is given by (92). If only the leading 
term is considered, under the requirement of bounded displacement, or integrable 
mechanical energy density (FREUND, 1990), the two complex displacement potentials 
in (46) for the material above the interface, become 

F,,(r, ; t) = - 
[(l+cA,2)-2~p,]e:” _2+ltA”(t) 

(2+i~)(l+ic)@(~:)sinh&r-’ 

(93) 

[2x,-~(1 +x”)]e”” Go(r,;t) = ~_ ~_ _ -L _~ ~ z,2+$(t) 

(2 + ii)( 1 + ii)@ sinh an 

(2 - it)( 1 - ig),uD(zT) sinh F~L 

for an arbitrary complex function A,(r). To obtain this result, the definition of c in 
the speed range ~1:’ < r < c{“, (92), has been used. For the material below the 

interface, we need to change ire to -in in the above expressions. By setting 

A,,(r) = A(t) e’““‘, 

the first invariant of stress for the material above the interface becomes 



-(l+$)sinh[~(7c-O,)]) cos(~In~~,+~(t)) J 

It can be observed that oscillations still exist along the radial direction. However, 
there is no singularity at the propagating crack tip. 

At a position. r, ahead of the intcrfacial crack tip. the traction on the interface can 
be expressed as 

yo,z(~;r)+irr,l(r.;t) = -ZqP+A,,(t). (95) 

At a position. r, behind the interfacial crack tip, the crack fact displacemcnt difference 
is found to be 

h,(r.; t) 2r$,, I 
I 4 1: 

ii, (r ; t) -i = ‘,1,,(t). 
‘I sinh E I + ib 

(‘)h) 

If the interfacial crack extended an amount ii. then the energy released by this 
extension, A IV(a) can be calculated by 

0 

ACY(ii)=: ‘CT _ (, , 22(CI s ;r)o~(b--l;, :t)+n,,(<, ‘_ 
, 

:t)d,(6-:, 1,); d:,. (97) 

By using (95) and (96). we can express the above equation as 

(c)X) 

Further, it can be shown that 

Therefore. the energy release rate at the tip of an interfacial crack moving at speeds 
in the range CL” < 1‘ < c:“. Y, will be 

:g = lima y(6) = (). (99) 
I) * 0 0 

This result may be anticipated since in this range of speeds. both stress and strain arc 
bounded. Equation (99) states that if the speed of the interfacial crack is in the range 
C$ < I’ < CL”. no energy is needed to croatc new surfaces. 

7. EXPERIMENTAL EVIDENCE FOR THI; IMPORTANCF. OF TRANSIEKT EFFWTS IN THF 

DYNAMIC FRACTURE OF BIMATERIAIS 

To investigate the validity of the analysis presented in this work, a sequence of 
dynamic impact experiments of bimaterial specimens has been performed. Stress 
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waves generated by impact, load an interfacial pre-crack, which subsequently propa- 
gates dynamically along the bimaterial interface. High speed interferograms of the 
near-tip region of the propagating crack are recorded. The optical method used is the 
newly developed method of Coherent Gradient Sensing (CGS) (TIPPUR et al., I99 1 ; 
R~SAKIS, 1993) described below. 

7. I. Experitnentul technique (transmission CGS) 

Consider a planar wavefront normally incident on an optically and mechanically 
isotropic, transparent plate of initial uniform thickness k and refractive index n. 
As shown in Fig. 7, the specimen occupies the (x,, xl_)-plane in the undeformed 
configuration. When the specimen undergoes any kind of deformation (static 
or dynamic), the transmitted wavefront can be expressed as S(.r,, _Y?, .uJ = .Y~+ 
AS(,r , , x2) = constant, where AS is the optical path change acquired during refraction. 
As discussed in detail by ROSAKIS (1993), AS is related to the deformation state by 
the relation, 

s 

I.? 

s 

I 2 
AS(s,, x2) = 2h(n - 1) t:jj d(.u,lh) f2h An d(x,/h). (100) 

0 0 

The first term of (100) represents the net optical path difference due to the plate 
thickness change caused by the strain component Ebb. The second term is due to the 
stress induced change of refractive index of the material. This change in refractive 
index An is given by the Maxwell relation, 

Collmated 
Xl 

Laser Beam 
t 

Filter Plane 

g 
High Speed Camera 

FK;. 7. Schematic of the optical set-up for CGS in transmission. 
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where D, is the stress optic coefficient and cr,, are Cart&an components of the nominal 
stress tensor. The above relation is strictly true for isotropic, linearly elastic solids. 
For such solids, the strain component ~~~~ can also be related to the stresses, and ( IO()) 
then becomes : 

where 

and E, 1’ and cri are the Young’s modulus. Poisson’s ratio and stress optical coefhcicnt 
of the material, respectively. 

A schematic of the experimental apparatus is also shown in Fig. 7. When the 
transmitted wavefront emerges from the specimen after being distorted. it passes 
through two high density gratings, G, and G2 of pitch ,I), separated by 21 distance A. 
The gratings have their rulings parallel to either the X- or s2-direction. The action of 
the gratings is to displace (shear) the diffracted beam and recombine it with itself. 
thus creating an interferogram after G?. The lilterin p lens L processes the light 
emerging from G2 and its frequency content (diffraction spots) is displayed on the 
back focal plane of L. By physic:tlly blocking all diffraction orders except for either 
the + I orders. information regarding the gradient components of AS(.y,. v?) along 
either the .v ,- or .\-,-axis is obtained on the image plane. The camera is kept l'ocud 

on the specimen plane. For grating rulings perpendicular to the .\-,-axis. the resulting 
fringe pattern is proportional to <(As)/?.\-,. % E 1 I. 2). 

A first order ;tnalysis described by TIPPIJR ct rrl. ( I99 I), or ;I higher order Fourier 
optics analysis by LEE c/ ol. (1993). have shown that the resulting fringes can be 
rclatcd to gradients of AS(.\-,. _I-:) as follows : 

(103) 

where 

‘I 
111 for r = I. 111 = 0. * I, +2.. 

k, = 
tz for x = 2. it = 0. f I. +3.. . 

and tt7 and t? are the fringe orders for the .v,, .Y? gradient contours respectively. 
Invariztbly a near-tip three-dimensional region will exist in any real specimen 

geometry. However, outside this three-dimensional tone. ;I plane stress approximation 
will be valid. A numerical study of each particular specimen configuration is needed 
to identify the extent and exact location ofsuch :I plunc stress region. Such a calcuhttion 
has been performed by LEE and ROSAKIS (1993) for 21 three point bend bimaterial 
specimen. A rather large two-dimensional plane stress region was seen over ;I sag- 



Transient interfacial crack growth 1927 

nificant portion of the specimen. In this region, crj3/~(o, i +oz2) (a measure of three- 
dimensionality) tends to zero. For points outside the three-dimensional region 
[(T~~/v(~J,, +cZZ)+O], the optical path difference in (102) will simplify to 

AS(.Y,,X,) = c,/?(6,, (x,, x2) +c?~~(.Y,, x2)], (104) 

where 6, , and ti12 are thickness ar~~~yrs of the stress components in the plate. 
As a result, for points outside the near-tip three-dimensional region, the CGS 

patterns assume a simple interpretation in terms of two-dimensional stress field 
approximations. In particular. (103) and (104) now indicate that fringes obtained 
from regions surrounding the three-dimensional zone can be related to the in-plane 
gradients of 6, , +ez2 as follows. 

where in the case of transmission c, is the stress optical coefficient of the material (e.g. 

PMMA). 

7.2. E_pvYnwntul set-up and procedure 

Bimaterial specimens used in the dynamic experiments are of the three point or 
one point bend configuration and are made from 9 mm thickness sheets of com- 
mercially available poly-methylmethacrylate (PMMA)(material-I) and AISI 4340 
steel (material-2). The bonding procedure is outlined in T~PPUR and RWAKIS (1990). 

A bond strength calibration experiment was also performed in that study, dem- 
onstrating that the bond toughness was at least as much as that of a homogeneous 
PMMA specimen. This fact testifies to the strength of the bond and becomes important 
in the discussion of the dynamic experiments presented below. 

The bimaterial specimens have either a pre-cut notch, or a sharp pre-crack of length 
25 mm along the interface. The specimens are either impact loaded in a drop weight 
tower (Dynatup-8100A) or a high speed gas gun. After the impact event, the crack 
propagates dynamically along the interface. The transmission CGS technique in 
conjunction with high speed photography is used to record dynamic fields around the 
crack tip (only on the PMMA side, of course). A rotating mirror high speed camera 
(Cordin model 330A) is used. A Spectra-Physics Argon-ion pulse laser (model 166) 
is used as the light source. By using short pulses of 30 ns duration, we are able to 
freeze even the fastest of running cracks and thus produce a sharp interference pattern 
during crack growth. The interframe time (controlled by the interval between pulses) 
is typically set at I ps for a total recording time of 80 ,US. The laser pulsing is triggered 
by a strain gage on the specimen that senses the impact. 

True symmetric one or three point bend loading cannot be achieved since it is 
extremely difficult to apply the impact load exactly on the interface, which is very 
thin. In addition. since the wave speeds of PMMA and steel are vastly different, the 
loading history at the crack tip would be completely different if the specimen were 
impacted on the PMMA or the steel side. Thus it was chosen to impact the specimen 
a small distance (7 mm) into the steel side of the bond. 
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A sequence of high speed interferograms from a PMMA-steel test is shown in Fig. 
8. This is a three point bend test conducted in a drop weight tower. The impact speed 
was4ms ‘. When the crack initiates (t = 0 ps), intense stress waves emanate from 
the crack tip. These waves are visible in Fig. 8 as discrete kinks in otherwise smooth 
fringes and as circular lines centered at points along the crack line (see frames at 
I = 16.5 ,LLY and t = 23 ~“s). This observation is a reliable sign of a highly dynamic 
event, as will be discussed later. 

In subsequent sections we shall present an analysis of CGS interferograms ot 
dynamic bimaterial specimens first using a ((“-dominant assumption and then using 
the higher order transient field described in Section 4. 

7.3.1. Sinpk~r fic~ld (K”-clonri/zunc~). The governing relations for CGS ( 105) can be 
used to estimate fracture parameters from points outside the three-dimensional zone 
of a given interferogram. One could expect that the plane stress region surrounding 
the near-tip three-dimensional region would be well described by the most singular 
term in the asymptotic expansion for stress. i.e. that a K”-dominant region would 
exist somewhere around the crack tip. This is something to bc verified though and 
should not be taken for granted, especially in regions relatively far from the crack tip 
or in experiments showing transient effects (e.g. rapidly changing crack-tip speed). In 
such cases the deformation held around the crack tip may be better described by a 
higher order analysis. 

As was stated earlier (see Section 4), for cracks propagating dynamically under 
.stcrrci~. state conditions in bimaterial specimens. YANG et ul. (1991) and the lirst part 
of the present analysis observed that near the crack tip the stress field assumes the 
form, 

( 106) 

where (Y, 0) are polar coordinates of a coordinate system translating with the crack 
tip at speed 1’. and K’ is the complex dynamic stress intensity factor. The material 
mismatch parameter I: = I:(V) is now a function of crack-tip speed and of the elastic 
moduli of the materials of the bimaterial system. Analytical expressions for (ii;; and 
ri$’ are given by YANG cf ~1. (1991). 

By using (106) and after some algebraic manipulations. ri, , +tiz2 can be written as 

where 

A(t) = (af-aI)lKd(t)l , K‘i(O 
D(r) cash (CR) ’ 

K”(f) = K‘f(t)+iK$(/), O(t) = tan 
K<;(t) 
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--.- 
t=3 ps t=8 ks 
v=140 m s-l v=720 m s-l 

FK. I 

t=13 /Js t=16.5 p-s 
v=llOO m se1 v=l 100 m s-l 

13. Selected sequence of CGS interferograms of a growing crack in a one point bend interfacial 
gun experiment. (Only the PMMA side of PMMA steel specimen is shown.) 
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FIG. 16. Comparison between the CGS fringe pattern and the fitted higher order transient stress field, 
(IO9), for a propagating crack in a PMMA-steel interface. 
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t=o- p_s t=1.5 FS t=5 ps 
v=O m s-t v=360 m s-l v=670 m s-l 

t=s.5 KS t=11.5 ps t=15 p,s 
v=llOO m s-l v=1210 m s-l v=1300 m s-l 

FIG. IX. Selected sequence of CGS interferograms of a growing crack in a one point bend interfacial gas 
gun experiment. (A blunt starter notch was used.) 
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t=10 k.5 

v=lOOO m s-l 
t=12.5 /.Ls 
v=1170 m s-l 

FIG. 

t=15.5 p&s t=18.5 ps 
v=1190 m s-l v=1470 m s-* 

19. CGS interferograms providing visual evidence of the highly transient nature of dynamic interfacial 
crack growth. 
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and x,.?, r,,\ and H,,, have been defined in previous sections. The mismatch parameters 
v and e are functions of crack-tip speed and of material properties. These functions 
are given in Section 5 and appear in Figs 2 and 5, respectively. Note that (107) is the 
first part of (88) in Section 4. The field quantity of interest in analyzing the CGS 
patterns for material- I is c&(6,, + 6z2)/?.~,. By differentiating (I 07) with respect to 
.Y,, we have 

( 30, 
-(I +$+2yl~,)cos 2m +@(t)+r:Inr, 

I 

+2c(l+6!(,?-2~c(,)e”“” “l’sin 2 -Q(t)-~i:lnr, 
( 

3fI, 

2E(l +a,2+2ya,) sin 
( 

‘2”! + Q(t) + c In Y, 
11 

L (108) 

where A(r) is as defined in (107) and 0 d 0, d 7~. 
From the above discussion it becomes obvious that extraction of parameters like 

K” is now possible procidcd that experimental data are gathered from a region near 
the moving crack tip characterized by the structure presented in (107) and (108). In 
a laboratory specimen of finite size where transient effects may be important, the field 
may not be Kd-dominant and the use of a higher order analysis may be necessary. 
The necessity of a higher order analysis in the interpretation of optical data from 
crack growth in homogeneous specimens was demonstrated by FREUND and ROSAKIS 

( 1992) and KRISHNASWAMY and ROSAKIS (1991). An equivalent analysis for a tran- 
siently propagating interfacial crack has been provided in previous sections and its 
effect on data interpretation is discussed in the next section. 

7.3.2. Higher order transient unulysis. In Section 4, a higher order expansion for 
the trace of the stress tensor in plane stress is shown in (88). By differentiating with 
respect to the ,x,-coordinate, we obtain a relation for the .x,-gradient of ti,, +cf2?, 
which is relevant to the analysis of CGS interferograms. 

(01 I +~22).’ 
2~($ .-a: j = l~~o(t)I {M4) cos(~Inr,)+Ifl,,(Q,)sin(~Inr,)) r[ “I 1 

* 
+i(IT,,(B,) cos (F In r,) + II,,(@) sin (i-: In r,)) rl “’ (In r,)’ I 

* 
in,(@) cos (6: In r,) + II, sin (E In r,)) r; lb2 In rI 

+ (II,,(o,) cos (E In r,) + fI,,(O,) sin (E In r,)} rl”’ 

+~~~~(t)~{~,(~,)cos(~Inr~)+ti~(~,)sin(cInrJjr, “‘+O(rJ 
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The functions of time .&o(f), ‘d?(f). al,,(t), . . . , that appear in the above expressions, 
are related to functions A,,(f), A?(t). A,,(r). , in (87) by 

&,,(t) = (-i+k)k,(t), a!?(t) = (++ie)A?(f), 

.ti,,(f) = (I+ic)A,,(r)+A,(t)+B,,(t). 

G,,(t) = (i-k);l,,(t)+ij,(t)+ij,,(t), 

B,,(t) = (--J+ic)B,,(t)+B,(t)+2C,,(t), 

G,,(r) = (-_i-ir-:)13,,(r)+h,(t)+i-,,(t), 

V,,(t) = (-i+iE)C,,(f), G,,(t) = (-j-ie)?Yt,(t), 

.&,(t) = (1+ic)A,,(t)+2E~Z,,(t)+B,(r), 

.2,(r) = (i-i~);l,,(t)+2&,(f)+ik,(t), 

H,(r) = (-$+ie)B,(t), &[(t) = (-I-ie)k,(f), 

&(t) = (-;+k)R,(r), i,,(t) = (I-k)&,(l). 
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The gradient contains four orders in v,. They iirc q ’ ‘. r ’ ’ (In v,)‘. Y, ’ ’ In P, and 
1’1 ’ I. It also contains 28 undetermined constants. The first two constants I.(/,,/ and 
(I)(.(/,,) are related to lK”l and CD (or K’i. K!) of the expression of YANG ~JI r/l. ( I99 I) 
[see (108)]. In f;lct the most singular term of (109) reduces to (108). Under stcady- 
state conditions. (109) reduces to an expression with four terms which are idcnticul 
to the first four terms of the higher order steady-stutc expression derived by DI:N(; 

( 1992). The transient contributions to the expression for the gradient (10X) ;lrc those 
that exhibit an Y, ’ ’ (In Y,)’ and Y, ’ ’ In /‘, radial dependence. It is worth noting that 
most of these transient terms :lre muiltiptied by the cluilntity 2:. the rate of change 01 
the oscillatory index with time (ii = c’([.)!‘). Thus. to ;I certain extent. tj is a IIIC;ISLII-c 

of transience of the propagating crack. If fj = 0. most, but not all transient terms 
disappear. Those that remain ;Irc those related to the rate of change of the complex 
stress intensity f:ictor. Note that it is possible for ii to be small cvcn if ;I Inrgc 
acceleration exists. but C’(V) is small. Conversely it is possible to have ;I large ;i 
corresponding to small I’ but large I:‘. It should be noted that C’(V) tends to infinity 
as I’ tends to (,I:’ (see Fig. 5). Whether or not ii ciln be used as a rcliabte mcasurc of 
transience will be investigated in the subsequent section. 

It is clear at this point that analysis of the fringe patterns obtained from ;I dynamic 
experiment can be made using either (108) or (109). The choice of one or the othct 
depends on whether ii region of K”-dominance has been established somewhere outside 
the near-tip three-dimensional /one. USC of cithcr equation allows estimation of the 
time variation of the relevant parameters. This is done by performing a Icast squares 
fitting procedure to data points digitized from the CGS interfcrograms obtained 
during :tn experiment. Of course the crack-tip speed c’(t) is measured independently. 
There ;Irc two undetermined parameters in (10X) and 28 undetermined constants in 

(109). 

The velocity and acceleration histories corresponding to the sequence of photo- 
graphs in Fig. 8 are shown in Figs 9(a) and 9(b). This is a test performed in ;I drop 
weight tower under the relatively small impact speed of 4 m s ‘. Indeed the terminal 

speed in this test seems to bc about 90% of the Rayleigh wave speed of PMMA. (.I:’ 
[see Fig. 9(a)]. In contrast. previous experience with dynamic crack growth in /~o/Jx- 
yctwozrs PMMA specimens of the same configuration show 21 maximum speed of 
about 0.35~‘,‘. Note also that in this particular bimaterial case there is ;I very large 
crack-tip acceleration (approximately IO’ g, where g is the acceleration of gravity) 
immediately after the crack initiates [see Fig. 9(b)]. This would suggest that transient 
effects would be present close to initiation (t = 0 1~). As was mentioned earlier the 
rate of change of the oscillatory index with time (8;) may be considered ;I pilrtial 
measure of transience. For the same test HIS Fig. 8, we have plotted 8: and i: versus time 
in Figs IO(a) and IO(b). In Fig. IO(b), >j exhibits a local maximum at :tbout / = IO 
/is after initiation. It then starts increasing again after 25 ~1s. At short times after 
initiation, C’(V) is close to zero although 1’ is large (IO’ g). This ;Iccounts for the 
initially low values of ri. In this regime transient ell‘ects arc demonstrated through 
large changes in the complex dynamic stress intensity factor. As time increases the 
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I:IG. 9. Velocity (a) and accclcratmn (b) time histories for the experiment shown in Fig. X 
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combination of ~‘(13) and 1; results in a local maximum in ri. At later times (t > 25 

~LS) and as the crack-tip velocity approaches the Rayleigh wave speed of PMMA, ii 

increases again. 
To demonstrate the need of a transient analysis in interpreting experimental data, 

let us now attempt to analyze the frame of Fig. 8 at t = 9.5 ps. This corresponds to 
a local maximum value of C: in this particular test. By following the fitting procedure 
described in Section 7.3.2, we can obtain the coefficients of either (108) or (109). The 
result of such a fit for the K”-dominant field [equation (IOS)] is shown in Fig. 1 I (a). 
The diamonds are digitized data points from the interferogram at t = 9.5 ps. The 
solid line is the contour of the quantity ?(6,, +6’22)/8.u, calculated numerically by 
using the results for Kd from the fit generated by the same data points. As can be 
clearly seen. (108) cannot represent the data to any reasonable extent. The deformation 
field of this particular picture therefore is nowhere near K”-dominant. In fact the main 
feature which is that the fringes vertically approach the interface cannot be captured 
at all by (108). The result of the fit of the transient higher order field [equation (109)] 
derived earlier is shown in Fig. I l(b). The data points are exactly the same as before 
and the solid line is the result of the fit. Clearly the fit is very good over a large area 
of the specimen. All features of the field are successfully captured by (109). This shows 
that the K”-dominant analysis cannot be used for cases where g is high. 

To further investigate the effect of ri on the interpretation of optical data, we chose 
to analyze an interferogram corresponding to the minimum value of g within the 
duration of the test. This occurs at t = 23 ,US. Figure 12(a) shows the result of the 
K’-dominant fit to the experimental data. As the crack tip is approached, (108) seems 
to adequately describe the experimental measurement. However, as the distance 
from the crack tip is increased, K”-dominance is lost. Nevertheless, the lack of K’1- 
dominance in Fig. 12(a) (I: - 1.0 x IO’ s- ‘) is not as dramatic as in Fig. I I(a) 
(C - 1.2 x lo4 s ‘). Figure 12(b) shows the result of the fit of the transient higher 
order field to the same experimental data as Fig. 12(a). The fit is now much better 
over the whole range of radii. The above observations show that in general a transient 
analysis of data is necessary if fracture parameters such as Kd are to be obtained with 
confidence. 

7.5. Transonic trrrnind .sp~~cl.s 

The next cycle of experimentation involved bimaterial specimens loaded at higher 
loading rates than in a drop weight tower. This was achieved by using a high speed 
gas gun. A one point bend impact geometry was used. Again the issues of crack-tip 
loading history, as dependent upon PMMA or steel side impact, arise. It was chosen 
to impact the specimens on the steel side, to remain consistent with the drop weight 
tower tests. The gas gun projectile was 50 mm in diameter and the impact velocity 
was20ms ‘, thus resulting in considerably larger near-tip loading rates than in the 
drop weight device. A sequence of interferograms from such a test is shown in Fig. 
13. Its corresponding z’(t), C(t), r-:(t) and i(t) plots are shown in Figs 14(a), (b) and 
15(a), (b). In general terms the results are similar to those obtained from the drop 
weight tower experiments. A main difference is that the speed and acceleration are 
much higher. In fact the crack-tip speed seems to exceed the Rayleigh wave speed of 
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FIG. 12. Comparison ofdigitizcd data points from the intctfuogram corresponding to / = 23 ps in Fig. X 
with (a) ;I /C-dominant lit, (10X) : (b) a higher order transient analysis fit. (109). (Crack lines along the 

negative .A,-axis.) 
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FIG. IS. Time histories of mismatch parameter c (a) and its time derivative (b) for the experiment shown 
in Fig. 13. 
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PMMA after a relatively short time. In some cases (as in Fig. 14) the velocity even 
exceeds the shear wave speed and approaches the longitudinal wave speed of PMMA. 
thus entering the transonic speed range for the PMMA side. 

For a crack speed less than the Rayleigh wave speed, we can repeal ;I titting 
procedure exactly as before. For the frame at f = 8 p in Fig. 13, the result of such 

fit is shown in Fig. 16. Here the white lines, obtained from plotting the ticld of (109) 
using the values of the fitted parameters. are superposed on the actual picture (instead 
of the digitized points as in Figs I I and 12). The illustration is the same though, i.c. 
that a transient field is necessary to describe a picture such as this which corresponds 
to a high ii and acceleration. 

Unfortunately given the existing theoretical analyses. we do not have the tools to 
fit any field to intcrferograms having a speed in the trnnsonic ran&c for PMMA 

[Ci” < I’ < ~j ‘I]. These large speeds were observed in ;I number of tests involving one 
point bend interfacial specimens containing .S/ZN/J prc-cracks lying along the interface. 
When a specimen containing a blunt starter notch was impacted, recorded crack-tip 
terminal speeds were even higher; in some cases approaching the longitudinal wave 
speed of PMMA. Such a velocity history is given in Fig. 17. Here the maximum crack- 
tip speed is estimated to be 0.1~ c j ‘) These observations are very interesting because to 
our knowledge no evidcncc of transonic or supersonic crack propagation has ever 
been seen in homogeneous materials even though ;I large number of theoretical 
studies exist on the subject (FREUNII, 1990). It is believed that transonic crack growth 
is possible in a bimatcrial situation because of an energy transfer mechanism from 
the stiffer to the softer material. It can be seen in Fig. I3 that the nature of the fringes 
changes, approximately around the time at which the crack-tip speed cxcceds the 
Rayleigh wave speed. A sequence corresponding to the same test whose velocity is 
shown in Fig. 17 (blunt starter notch) is presented in Fig. 18. In these pictures. wc 
see an even more drastic change in the nature of the fringe patterns as the crack-tip 
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speed exceeds both Rayleigh and shear wave speeds. To see this effect clearly, compare 
the second frame in Fig. 18 to the sixth frame. Finally, additional visual proof of the 
existence of large transient effects is shown in Fig. 19. We are now in the process of 
developing an analysis for the propagation of an interfacial crack at speeds exceeding 
C(I). It is hoped to be able to predict fringe patterns as those observed in Figs 13, 18 
ahd 19. 

8. CONCLUSIONS 

Experimental observations of high speed (transonic terminal speeds) and high 
acceleration (10’ m s ‘) crack growth in PMMA--steel interfaces are reported for the 
first time. Motivated by these observations, a fully transient higher order asymptotic 
analysis of dynamic interfacial crack growth is performed. This analysis is valid for 

crack-tip speed in the range 0 < z’ < CL” [C I” is the shear wave speed of PMMA]. 
Explicit expressions for stresses are provided. In addition to the classical r ’ ‘, Y’ and 
r I ? 

3 . . . 3 terms of steady-state expansion for the stresses, new transient contributions 
of order r”’ In r and r”’ (In r)’ appear. The structure of the near-tip field obtained 
by the analysis is found to describe well the experimentally obtained stress fields. For 
subsonic crack growth, the experiments demonstrate the necessity of employing the 
fully transient expression in the analysis of optical experimental data. Terminal speeds 
of up to 90% of the plane stress dilatational wave speeds of PMMA are observed. 
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APPENDIX 1, DEFINITIONS AND PROPERTIES OF MATRICES USED IN SECTION 3 

Let P,, Qi, U, and V, be defined as in Section 3, and Li and L, be given by 

LA = U,P,‘. i, = V,Qr’ 

Matrices H and k are defined as 

H=L,-i,, I%==<,-Lz 

By algebraic calculations, it can be shown that for k E { I, 2). 

where 

and 

Therefore. 

D(r) = 4r,r,-(I +cc’)?. 

where 

I1 ,, = (I,,),-(/,,)3 1112 = (1,2)I+(IIZ)2r h,, = (,z1),+(~2,)2. 

Notice that 

Hti = fiH = (/7f, -/7,9z2,)I, 

where I is the 2 x 2 identity matrix. Thus, 

H-‘=p !-.-$ ‘i~‘zz,& H. 
/If, -ll,,h2, I? 2, 

Also. it can bc shown that 

L,ii = ikL,. kg (1.2). 

A sequence of operator definitions follows. These are related to the analysis in Section 3.2. 
Let p(t) and q(l) bc two real functions of time t and define the vector operators 

where operators D,,, (e} and f unc tons K,,,(t) and B,.,(r) have been defined in Section 3.2. With t. 
the above definitions, 

ti(p(r).q(r)J = (3+2ic)(L,M,-I)d,{p(r),q(t)) +2ri(L,M,-I)k,(p(t),q(t)) 



where MI. PA and U, have also been defined in Section 3.2. In addition. for any given operator 

m,IP(ILY(I)) = j~1~“(/)(1).1/(1)1,11r:~‘1/)(/),~l(t)) 1 -. 

the associated operator & ([J(/), q(1)) is dctined as 

&~/~(Mf)) = (“‘:“(p(r).(/(1)1, -m:“~/I(t).I/(l)j; 

Also vectors /I. y. < and q. arc dctined 21s 

/I = t,(tro(lL(.,,(l)j -E,(lhW&l)) 

1' = t2Irru(tLr~,,(t)) -i, (h,,(l).d,,(1)) 

5 = (3+2ir:)[(L,M,-l)k, (cl,,(r),c,,(/); -(i:lM,-l)l;.Ih,,(c).r/,,(r))] ’ 

s = (3+2ir:)[(L,M,~I)k,(r~,,(/).(.,,(I)I -(i,iV,-I)i, (l),,(t).c/,,(/))] : 

w,/~ (p(O.q(r)) = (l+i~:)[?P, ‘M,> +( I+ic)l]k, (p(l).y(f)) 

w,~ (p(/).q(t)) = (l+ir:)[?P, ‘Mi+( j+it:)l]d, ([~(/).q(r)i 

+Zii[P, ‘M,, +(I +ir:)l]k,, (p(/).c/(r)i 

+[?P, ‘fi,+?(l+2i~)P,~ ‘M,,-(l+c‘)l]b, 

Consider the problem formulated as follows. Find a function 

: = 11, +ill>. which is analytic in the whole :-plant except along the branch cut - % < ‘1, < 0. 
qT = 0. and satisfics the equation 

tiU+(,l,)-HO 07,) = K(I/,). t”‘l, < (1. (Al) 

1 

&here H and H are 2 x 2 matrices, defined in Appendix 1. and 

K(I1,) = (~~,(rr,).f~~(f?,))‘, 

with ti, and K? arc known’functions of ~7,. Near the origin. function O(r) should satisfy the 
rcquiremcnt that 

IO(z)\ = O(I-_I’). C/S I:/ + 0, (AZ) 

for some real number z, and generally, x > - I. 
In order to obtain the solution to the above Riemann-Hilbert problem, the cigcnvalues and 

* 
cigcnvectors of H, and H need to bc studied first. By solving the equation 

dct jH-1.1) = 0. (A3) 

whcrc I is the identity matrix, the cigenvalues for H arc found to bc 

i, , = _ ll,, i, il,,Il,,. (AJ) 

The expressions of functions 11, ,. h, 1 and /I,, in our problem arc dcpendcnt upon the mechanical 
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properties of the constituents of the bimaterial system and the speed of propagation of the 
interfacial crack. /I, ,, /I,? and h,, ensure that the eigenvalues, /., and iZ, are real, provided 
that the crack-tip speed is less than the lower Rayleigh wave speed of the bimatcrial. The 
corresponding eigcnvectors are 

W (‘.21 = (I. +I?)‘, (A5) 

where the parameter tl is defined by 

It can be shown that the eigenvalucs for A are the same as those for H, which are given in 
(A4), while the corresponding eigenvectors arc 

Define the matrix B, by 

W 
‘(1.2) = (,. Tl?)T, 

(Ah) 

I I 
B= I 1 II -V ’ 

and set 

and 

O(Z) = B ‘O(Z), &) = B ‘K(l/,). 

Then, (A I ) becomes 

fi’O+(~,)-H’O (s,) = K(V/,). vq, < 0, 

or, in component form, 

(A7) 

It can be seen from the above analysis that H and fi can be diagonalized simultaneously by 
the same transformation. Therefore, the originally coupled equations (AI) can be reduced to 
the uncoupled equations (A8). 

If we express the ratio i ,/iz as having the following dependence on /I : 

i. , 1 +p 
A, _ 1-b’ 

then the parameter B must be expressed as, 

As a result. the solution for the first equation in (A8) can bc obtained as 

(A9) 

where A(z) is an arbitrary entire function. C is a contour along the entire branch cut, and 
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exlcnds from negative intinity to the intcrfacial crack tip. The function L(z) is given by 

[_(-_) =_ I ?li,Cl’. (AIO) 

WhCl-C 

I i: = 
2n 

In ’ -‘, 
I +/i’ 

and k, is an real intcgcr. lntcgcr /, , is chosen so that 

1/_(3)1 = O(l:I’), as 17) --* 0. 

which complies with the restriction of (AZ). 

Similarly. we can obtain that 

(I,(z) I 

L(z) = 77ri 
+ B(r). (All) 

whcrc R(r) is also an arbitrary cntirc function. i, stands for the complex conjugate 01‘ 1. 

Returning to the original function U(z). 

O(:) = 4);i I L(z) 

j., L’ (5) 
rK(?) + j;, ,f+(;;, f K(T) I,“‘, +1~(_)/1(-)5+~(_)B(_)~. (Al?) 

and 

APPENDIX 3. SOME ASYMPTOTIC RESULTS OF THE STIELTJES TRANSEORM 

In solving the RicmannpHilbert problem, WC need to evaluate the integral 

I(z) = d’ll. (Al31 

Setting t = -q ,, we get 

(AId) 

As WC can xc from (Al4), -I(z) is the Stieltjes trnnsform of function l(t). Hcrc wc axnt to 
study the asymptotic hchavior of the Sticltjcs transform as I + 0. Altcrnativcly, WC may set 

i = I !: to get 

where 

I(r) = -ifl[ I: 7.1. (AIS) 

H[ /‘: j.] = ’ ‘(‘I t.11. I ,, I+it 
(416) 
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Studying the asymptotic behavior of (A14) as z -+ 0 is equivalent to studying the asymptotic 
behavior of (A 16) as j. --f y_. 

Suppose that ,f’(r) is locally integrable in (0, r;). Recall that the Mcllin transform of f’(r) 
is defined by 

M[,f’; s] = 
s 

* t‘ ‘,f’(t) dz. (Al7) 
0 

and set 

Then, by using the Parseval formula, WC can obtain 

H].f’; i,] = & 
s 

,+I I 
i ‘M[h ; .s] M[ f; I -s] ds, (AIS) 

I /I 

where the constant I’ is such that Re (s) = Y lies in the common strip ofanalyticity of the Mellin 
transforms M[/r ; s] and M[J‘; I -.s]. 

After some manipulations, it can be shown that 

M[/7 ; s] = si;Tns 1 

where M[/z ; s] is analytic in the strip 0 < Re (s) < I. In analogy to the particular problem of 
intcrfacial fracture that we arc intcrestcd in, we will define the function ,f’(t) as 

,/‘(t) = /“(In t)“. (A20) 

where x = +2~. or 0, and /I = 0. or I, For this function. the Mellin transform M[ /‘: s] only 
exists in the generalized sense. Let 

.f‘l(G = 
{ 

.f’(t)> fE (0. II 
0, 

f2(/) = yJ tE(o, ‘I 
ZE[l. -/;)’ i f(r), tell. cl) 

Then we may write 

H[ f; ; L] = L,(i) = I ,,’ ;‘i(:‘;di. j= l,2, 

and 

H[j’;i.] = L,(i)+L(i) 

Also let 

C.422) 

Then. 

G,(s) = lV[h ; s]M[,/; : I -.s], .j = I, 2. (A23) 

G(s) = M[/7;s]M[,f; I-s] = G,(.c)+G2(s). 

In addition, from the Parseval formula, 

L,(i) = 2)ii 
s 

r,+,r 
i ‘G,(s)ds. ,j = l,2. 

!,_\I 

and 

(A24) 

L’G,(s) ds. (~25) 

WI) 
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Using the specific runction ,1’(f) chosen in (A20), it can bc shown that 

I ll 
G,(,s) = - 

[s- ( I + iT)]“~+ ’ sin 7c.r. 
(AX) 

In the above we can xc that G,(A) is analytic in the strip 0 < Rc (,I) < I. Since :LI[ f?: I P.\j ih 
analytic in the half plane Rc (,\) > I. and M[/I ; s] can bc analyticull~ continued into the entire 
.s-plant as a rncromorphic function. G,(s) is ;I mcromorphic function 111 the halfplane Rc C.5) > I 
with simple p&s at s = 2.3.. Then in (A24). U’L‘ can always choose that 0 < I’, < I and 
I’~ > v,. Obscrvc that ifs = .), +isl. G,(x) has the property 

lim G, (.v, + i.\ ?) = 0. I’, < Y, < r2. (A27) 
,\., .I 

Thercforc. we can apply Cauchy’s integral theorem to (A25). which results in 

H[ f’; 2.1 = 1 rcs (-i ‘(;,(.s)I + 
I (~‘I’ 

!, IIL,\, / 27ci s 
r. ‘G(5) ds. (A%) 

,~ i , 

For our cast. it ia easy to show that G(.\) = 0. So finally. WC get 

/-I[ f : 7.1 = (AX) 

Letting I’2 + + x . we get an infinite asymptotic scrics for I/[ /‘; ;,I 8s i --t /. 
By applying the above analysis to our particular problem, Ibr x # 0. WC will obtain the 

following asymptotic results : 

) as : + 0. (A.%)) 


