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ABSTRACT

A HIGHER ORDER asymptotic analysis of the transient deformation ficld surrounding the tip of a crack
running dynamically along a bimaterial interface is presented. An asymptotic methodology is used to
reduce the problem to one of the Riemann—Hilbert type. Its solution furnishes displacement potentials
which are used to cvaluate explicitly the near-tip transient stress field. Crack-tip ficlds corresponding to
crack speeds up to the lower of the two shear wave speeds are investigated. An experimental study of
dynamic crack growth in PMMA steel interfaces using the optical method of CGS and high speed

photography. is also described. Transonic terminal speeds (up to 1.4¢™MA) and initial accelerations

(~10%ms ?) are reported and discussed. Transient effects are found to be severe and more important than
in homogeneous dynamic fracture. For subsonic crack growth, these experiments arc used to demonstrate
the necessity of employing a fully transient expression in the analysis of optical data to predict accurately
the complex dynamic stress intensity factor history.

1. INTRODUCTION

ADVANCED MULTIPHASE materials such as fiber or whisker reinforced composites have
seen widespread applications in recent years. It has been recognized that interfacial
fracture may play an important role in determining the overall mechanical response
of such multiphase systems. It is the low fracture toughness of these materials,
which may result from debonding between different phases, that limits their use in
engineering applications. Therefore, the scientific understanding of the mechanics of
crack formation, initiation and crack growth in bimaterial interfaces is essential for
the effective study of failure processes of these advanced composite materials.

The earliest study of interfacial fracture appears to be by WiLLIAMS (1959), who
examined the local fields near the tip of a traction free semi-infinite interfacial crack.
lying between two otherwise perfectly bonded elastic halfspaces. He observed that,
unlike in homogeneous materials, the interfacial crack exhibits an oscillatory stress
singularity. Since then, StH and RICE (1964) and RICE and SiH (1965) have provided
explicit expressions for the near-tip stresses and related them to remote elastic stress
fields. The works of ERDOGAN (1965), ENGLAND (1965) and MALYSHEV and SALGANIK
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(1965) have also further examined two-dimensional singular models for single or
multiple crack configurations in bimaterial systems. Recent progress in static inter-
facial fracture includes work by Ricg (1988). HUTCHINSON and SUO (1991) and SHiH
(1991).

Depending on the nature of loads that the composite structure is subjected to, the
debonding process may take place dynamically. If the interface is already weakened
by pre-existing flaws, these flaws may serve as sites of initiation of cracks which
propagate unstably along the interface under the right circumstances. Such situations
have motivated attempts to analyze dynamic crack propagation in interfaces.
However, due to the complexity of the problem. thus far, only a few theoretical results
of dynamic bimaterial crack growth have been obtained. Among others, GOL DSHTIIN
{1967). BROCK and AcHENBACH (1973), WiLnts (1971, 1973) and ATKINSON (1977)
have provided crack line solutions of particular fracture problems. Although these
analytical results have provided some insights of the near-tip dynamic behavior.
in order to effectively formulate and apply crack initiation and growth criteria in
bimaterial systems. we need knowledge about the complete spatial structure of
the field surrounding the moving interfacial crack tip.

More recently, experimental investigations of interfacial crack-tip deformation
fields have been carried out by TipPUR and Rosakis (1991) and RosAKIs er al. (1991a)
using the optical method of Coherent Gradient Sensor (CGS) (Rosakis, 1993) and
high speed photography. The bimaterial system they used was a PMMA aluminum
combination. They observed substantial crack-tip speeds (up to 90%¢™™*) associated
with crack initiation and growth. Motivated by thesc observations, YANG ¢f ¢/. (1991)
provided the asymptotic structure of the most singular term of the steady-state
clastodynamic bimaterial crack-tip ficlds. In the work of Wu (1991), similar con-
clusions were reached. In addition. DENG (1992) obtained the asymptotic scrics
representation of the stress ficld near the tip of a running interfacial crack in a
bimaterial system under steady-state conditions. Also motivated by the experiments
of Tiepur and RosAkIs (1991), Lo er al. (1993) have performed a numerical analysis
of the same bimaterial system as was used in the cxperiments.

The question of whether there exists a K*-dominant region surrounding the crack
fip (i.e. a region where the stress field can be well described by the leading singular
term only), or in fact whether steady-state crack propagation constitutes a good
assumption in analysis, are issucs to be verified by experimental observations. New
experimental evidence, described in this paper. emphasizes the existence of substantial
crack-tip accelerations in addition to very high crack-tip speeds. The existence of high
accelerations violates the conditions under which the steady-state assumption may
confidently be applied. Motivated by the above experimental evidence, in this paper,
we investigate the asymptotic structure of the near-tip field in a bimaterial system,
where a highly transient clastodynamic crack growth history has occurred. To do so,
we employ the asymptotic procedure proposed by FREUND (1990) and utilized by
FreunD and Rosakis (1992) in studying the transient growth of a mode-1 crack in a
homogeneous isotropic material. The same procedure was employed by Liv and
Rosakis (1992) in studying the mixed-mode transient growth of a crack along an
arbitrary curved path in a homogencous isotropic solid. For anisotropic solids, tran-
sient crack growth under mode-1 conditions was recently explored by WiLLis (1992).
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In Section 2 of the present study, the general formulation and properties of the
asymptotic procedure are described. By using this asymptotic methodology, the equa-
tion of motion is reduced to a series of coupled partial differential equations. In
Section 3, the solution for the higher order transient problem is obtained. By imposing
the boundary conditions along the surface of the interfacial crack and the bonding
conditions along the interface ahead of the crack tip, our problem can be further
recast into a Riemann—Hilbert problem. Upon solving the Riemann—Hilbert equation
and evaluating the Stieltjes transforms, the higher order near-tip transient elasto-
dynamic asymptotic field can be obtained. In Section 4, the asymptotic elastodynamic
stress field surrounding the interfacial crack tip is studied. The first stress invariant is
provided explicitly. The properties of the interfacial mismatch parameters are studied
in Section 5. These depend on the properties of the bimaterial combination and the
crack-tip speed. In some of the available experiments by Rosaxis et al. (1991a), and
the experimental evidence described in this paper. it has been observed that an
interfacial crack can reach speeds amounting to a considerable fraction, or even
exceeding the lower Rayleigh wave speed of the two constituents of the interface.
Recognizing that our analysis need not be limited to a velocity regime below the lower
Rayleigh wave speed, in Section 6, we extend our solution to the case when the crack
is traveling at a speed between the lower Rayleigh and shear wave speeds. Finally, in
Section 7, recent experimental evidence of a transient higher order stress field in
bimaterial fracture specimens is presented. The transient theoretical fields obtained
in previous sections are used to analyze quantitatively optical interferograms obtained
in real time high speed photography of dynamic bimaterial experiments in a PMMA—
steel system. In addition, we present experimental evidence of transonic crack growth
histories involving maximum speeds between 60 and 80% of the dilatational wave
speed of PMMA. For comparison purposes, one should note that typical terminal
crack-tip speeds in homogencous PMMA are of the order of only 20% of the dila-
tational wave speed.

2. GENERAL FORMULATION

Consider a planar body composed of two homogenecous, isotropic and linearly
elastic materials which are bonded along a straight line interface. A crack propagates
non-uniformly along the interface, see Fig. 1. Introduce a fixed orthonormal Cartesian
coordinate system (x;, x,) so that the x,-axis lies on the interface and coincides with
the direction of the propagating crack. Suppose that the crack propagates with a non-
uniform speed, ©(1), and the crack faces satisfy traction free boundary conditions. At
a time ¢ = 0, the crack tip happens to be at the origin of the system, so the growth of
the interfacial crack at any ¢ > 0 is characterized by the length /(¢) (¢(7) = (1)), which
is the distance from the origin to the moving crack tip. If the deformation is assumed
to be plane strain, for each of the two materials comprising the interface, the dis-
placement field may be generated from two displacement potentials, ¢, (x,, x,, ) and
Yi(x,, x5, 1),where ke {1, 2}. Here, the integer k is assigned to distinguish between
the two different materials. In Fig. 1, material-1 is the one shown above while material-
2 is the one shown below the interface. Then, in either one of the two materials, the
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FiG. 1. Schematic of dynamic growth of a crack along a bimaterial interface.

two non-zero displacement components can be expressed as
(X1 X0 1) = (X, Xa 1) e (g, XL 1), (h

where o, ffe {1, 2} and the summation convention has been used. ¢, is the two-
dimensional alternator defined by

ep= —ey =1, ¢ =0 =0

The components of stress for each material can be cxpressed in terms of the dis-
placement potentials by

-

7

O = H o G =20 25+ 24 12
it . 2)
o = | (‘3(.n_2(/).||'2¢‘|2

s

Gra=p2¢ 2+ —i ]

where u is the shear modulus, and ¢, ¢, are the longitudinal and shear wave speeds
of each elastic material above or below the interface, respectively. In terms of the
shear modulus g, mass density p, and Poisson’s ratio v, for cach of the two materials.
¢ and ¢ are given by

K+l,u'2 e

¢y = - 0=
K—1p I

where
3—4y, planestrain

plane stress.



Transicnt interfacial crack growth 1891

The corresponding plane stress solution can be obtained by changing the definition
for the longitudinal wave speed in (3). Meanwhile, ¢, and ¢, in both plane strain and

plane stress, are related by
¢, k—17"7
e 4
¢ {K-l— 1} “)

The equation of motion in the absence of body forces in the fixed coordinate system,
in terms of ¢(x,, x,, #) and Y(x,, x>, t), reduces to

(X1, X0, 1) — 'fl'f(.b‘(xl-«\':,l) =0
‘ (5)

1 ..
W (X1, X0, 1) — P W(xy, x50 =0

Equations (5) hold for each material above or below the interface.
We further introduce a new moving coordinate system, (¢, &), by

S =x, =11, &r=x,. (6)

This system is such that its origin is translating with the crack tip. In this new system,
the equations (5) for ¢(&,, &, 1) and Y (&), &, 1) become (FREUND, 1990)

52 3 2v(t |
(1 _ lft)> G+ hart l(([) ¢+ Z(Q $— 2 $,=0

f | 1 1 i 7
(l — lc'(zl)> Yo+ + l’((?(/jl + 21(’(21) v, — ;2 Y. =0

Notice that in (7), the differentiation with respect to time, ¢, is distinct to that in (5).
Here, (&, &») are held fixed, whereas in (5), (x,, x,) are held fixed. Throughout this
study, we will use /01, or { }, to denote differentiation with respect to time, 7, when
the moving spatial coordinates (¢, &,) are held fixed. The notation {"} denotes the
same operation when the spatial coordinates (x,, x,) are held fixed.

At this point, we employ the standard asymptotic device used by FREUND and
Rosaxkis (1992) for the analysis of transient crack growth in homogeneous materials.
We assume that ¢(&,, &4, 1) and (&, &, 1), for each material, can be asymptotically
expanded as

-

qs(élﬂfl*’) = Z 8/)”'4)»1(’7“’72#,)
m=0 s (8)

7

w(é]aibl) = Z 8,7"7¢'77(”17'72”)

m=10

asr= (&i+&3)" 7 — 0, where 5, = &,/e, 2€ {1, 2}, and ¢ is a small arbitrary positive
number. The parameter ¢ is used here so that the region around the crack tip is
expanded to fill the entire field of observation. As ¢ is chosen to be infinitely small,
all points in the (&), £,) plane except those very close to the crack tip, are pushed out
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of the field of observation in the (57, #,) plane, and the crack line occupies the whole
negative #-axis. By taking ¢ = I, the above equations will provide the asymptotic
representation of the displacement potentials in the unscaled physical plane for each
of the materials, respectively.

In the asymptotic representation (8), the powers of « are such that

Pt =P+t m=0,1.2..... (9)

Since the displacement should be bounded throughout the region. but the stress may
be singular at the crack tip. p, is expected to be in the range 1 < p, < 2 (FREUND,
1990). We also should have

52/7”””()711 MR !
,/ GRS )—*(). as ¢ — (0, (10)
8,”'(/)/17(”%’73‘ 1y

for any positive integer 7. Returning to the unscaled physical plane, we will have

(/)m}u(‘:hél‘s’)
D -0, asr=
(/)/n(gh;]"[)

S

Vi -0, (n

torg

for any positive integer 1, so that in the physical plane. (&), £.). ¢, (S, Eon 1) are
ordered according to their contributions to the near-tip deformation ficld. The above
propertics for ¢,, hold for iy, as well.

Substituting the asymptotic representations for ¢(&,, o, 1) and (2. S.. 0. (8),
into the cquations of motion. (7), we obtain two cquations whose left-hand side is an
infinite power series in ¢ and whose right-hand side vanishes. Since @ is an arbitrary
number. the coefficient of cach power of ¢ should be zero. Thercfore, the equations
of motion reduce to a series of coupled differential equations for ¢,,(y,.1-. 1) and
W (11, 1a. 1) as follows (ROSAKIS ¢ al., 1991b; FrREUND and Rosakis, 1992) :

1 2y, |
Dy + 2 (/)m 2= = 2 2 (l.l ‘(t)(/)m 2.1} i+ 2 2 (/)m 4.
o () (e ' 2 (Dey ! (12)
I 203 (n) s i

W + w22 = T s N 'IAI 7([)”171 M | /+ Bl L am .

p Ny 1:(,)’// W22 1\_(1)(\_ 1 / 2y 1:([)(,:/ .
form=0,1,2..., and the quantities % and «, depend on the crack-tip speed, and
therefore on time ¢ through

. ()
() =1— .. (13)
N

Also

b = {(/),,, form =0 ) = {l/},,, for m =0 (14)

0 form< (0’ 0 form<0

In what will follow, for our convenience, we drop the subscript which is used to
distinguish between the two materials. However, we should keep in mind that the
above asymptotic form of the equations of motion (12) hold for each of the materials
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with the appropriate elastic constants. The term “coupled” is used above in the sense
that the higher order solutions for ¢,, and ¥, will depend on the lower order solutions
for the same quantities. It is noted that, for the special case of steady-state crack
growth, the crack-tip speed, v, will be a constant, and at the same time, ¢,,, = ,,,, = 0,
form =0, 1,2,.... This means that ¢,, and ¥,, depend on ¢ only through the spatial
scaled coordinate #,. In such a case, the equations in (12) are not coupled anymore,
and cach one reduces to Laplace’s equation in the coordintes (1,. a,) for ¢,, and
(1., a41,) foryr,,,. For steady-state conditions, the functions ¢,, and ¥, are independent
of time in the moving coordinate system. For the transient case, however, the crack-
tip speed, ©(£), may be an arbitrary smooth function of time, and also ¢,, and v, may
depend on time explicitly in the moving coordinate system. The only uncoupled
equations are those for m = 0 and m = 1. For m > |, we can see from (12) that the
solutions for ¢,, and ,, are composed of two parts. One is the particular solution
which is wholly determined by lower order solutions for ¢,,. and ¥,,. The other part
is the homogeneous solution which satisfies Laplace’s equation in the corresponding
scaled coordinate plane. The combination of the particular and homogeneous solu-
tions should satisfy the traction free conditions of the crack faces as well as the
bonding conditions along the interface. In the following sections. we will solve for ¢,,
and ,, for the most general transient situation, and for both materials.

It should be noted that the steady-state problem could be solved using the efficient
Stroh formulation. This formulation reduces the two spatial and one temporal vari-
ables to only two spatial variables and takes advantage of a well known formalism to
solve the steady-state crack problem (YANG et al.. 1991). However, this approach,
although it can easily be extended to anisotropic solids, is strictly restricted to steady-
state conditions and cannot be used for our present purposes.

3. SoLuTION FOR THE HIGHER ORDER TRANSIENT PROBLEM

As we have discussed in the previous section, the only uncoupled equations in (12)
are those form = 0and m = 1. Form > I, the solutions for ¢,, and y,, will be affected
by the solutions with smaller ». In this section, we consider the situation of m =
and m =1 first. After we get solutions for m = 0. and 1, we will subsequently solve
for higher order ¢,, and ,,..

3.1. Solutions for ¢, 1>, 1) and W (n,.n-, t) form =0 and 1

Form =0, or 1, (12) reduce to

1
Gt (M1 02, 0) + 17(,) Gn22(11.02.0) =0
o (15)

1
'//m_ll('71~'7:-[)+1w l//m_zz(nl»’]:»f) =0

2(0)
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The above equations are Laplace’s equations in the corresponding scaled planes
(1. ) for ¢, and (n,, 2-) for ¥,,.. As we have mentioned earlier, the subscript
k is omitted here, but the above equations hold for both materials that constitute
the bimaterial body.

The most general solutions for (15) can be expressed as

bu(r ) = Re (F, (0] b, a0 = 1Im (G, (2005 (16)
where the two complex variables z; and -, are given by
=i, o= kg,

and i = \/"'— 1. For the bimaterial system, F,.(z,: 1) and G, (z,; t) arc analytic in the
upper half complex -, or z,-planes for & = | (upper material), and analytic in the
lower half complex -, or zy-planes for & = 2 (lower material). The complex con-
jugates of these functions are also analytic on the plane obtained by reflection along
the real axis, e.g. F,,,(5; 1) is an analytic function on the 7 plane. Since % and z, are
different for each material, the scaled complex variables = and =, will also be different.
For fully transient problems, in the analytic functions £,,(zy; t) and G, (z,; 1), time ¢
appears as a parameter. This suggests that these functions will depend on time ¢ not
only through the complex variables, z; and z,, but also directly through time 7 itsell.

The displacement and stress components associated with these ¢, and ¥, are given
oy

U = Re \F(z) 1)+ 2.Go(z 1)
(17)

”(:Nl) = *ln] {XIFI/H(:| . ’)+(;r/)/(:\ : ,):
and
o = pRe (1 + 2% —al)F) (2 1)+ 22,G (25 1)
o = —uRe (1 +a)FLG 0+ 220Gl =) (18)
oy = —uIm { Qo (5 0+ (1 +2)G (2,0 0)]

where primes denote the derivative with respect to the corresponding complex argu-
ments.
For any analytic function Q(z), define the foilowing,
lim Q=0 )
e 0!

lim Q:)=Q ny
O

R

=, +in..

Forn, < 0and >, — 07, the traction free condition on the upper crack face gives
(R U770 IR oy 177 ) S
o = e =0,

or, in terms of the complex displacement potentials F, (2. 1) and G, (z.: 1).

It

O 2 Ft e+ F (014 200l (G (o) + G (01
Ruon[F7 (0 —F (7014 004+ 2060 02— Gy (201

It

0
.19
()} )
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For #, < 0 and 5, — 0, the traction free condition on the lower crack face gives
(o8}, = {o0}, =0,
or
(u(1+a)[Ey (s 0+ F7 (0014 20006 (s O+ G700l = 0} 20)
Que[Fy, (0= Fp (0l +o)[Gh (1:0=GL (2012 =0
The above equations, (19) and (20), hold for 5, < 0.

Along the interface, or 4, > 0 and 5, = 0, the bonding conditions should be satis-
fied, which implies that

o

1
S
u {Im) }

f
|
i
| 1
or, in terms of F,(z;; ) and G,(z,; 1), from traction continuity,
L+ o)) [0t o0+ Fom (0 0]+ 200 (Gt (0 0+ Gl (5013

— U+ a)F (s )+ Fr 0y D14 200G (104Gt (1:0]) 2 =0
Rua[F (i —F (n00]+u(+a)[Gh (00 0) =G (0]

— 2uo[F sy —Fot (e D1+ p(14+ad) (G (120 =Gt (0]} =0

2
and from displacement continuity, (2D
UE oD+ Fm Dl +o, (G o0+ G (ny: 01
—{[Fy i)+ F 0]+ oG, (1 0+Ghr (0]}, =0 )

{al[F//njL(nl;’)_Frlnz (’1! ;f)]+[G:,,+(7]l;f)—G_:,, ('7| ;t)]}l
— i [F (g 20— F §f)]+[G;n () =G, N, =0

The above equations, (21) and (22), hold for 5, > 0.
For simplicity, define the following matrices for each material, ke {1, 2},

p(l+al)  2pa, u(l+a)) 2,
PA‘ = b 2 s Qk = 2 b
<Y :u(l +st) k —2#0(] —,Ll(l +‘“s) k

_— i .
S T S
o ]k — % 71/‘

Also define the following complex vector for each material,

fmk(: X [) = (En/\ (:; I)~ Gmk(Z; t))Tﬂ
where z = 5, +i1,. From the above definitions, the boundary and bonding conditions,
equations (19), (20), (21) and (22), can be rewritten as
P +Qif (s =0

" " } Vi, <0, (23)
PmeZ (nl . [) +Q2fn12 (}’]1 s t) =0



(896 C. LG er al.
and
P tr’r/1+] (’II . ) Q T‘ml ('ll P tm" ’]I Ql?rll ('Il
U fml(’]l f)+v i‘ml(’]l~ ) U fnl’(”l- ) \ T ('7]*
Further, the bonding conditions in (24) can be rearranged as

PN —QuE 5 i) =Pt (7, ) — QT ()51
U]fm](”l ~’)M f }1(’71 ,f) = UZ"/’HZ(”] ;[)7VIT/IHI('II -I)

)=o0
}, Vi, >0. (24)
)=o0

)}. Vi, >0, (25)

In the above equations (25). the left-hand sides are the limiting values of functions
which are analytic in the upper halfplane. The right-hand sides are the limiting values
of functions which are analytic in the lower halfplane. Since the limiting values are
the same along the positive real axis, the function P-f),-(z; ) —Q,T,,,(z; 1) defined
in the lower halfplane, is the analytic continuation of the function Pf,,(z: 1) —
Q-T,,-(z: 1) which is defined in the upper half planc. and vice versa. This results from
the continuation properties of analytic functions. As a result, we can write

Plf;r,zl(: I Q Tm,(~ f = ’\,,, = ,) :ES'
o - . (s (26)
Pli;ryf(: [ Q fml(~ {) - h”,(_ f) :E‘S
and
U, (z:0)=VT:(c:0=0,(z.0., zeS"
./.( )= Va0 (z:0). } )
Ulfml(—_;,)_ f/”[(~ f) - 0,”(_ [ -eS
where
CJOin) = < < 2 00— C
i — % <y <o, <0 —C
= (i) | —x <n, <0, 7,=0].

K,(z; 1) and 0,(z: 1) are analytic functions throughout the z-planc excepl along the
cut € which is the entire non-positive real axis. From the above cquations, it can be
seen immedicately that (24) are satisficd identically. So, the question now is to find
the analytic functions k,,(z; 1) and 0,,(z; 1) in the cut-plane S*" U §

Solving for f,, (z:¢) and T}, (= ;1) for (26) and (27). we get
£, (00 =P, "H 10,(z:0 Lo, (z:1)]
o o : 'lozest. (28)
ir’;zl (:-v’) :QZ H [0,/”(::[)*Lll€,”(::[)}
and

*

fi.(z:) = —P,'H 1501’”(;;1)i,,x,,,(:;l)}} s (29)

*

T;;JI(::I): WQI IH ]‘Bm '[)_le,,,(.d [)}

The definitions of matrices Ly. L,. H and H, as well as the properties of these matrices
are given in Appendix 1. Matrices P, and Q, have been defined above. In obtaining
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(28) and (29), we have assumed that the inverse matrices P, ' and Q; ' exist. Notice
that the determinants of P, and Q,. are both equal to D,(»), where

Dy (v) = {4‘9‘1°‘-—(] —HXE)Z}A'

Therefore, in this analysis, we exclude the situation where the interfacial crack propa-
gates with either of the two Rayleigh wave speeds of the bimaterial system which are
the real roots of D,(r) = 0. This ensures the existence of P, 'and Q, '

Substituting (28) and (29) into the traction free conditions on the crack faces, (23),
we get

H {0, (5,:0)— Lok (g :0 —H {0, (7,:1)—Lak, (7, :0} = o

. . } Vi <0. (30)
H{or/n ('7I ;t)VLIK/II (’7] ,[)}hH{o'llj(l’ll ;,)ALIK;('/II *l)} =0

Adding the two equations in (30), and using the fact that HH # o for a crack
propagating with a non-zero speed, we obtain

Kl:(nl-v[)—xm(”l*[):0! v’7[<0 (31)

This implies that «,,(c; 1) is continuous across the cut except at the crack tip and
therefore «,,(z;1) is analytic in the entire complex plane except at - = 0. However,
the condition of bounded displacement requires that |x,(z; 1)] = O(]|z]*) for some
o> —1, as |z| - 0, so that any singularity of k,,(z; 1) at the crack tip is removable.
Therefore. &,,(z; ¢) is an entire function. Now, both equations in (30) become

HO, (n,:0)—H6, (7,:1) = Re,(,:0. Y5, <0, (32)

where

Km(’]l ﬂ[) = Klj;(”l *l) = K (}71 ’t)
R = HL, HL, = HL, - HL,

Equation (32) constitutes a Riemann—Hilbert problem. Its solution 8,,(z; 1) is
analytic in the cut-plane ST U S . Along the cut, 0,,(z; 1) satisfies (32) for some
arbitrary entire function «,(z: ¢). Also, from the requirement of bounded dis-
placements at the crack tip, as |[z| = 0,

10,,(z:0)] = O(|z]7), (33)
for some o > — 1.

In (32), the solution 8;,(z; ¢) is composed of two parts, the homogeneous solution
0,(z; 1), and the particular solution @,(z: 7). We will consider these two solutions
separately.

Homogeneous solution. The homogeneous solution is obtained by solving

HO,' (7, :0—HE, (7,:0) =0, Yn, <0. (34)

By using the solution given in Appendix 2 and by imposing restriction (33), we can
write the solution to the above equation as follows:

0,30 == "2 4, (2108 +2 "2 "B (z: 0L, (35)
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where

—

RS
¢=_ In LB = .
2 /
2 14+p V hyhe,

* /7
=L, E=(.-m . '1:/;"
1

and A,,, D), B,,,(_ t} arc arbitrary entirc functions. The parameters ¢ and i defined
here arc known functions of crack-tip speed. ¢, and material properties. Their func-
tional dependence on these variables is discussed in Appendix | and Scction 5. For
= 0, () reduces to ¢, which is the oscillatory index that appears in the quasi-static
interfacial crack problems (WiLLiams, 1959 ; Rice. 1988).

By substituting (35) into (28) and (29), we get

A
oy

9,

;=P 'H "z "3yg cinl+z P “‘B,,,(::f)g‘:

%, ] 1 Do s Dy s - -esS’, (36)
£,z =Q.'H "{= "4, (zonl+z ' UB, (2}
and
Focin=—P'H Tz A ol B, ind)
- . , N . -eS . (37
frul -. = AQI ]H ] {: A 4;1; f)‘:+~ b ”'Blll(::[)gl
Notice that the following identities hold.
///l 7/13 ® /l w/lw
H'C=— Y2 a—pme, H'C= VY700 (g
¢ lm—/z,;/z:l( me ¢ /mf/z.:/zu( +/)Z
* /l wllw * * /I w/l'u *
H'(=Y"""" a-me. H'C=— Y70 a-p
; hy, ‘/113/121( Qe ¢ i ‘/Hzllzl( e
and
‘ ;: N ET h Iy— _ AET .
+ cosherm B coshem

Without losing generality, we may absorb the factor |/ izpfh,,(fz,, fi-h,) into
lhe entire functions, 4,,(z; 1) and B,(z: r). By taking the conjugate of the function
,’j,,(u 1) in (37) and comparing it with the function f2,,(z; ¢) in (36). and also by
using the propertle% of matrices P, and Qy, we can obtain a relationship between the
entire functions A4,,(z: 1) and B,,,(_ 1) as follows,

Bm(::[) = */4_’,”(::’).
Meanwhile, by using the fact that
P.'(=Q,'¢C. Q. '¢(=P'C

we can get the solutions,
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&n | _
7r79[ C~ b i“/i)m(-:;[)}'

coshen

. znP 1
f:;,.(:;n:{ e

I‘Z+u;/i', D+
coshem ~ w0

et.n P; l;

. . 5 ) IﬂQ IC ;
fml(—'w[) - {COShET[‘

Sl2ie oo b2 i;:z i)
AI”( . [) + Cosh {T[ /71( )}

1899

zeS*
(38)

-es§

or, in terms of F,(z;; 1) and G, (z,; t), for the material above the interface,

5 [(1+oc ) — 2779:] S e
F”:.[ _ ,:'l'—'“' ot
m( ts ) /lD(l)COSh«‘TC ] Am( ]s[)
I+O( +2 o , T
[( ) r]a] l-W“:Am(:I;I)
,uD(z)cosh e
5 [200—n(1+a)] e o §
G;;I Zs;t = - l_+“‘A' Zea
(@50 uD(r)coshenr w23 1)
200 +4(1+ , =
[ O(] V]( “ )] :5 1.2 “:Am(:s; f)
/LD(l ) cosh e

N

. (39)

J

For the material below the interface, the solution is also given by (39) with the

parameter ¢z changed to —en.

Particular solution. Since k,(z;
0,,(z; t) can be easily constructed. Suppose 8,,(z:1) is also an
which implies that

0,70y =0, (1,30 = 0,01, :0).
then from (32), we get

é;)z(nl~[): {I:[_H}ilRKm(’]I;[)w vnl <O

) is an entire function, the particular solution

entire function,

(40)

By using the identity theorem for analytical functions, it can be shown that for

any z,
0,(=:0) = {H—H} 'R, (z:1). 1
By substituting this particular solution into (28) and (29), we have
frGin =P "H-H} "[L.—Lx, (10
- . . , zeST, (42)
fmZ(Z; t) = F—QE ! {H_H}7 ! {LI _L] }Km(:;t)
and
’f:),zl(:;[) =P, I{ﬁ‘H} I{I:I *Ll}"‘m(l';f)
=, « . , zZeS . (43)
fml(Z;’): —Qlil{H_H} I{LZ_LZ}KNI(:;’)

Notice that
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(2
hs,

*

f* b (31 [ .
H-H} "L —Lj = ke {l.2}.

([Il)A
/N
If the entire function k,,(z: 7) is expressed as
K, (200 = (W5 (Conwz00) .

then, it can be shown that by comparing the conjugalc of f2.(z:0) in (43) with
f,(z: 1) in (42), we have

K i) +R (2 =0, k(0 —w, () =0
Define a new entire function A4,,(z: 1) by

A0 = Ik 0 =R EOlH R E o+ 7D (0l

. ((/:m (/_n)
b hyy © hy )

By relating «,,(z; 1) to A, (z: 0. and by using the above definition, (42) and (43) give

Also let

f.0 =P, 'wod,(z:0—Q, 'Wod,(z:1), zeS*
} (44)

i‘;:;:(:-f) = PZ Iw]"z“m(:;,)‘Ql lwlljm(::t)~ :GS‘

In order to express the particular solution in terms of F,(z): 1) and G,(z.; 1), we
need to define two parameters, o, and o, that only depend on the crack-tip speed,

{11(1 415)} {1\(1 13)}
uD(@) ) uD() )
wl—a)) T fa—ad]
{ uD{(r) }3 { HD(r) }3

Then. for the material above the interface, the particular solution can be expressed as

- 1 T+af 20, -
Frizin =~ a( o TR
m( ] ) ‘LlD(l7) {(I +U)1 l+(1)\.> ( 1 )

F+al 20, \ =
— ) A, (2t
(l +(-’)1 + l +(’)\> m( ! )}

& ) 1 ( 2z l+13>/¢i (1)
Zon) = - mlSss
(s uD(@) (\1+w, 1+,

2o 4ol =
- I + Am(:s: ’)}
T+w P+,

W) =

b (45)
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For the material below the interface, the particular solution is also given by (45) with
wy and w, changed to w, ' and w, ', respectively.

By adding the expressions in (39) and (45), and by integrating with respect to the
corresponding arguments, the final solutions of F,,(z,; 1) and G,,(z,; ¢) for the material
above the interface, for m = 0, 1, can be obtained as

[(1+0) —2pa] e

n{Z] 7t = - 7'77 -—3’2+i(:Am Z sI
En(zi0) uD(z)coshsn ! (z1:0

[(1 +oc J+2nafe ™
uD(z)cosh &n

1 1 +oc\ 2a,
- - {( >Bm(‘-| [)
uD(v) 1 +wl 1 +(

14+a a,
50 [z
<1+w1+ l-f-(,l )Bm( t )} T J

:Iy2 i,:/Im(:l 5 [)
L, (46)

and
. [2“] '7(] +a )] 3,’2+i1: - . )
Gm(‘ss ) - ﬂD(L’) COShzn “y Am("s»’)
[20+n(1 +a)] e

237 i“‘4_111(:'5 5 t)

=

yD(v) coshen

| 2 4o
+ B LA ')Bm (:> : [)
wD(v) I+o, 1+,

20(] ]+OC“
- B,(z:1
<l+(u, + l+w ) n(z )} J

where the entire functions, 4,,(z; t) and B,,(z; ¢) are defined by

dz 24ie —1;24i0s 4 d7
d:j '{:3 * ‘Am(Z; [)} =z e 'A,“(Z;[), d- {

- 47)

B (z:0)}) = A,(z:0),

and they can only be determined by the far field conditions. The solutions for the two
displacement potentials, @,,(#,. #,, ¢) and ¢,,(#,, #1. 7), will be given by (16).

Since 4,,(z: 1) and B, (z; 1) are entire functions, they can be expanded into Taylor
series,

Ao(zi0) = Z APDZ", Bolzin) = Z B (02"
n=10 R (48)

L

A=Y APO. B = Y BY(0):
n=10 n=10
As we have mentioned in the previous section, in the unscaled physical plane, (¢, £,),
(&1, & 1) and ¥, (&), &4, 1) should be ordered according to their contributions to
the near-tip deformation field. By imposing this property, i.e. (11), to the rep-
resentations of ¢, (., 4, 1) and ¥, {n,, #.. ©). for m =0 and 1, we can cbtain
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restrictions on the entire functions 4,,(z: 1) and B,,(z: ). In the Taylor expansion
(48), A\V(1) # 0 and B (1) # 0, but 41 (1) = 0. In other words, the leading terms of
¢y and y, are of order ¥, whereas the leading terms of ¢, and ¢, are of order z°.
Meanwhile, it can be shown that the coeflicient of the leading term, A" (1), in (46)
and (47). is directly related to the complex dynamic stress intensity factor K¢(r) defined
by YANG et al. (1991) through the relation

j K4

AV = — ‘ o
o (1) 2\27_[ (3 +1e) (L +ie)

(49)
As a matter of fact, in the unscaled plane, (&, &5). and for m = 0, (46) and (47) are
identical in spatial structure to the complete solution for the steady-state propagating
interfacial crack in a bimaterial. By using an entirely different methodology. the most
singular solution of the steady-state problem was obtained by YANG ef al. (1991) and
the complete solution of the steady-state problem was given by DENG (1992). However,
in the present analysis the functions A7(r) and B}'(1) are allowed to be functions of
time.

3.2, Solutions for ¢u(,. s 1) and Yo, (). 122 1) form = 2

For m = 2, the equations of motion (12) are coupled. They take the form,

l Zl.l 2 o

G+ sl t) = — 2 3Re:1'|_Fo(5121)}'/
o Ay (50)
| 20t Lo

Yo 01020+ o Yoo ) = — 2.2 Im {0 “Gi(z: 0},

where Fy(z;; 1) and Gz, 1) correspond to the solution of (12) for m = () and are
given by (46) and (47).

In order to obtain the next most singular term in ¢~(4, 11, 1) and Y.y, 5, 1). we
should only consider the most singular terms in F,(z:¢) and G(z,:t). Therefore. for
the material above the interface,

Folzit) = ay(DAN)z] T +bo(DA (D)1 i;}

T pie < 32 51
Golz, 1) = oAz -+ dy (DA ()20 " 1)

where 4,(1) = A" (1), given in (49), and
[(1+25) = 2na] e

ay(t) = — uD(r) coshem
[(1+25)+ 2] e 7

b = -

o{1) uD(r)coshen
= (U O

0 uD(v) coshen
dy = P +ee

0O -

uD(r)ycoshen
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For the material below the interface, we need to change the parameter ¢n to —em.
Substituting (51) into (50) and carrying out the differentiation with respect to time,
(50) becomes

~

1
b (1,12 )+ &'5 D201l 1) =

2\/ -+ Re

111

{lf\/l 0(’)“0(’):}):‘20(’)}70(’):( “1z)In g,

_\él] [B()(l)tl()([)~ +§()(f)h(>(’):1 "z 125 L’ (52)

d ~.
+ l:dt (\/Z7A()(f)a(1(t))+ \/ B (t)aO(,):l o

d o] B 1y 1o
+ [& (\/pAO(t)b(,(t))+ Bn(’)bo(l):|:1"""}
and

|
Yo nan H+ o2 Yara(ni,na 1) =

2 : R
B a?a/7 {lb\/v [Ao(Deo(D)zY ”Ao(’)do(f)fs?”;]zsl“ Inz,
\//1‘&5 S . = . .
T 2a, [Bo(Dco(Dz8+ Bo()do()z, ¥z, 175, - (53)

d _
+ |:ar( f’A()(f)Co(f))+ \/1 "B (T)(o(’):l S

f~«hA(nmun+V/ Bun%uﬂ }

where
Ap() = G+ie)Ay(1),  Bo(t) = G+ie) G +ie) Ao (D).
The most general solutions to (52) and (53) are

@01 1. 1) = Re{Fo(z;1)—= IF(—I H—:2 (-11’)} }

:1
WZ(']]V’]Z’ [) = Im{GZ(‘-sﬁ _“SG("S’ —f (54)

Lo
e
o~
ta
-
~
S
N~

where
F(z:0) = Difag(n)}z* " "+ Dy{by(1)} 2 ¥27
+E{K(Day(D)z "+ K(Dbo()z** "} Inz
G(z30) = Difeo(n)} 2+ D {dy(t)} 277"
+E{K(Neo(D)z 7+ R(0)do()z* ¥} Inz
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and

F(z:t) = Bi(D)ay()z """+ B()by(nz "2 }
(z:0) = B(Deo(N:z"2 "+ Bndy(n)z "2

The two operators Dy{+} and D.{*} are given by

12

2 d . .
D {p(n)} = 2;: 2 {(g+if5) ]dt[l‘]’“p(l)(’j+l£)A”(t)]

1sbls

NI
'“7WWmG+MAMwavmmm%

=R

where p(t) is a real function of time 7. Also

v, i
&J0=4®fng+mAA0
A,
A, (1)
Kl\( ) o) ! 2
“l\(l..\

In (54), F(zi: 1), F(z;; 1), G(z,; 1) and G(z,; 1) are totdlly determined by F(.(-l
and Go(z,: 1), given in (51). The coefficients of functions F(z; 1), F(z: 0, G(z.: r).
and G(z,; 1) are related to the crack- -tip acceleration, the time derivative of 4,(7), as
well as the crack-tip speed and 4 y(7) themselves through the definitions of Dy {44(1)},
B, (1) and K, (1). [1 should be noted at this point that these definitions reduce to the
equivalent ones corresponding to the transient crack growth in homogeneous
materials. Indeed, if ¢ is set to be zero, the expressions for D {4,()} and B, (7) that
appear in FREUND and Rosakis (1992) are obtained. Once again, it is clear that for
the steady-state situation, functions F(z,; 1), F(z,; 1), G(z.; 1) and G(z,; ¢) will vanish.
The undetermined functions F,(z,; 1) and G(z, ; 1) are analytic in the upper half plane
for the material above the interface and in the lower half for the material below the
interface. These functions are at the moment unknown and will be determined below
by using the boundary and bonding conditions.

Associated with ¢.(1,, 7., 1) and (5, #2. 1), the components of displacement will
be

' = Re Fi(z D+ aGh(z, 0 D ~
[F(,n+IF(h>+ﬁcﬁn+xfcum
7965[st/(25Zl)+f;Gl(:SQI)AG(lg;I)—.._\G(_\, nl}
D= Im {uFy(z )+ GH(z 5 0)
— [HF (2 )+ 5 F (200 — F(z5 1) = 22F(z,: 0]
—[EG (2 0 +EEG i+ Gz ) +25G(z; )

. (55)
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and the components of stress

o'} = uRe {(1 +20 — a2 FY (21:0) 4+ 22,G5 (=, 1 1)

— (202 =) [GF (2 )+ 5 F (2 )+ 2F(5 2 1)

—2[(1—a3>+ 9'3'_1(“‘ = )}[F G0+ ) [ (56)
%
~29<S[ESG”(25;r)+:'fG~”(:S;l)—2G~(:\»;t)]}
N
o = —uRe {(1+0t3)F':'(:|;f)+29aG'z’(:>;f)
— (I +a)[ZF (2 0+ 3 F (250 +2F(z 1)
—2[0— 2(“" - }F(-, D+2EF i) [ D
—2a [5G (z.: )+ 372G (z.: 1) = 2G (=, ; r)]} ]

and

o3 = —pulm 20 F5(z )+ (1+ o) G5(z, 5 1)
—204[ZE (2 )+ FE (2 0) —2F(z 1 1)] . (58)
—(1+0)) [5G (2 )+ 2267 (2 ;) +2G (2, 1 1)]
—2(1=ad)[G'(z,: ) + 256G (2,1 0]}

To produce a more compact form for the boundary and bonding conditions, one

needs to define the following quantities. First let ls’k, Qk, ITJk.and \"k be obtained from
matrices Py, Q,, U, and V,, respectively, by changing the sign of the off-diagonal
elements, and let

| um(v) 0 | um(v) 0
M"‘[ 0 un(v)]k’ N"‘[ 0 ~;m(v)l’

where

() = (1—a) — 2 L n) = 1-al,
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Also, define complex vectors,

£z = (Fy (@i 0.Gy(z0)
f.c:n) = (Fz:0.G(z:0)
Tz = (Fz:0.G(z:0) "

Then, by using the above definitions, the traction free condition on the crack faces
will be

P (o +0 87 (o) =it ()0 0)]

+ QT (o= ® o nit i)
ML a2 80 ] 2N o020 F (i)

72l*’|f - (*2? ni:in=
L.V <0

P, f5 (’lllf)"l\fg ('Ilii)*'ﬁj?g (n,:0]
+ Qa5 (=i E5 (s =i (i)

—2ML[Ty (420,85 07,001 =2N, [Ty <m;z>+2m?a+<m;r>1J

—2l33?1 n:1) —2(33?3*(r]l (1) =o0

(39)
The continuity of traction along the interface will reduce to
(PUE O+ B (s =it 000 0)
+Q ] (g0 —mF (m:r)f'?:fl (2]
—2M, [T (2000 (o] - [?‘n ('7l;f)+2'/ll?/l (n:0)
4’)* T+ Y ¥ A
P AT (0 2Q|f1('7|~f) Wy >0,

— (P (= 8% (i —nits (r,:0)]

FQuF5 (i)~ B8 (i — 3T ()

—2MLIES (g 420,85 O 0] = 2N B4 (g 20,82 (s
—2PFL (720 —2Q:FE (710} = 0

(60)
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and the continuity of the displacement along the interface will be

UL () if)‘ﬂxi”ﬁ('ﬁ ;f)"’ﬁ?/ﬁ(’llll‘)]
+Vi[f) (m 47)-’71?/1'(’71 2”*’7%?"1 (n:0)]

U0 0+20 i 0]=V, F (o 0+20.8 (0]

. o - .y ro. YV >0.
— U (i) —n Y (i) —nifs (7, :0)]
FVL[E5 O =B (s -0t ()
-Uz[ff(’ﬁ 3’)‘*‘2’71?5(’71 lf)]*Vz[z;(UlJ’)+2’7!?2+(’7| 0l =0
(61)

Similar to the procedure in the previous section, by rearranging the bonding con-
dition (60) and (61), we may introduce two new functions k(z; t) and @(z; t), which
are analytic in the cut-plane S* v S~ . In order to keep our notation short, we define
some new quantities,

g(z:0) =10 — Az 0 - 2T (=50
0 ~, ~, s R ke{l,2}
< 2P "M [Fi(z: )+ 228z 0] - 2P P25 0)

Therefore, we can write that

kK(z;1) =P,g(z;0)—-Q28:(z;0)
” _ 3 N Z€S+, (62)
0'(z:0) = Ung.(z;t)—Vzgz(::t)+q.(::t)«qz(::1)}
and
k(z;0) = Pog,(z;0)—Qg,(z;1)
) } : , zeS~, (63)
O0'(z:1) = Usgx(z; )= V181 (z: )+ qa(z: ) —q,{z: 1)
where
4 (=30 = 2(LM, — D[F (25 1) + 258,23 0] + 2L P — UnE (23 0) }
] . R N e e . 64
Qi (25 1) = 2(LN D[z )+ 2202 D]+ 2(LQy = VO (25 1) (¢4
and

N RRH

Vector q.(z ;1) is related to vector q,(z;7) by

Qz:0) = (g0, —gPE0)T, @z 0 = (9" (z; 0. ¢ (:0) .

This notation will be used throughout the paper to signify this operation. In cal-
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culating q, (z; 1) and qu(z: 1) in (64), we have used the fact that
P, ‘M, =Q 'N,, PP =0Q, 'Q. ke(l.2].

By solving (62) and (63) for g,(z: 1) and g,(z:1). we obtain

gz =P 'H "0 N —Lak(z:0) —[q(z:0) (=3 0)]) }
. zeS'! (65)

g8:(z:)=Q-,'H '{9/(::f)—lluc(::f)—[q](::f)ﬂi:(::t)]}
and

*

g:(zi0) = —Py ' H {0/ (o0 — Lk 0 — [qa(2: D —qa(z: 0]}
, zeS (66)

g, (z:0) = —Q, llfl ‘{0/(3if)‘Lz"(:if)‘[qz(ilf)‘&l(ilf)]}

It can be seen that the above equations are very similar to (28) and (29) with the
exception of terms q,(z:1)—q.(c: 1) and qa(z:0) —q, (= ;7). which arc totally deter-
mined by the solution for m = 0.

By substituting (65) and (66) into the boundary condition (59), one can show that
Kk(z ;1) 1s an entire function. As a result, the boundary condition (59) will reduce to

HO (i) —HO (0030 = Re(p, 0 R8G50, ¥, <0, (67)

where
k(1) = ﬁ[‘ﬂ(’?lQf)“;lzv('lll’)]‘H[Q2 ('7157)_(;11 (1, :0].

Equation (67) also represents a Riemann- Hilbert problem for 6'(z: 7). It requires
that @ (z ;1) is analytic in the cut-plane S* U S |, and along the cut satisfies the above
equation. By using the properties of our asymptotic expansion, (9) (11), it can be
shown that 8'(z: 1} should vary as

10/(z:0)] = O(=1%). as |z] - 0. (68)

for some o > 0. The complete solution of (67) 1s generated by splitting the problem
into the following two parts.

To obtain the first part, let €' (= 1) be an analytic function in the cut-plane $* U S .
such that

HO* (.0 —HO O, :0) = Re(n,:1. ¥, <0. (69)

This is exactly the same as (32). One basic difference, however, is that unlike the
previous case. here #'(z ;1) has to satisfy (68) (recall that before, 2 > — I). As a result
of this observation. in the material above the interface, the solution for g,(z:¢) is
given by
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ol 2pae”

AN - z Azt
(z31) = uD(v) cosh en 2(231)
[(l+:x )+2ncx] & e qu(:,[)
,uD(v) coshen
1 ] 20 & (70)
il e
uD() (\1 +w, - +w
T+ 20, \z
— |By(z:0) ¢z
(1+w,+ l+w> o )} J
and
, [Za, n(l+cx Ne™ L.
iz 0 = Ry Ay
grizn = ~ uD(v) coshen (230
@[+n(l+u5,,>]e ' 51‘24522(2:,)
uD(v) coshen
1 2 1ol ’ 7h
o {( SIS )3 (z:0)
uD(@) (\1+w T 1+,
20 |
B,(z;t
<1+w,+l+w> o )}
where

g.(z;0 = (9" (=30, 617z 007,

and the entire functions A,(z; 1) and éz(z ;1) can only be determined by the far field
conditions. Similarly, the solution for §,(z; 1), in the material below the interface, can
be obtained by changing the corresponding parameters in (70) and (71).

The second part of the solution is obtained by letting

0'(z; = 6’(:;!)—6’(3;!) }
W(z:0) =g (z;0—8(z:0)

Then, 6 (z; 1) will be analytic in the cut-plane S* U S, and satisfy

HO (. ;0 —HO (7,:1) = &(n, ;0. Yy, <O. (72)

Because the right-hand side of (72), £(y, ;?) is totally determined by the solutions
bo(n1, 11 1) and Yo(n,, 11, ), d'(z:1), and therefore, g.(z:1) are also completely
determined.

By using the results in Appendix 2, we can write

N ° {1 L) | L()
0 ’)‘4af,{,7L+(q)“‘(”")+/L(1) (m,n} T
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where
L(:) — :I 2 2

The explicit dependence of q,(z; 1) on = can be obtained from (64),

qz:nD =t ‘(“0([)-('0(’)}:] :‘“'+?A {b“(t),(/”(r)}:' s
+ 83+ 21 (LM, — DK {ag(t), co(D)z" 7 " nz o (74)
+ 15(3'2ili)(L/‘M/\ 7I)l_(;\ {/7()(’).(/()(1)}:‘ Lo In:z

where operators like t, {ao(1), ¢o(r)} and k;{an(7). ¢o(0)}. etc. are given in Appendix 1.

From the definitions for q,(z; /) and the above, one can get

*

_ ["41¥'[1’1 (240 __;,.I’l
0N —6s(z:0) = Bz p2U g Inz—gds m} 79)

*

q:(ﬂﬂ,)__ql(h*,):,y_ﬂ;H: ﬂ_ll ”+{g"l‘+“ ln__lé_l’ i -

where quantities of #, y, € and ¢ are also given in Appendix 1. It should be noted here
that f and y depend on the crack-tip speed and the complex parameter A,(f). as well
as their time derivatives. However, & and ¢ depend only on the crack-tip speed and
the complex parameter 4,(7). The right-hand side of (72), £(y, : 1). becomes

R(n,:0) = do,(—n) T In(—n)+éo,—n)" 7 FIn(—n)
Laen | F . .V, <0, (76)
+wl(-’7|) - é+wr(*'71) -
where
w, =1le "”ﬁé—}—@‘”Hg}
w, =ile ’:"lflﬁ+e1’”Hy}~m':{c “"lflé—e,,H !

Once again, it can be seen that @, does not depend on the time derivatives of the
complex parameter A (r) and the crack-tip speed, while o, depends on these quantities.
The functions inside the integrand of (73) can be rewritten as

12(72;;11)) e {zw‘,ln(Ai71)+;§(f)d(,,]l) 500 (— ) 1
+w,+(f),(~;],) 3“';

k(1,310 o e L 77

L_*('Il): — Vo (—ny) ln(ﬂll)ﬂ(,,dln(ﬂ?])
+wl(*’71)z"'+gz)1:

In order to obtain the solution for §' (= ; 1), we recast (73) into the form of a Stieltjes
transform by using (77). However, one can see that for our case, a closed form
evaluation of the Stieltjes transform integral is very difficult. At the beginning of this
section, it was mentioned that only the most singular terms in the solution of Fy(z: 1)
and G,(z; 1) are considered. This implies that we are only interested in the rcgion
where |z] = 0, i.e. very close to the interfacial crack tip. As a result. instcad of
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evaluating the entire Stieltjes transform, we only need to study the asymptotic behavior
of that transform as |z| — 0. The details of this asymptotic analysis are given in
Appendix 3. If only the leading terms in the Stieltjes transform are retained, by using
the results provided in Appendix 3. the solution for §'(z ; 1) can be obtained as

0"/(:’,) — ‘([C _I 2+in ‘C(l‘-
+ [C//:l ZHJ‘_C//: :

where in developing the above equation, the relation

“1+03:=D

('D
K¢l

i 5 .
has been used, and the following notations have been defined :
e ne ~

" r
ba= 8mi, @a

e ™ 1né +
= . F IR L IR r «
¢ 471/4{ ™ §inh (2me) w,}
e ™ e & 3 T
v = - A 3 d r t
S = 4, {[6 Poy= gaTou—,, ‘”]

n*écosh (2me) « in «
+[ Sinh?Cne) T sinh (27) r‘“'}} J

—

:] (ln :)2+[C’:l‘:+il'_z,:’l 2 it;] ]n

}. (78)

In constructing the entire solution for g,(z: 1) and g»(z; 1), the leading terms in (70)
and (71), are considered. This is consistent with the fact that (78) contains only leading
terms of the same order. The final solutions for g,(z:¢) and g,(z; 1), are therefore

gi(z:n) = &Py H 'z —Qr'H ',z “](Inz)*
+[Pi'H (¢, —¢€) " —Q, ]H"](C_/“ég_)il *Inz
+IPUHT G- = Q H (G-
”TPI IC 17+“ IKQ] C 1:2-ie § -
cosh en A:0+ cosherr - 420 +0(=D)
and

gz(le‘) — —E[Pg lﬁ ]C{l:] Z+i1:‘Q2 IH lZ(I:] 2 i/:] (ln:)l

—[Ps'H N(C—dg)z Q5 T H (G — i)z ] In
i ‘ﬁ*'@,,—v)-”*“zoz H ' (G—B)=" 1]
lg U2+ “TQ#‘C,_IZ i 7 -
COShbTE - As(0+ coshen ~ A1) +0(zD)

where ﬁz(r) = /iz(O; 1).

ceSH,

(79)

zes§ ,

(80)
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Our final target is to find the complex potentials f.(z:¢) = (Fy (23 1), Gy (z: ).
After some manipulations, f(z: 1) and f5(z ;1) can be expressed as
£(z:0) = é{P; 'H ¢,z Q, ‘q 21 W (Ing)?
+ {[PI 'H I(C,—éf)—f—ziwl” Lag (1), ¢y(0)}] ot

Q) 'H (G, —£8) —&Wg ho(D.do(n) ]2 1 n:
+iPVTH (=B 4w {ag(D o))z
QG =) W b0 du(D} 11 )

C“’TP ] o e 4 | N -
| §:|_+11,A1(r)+ Ql C:l‘ "'Az(f)‘i‘()(l:‘)
coshen cosh en -

and

*

f%(:;’): *li{leH Ic(l:]lJruv;Qz]H IC_(I:I: n,}(ln:)Z

— P, 'ﬁ ‘(CI—FZG)—«‘fW(/z{a[,(t).c(,(f)}]; 122 ki
—[Q- 'H l(a—éé_)+1EW112{/7()(1‘),a’“(t)},]:l 2 i),} In -

—{[P, Iﬁ l(Cn*'Y)'wzz{”U(’)J‘u(f)”—'l s
—[Q:"H (G B+ W b0 di(n}1z" )

e 1:1{})ﬁ 1 L e;.n R I
E 4':, AL () + Q. ¢
cosh em cosherm

[}

AL+ 0D

where the operators w(-.*) and w,.(+,*) are given in Appendix 1. By integrating the
above two expressions with respect to the complex argument z, we can finally obtain
the complex potential f,(z;¢) = (Fy(z:;1). G (z: 1)) for both materials.

Since (81) and (82) are directly related to the stress components around the inter-
facial crack tip, some of the noteworthy features of the asymptotic field can be studied
through them. The most interesting feature is that there exist two terms in the above
equations. which are totally different in nature from the terms found in the solution
of a crack propagating transiently in a homogeneous material. The first of these terms
is that associated with ' *(In z)*. This term is clearly associated with the interfacial
nature of crack growth since it is proportional to the quantity £. This quantity is also
related to the transient nature (existence of non-zero accelerations) of the problem.
By observing that

. de de
CTde dr

one can easily see that &, and thus the =' *(In 2)? term, vanishes either when the crack-
tip speed is constant and/or when the material mismatch parameter & vanishes.

The second term is that associated with =2 In z. The coefficient of this term is
related to the complex parameter 4,(1) and also depends on the crack-tip speed. as
well as on their time derivatives. So it depends on both #(r) and K* (7). It can be seen
that for constant speed transient crack growth (¢ = 0, K9 2 0). this term will still be
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present. Indeed the r'/* In r term has been observed by WILLIs (1973), who studied a
particular constant velocity, transient interfacial crack growth problem. Both of these
two terms which include logarithms will vanish at the same time only if the situation
is strictly steady state. Otherwise one or both will be present. These logarithmic
singularities are the consequences of the existence of both the interface and the
transient nature of the propagating crack. For the case of crack growth in a homo-
geneous material (¢ =0), B =y and &€ =g, see Appendix 1. This is true even if
crack propagation is transient. As a result, it can be shown that @, = o, = 0, and
consequently, {,, £,, and £, will vanish. The logarithmic terms also disappear. In this
case, the transient field reduces to the one obtained by L1u and Rosakis (1992) which
does not feature any logarithms. It should be stated at this point that transient higher
order terms involving logarithmic singularities have also been observed in the solution
of dislocation lines propagating transiently in elastic solids (CALLIAS ¢f al., 1990;
MARKENSCOFF and NI, 1990). These terms were shown to vanish when the dislocations
propagated with constant speed.

In this section, we have provided a procedure which allows us to investigate higher
order transient effects systematically. By imposing the boundary and bonding con-
ditions on the complex potentials, the problem was recast into the Riemann—Hilbert
problem. By solving the Riemann—Hilbert equations, and by evaluating the Stieltjes
transforms, the higher order terms were obtained. This procedure can be repeated to
any order, and we may therefore claim that it is constructive.

4. THE ASYMPTOTIC ELASTODYNAMIC FIELD AROUND A NON-UNIFORMLY
PROPAGATING INTERFACIAL CRACK TIP

For planar deformation of a homogeneous, isotropic, linearly elastic material, the
ordered array [u,, &4, 0,4]. a, fe{1,2}, is said to be an elastodynamic state in the
absence of body force density, if the following conditions are satisfied

.1
&y = j(ux.!_'_u/i‘a)
N 1. N
Oy = 2,5+ 1805 > o« fe{l. 2], (83)
Copp = Py

where p is the mass density and 4, g are Lamé constants of the material. In addition,
the field quantities u,, &,; and a,; must satisfy the smoothness requirements outlined
in WHEELER and STERNBERG (1968).

In the Cartesian coordinate system (&, &,), let ¢,,(&,. &.. 1) and (&, &5, 1) be
solutions of (12}, m =0, 1, 2,...,such that

¢m+n(é]v 623 [)
—

[//‘z’"'(fl’CZ”) Casr= B4+ 50, m=0.1.2,.... (84)
m+n élscfla [)

— " —
[pm(él’gbt)

for any pOSitive integer n. ThuS, (z)m(éla 529 l) and l//m(éls 529 t) Wl“ be two aSymPtOtiC
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o

sequences as r = (£7 4¢3 5 0. Define ¢(&, &o, 1) and Y (&), &, 1) by

0t ) A (85)
l//(él*ébt) = Z ‘/’m(ﬁlvil-«’)

Then, the array [u,, &, 0,4, o, fe {1, 2}, will constitute an usymprotic elastodynamic
) ¥ 3 - . -
state as r = (£74+E3)"7 — 0, if it satisfies

U, = d)‘x +()2/f‘//./§

‘ ] ‘ N

& = 2yt ug,) .o ferl2). (86)
Oop = Wb+ Ak, Oy

Now, consider a planar body composed of two homogeneous, isotropic and linearly
elastic materials bonded along a straight interface. Let the two displacement potentials
for each material be given by (85), where each term of the asymptotic series is the
solution which has been discussed in the previous section. The asymptotic clasto-
dynamic state near the non-uniformly propagating interfacial crack tip can then be
obtained from relations (86).

For its importance in the experimental investigation described in Section 7, we only
provide the asymptotic expression of the first stress invariant around the interfacial
crack tip. However, in order to shorten our expression, some notation needs to be
defined first. In the expressions below, the superscript (1) or (2) denotes the com-
ponents of the vectors defined in Appendix 1 and in previous sections. For the
material above the interface, we may define the following quantities.

Q1) = — P :[(IJFJI)/IH+2°<~/3:l]'&;/“‘[“+9’»§)/712+2“J?lI]Q:/_)J)~
uD@) A, 4n

* I 5 Iq > 2

Q.1 = T 4o )y + 20000 JEE IO o) + 20007

— uD@) A

Q) = — ;tb(z~“))i,/l§ {[(l +9‘3)/711‘f‘zashzl](g(’”‘ff(“)
“[(1+13)hl:+2‘3‘sh;l](ggz)'ff(h)}+"3“’:'/”':(10(f)-('0(’)}-

()= — uD(@) 2,2 {[(14‘13)/111+21f1:1](¢75“‘533“)
+[(1 +a0 )24 2000, l](':—f:""f‘:(z))} — &y hu(0). ()],

Q. (1) =— a2y 4 200, =B

,uD(I‘)/",',),2
— LT oYy s+ 2000 T = B Hwi a0 e (1))
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* 1
Q)= = A+ 2 ) —5)
+[( +o)h s+ 200 (TP =7 = w1 {bo(D), do(D)}

Now. one can show that by using (46) and (81), the first stress invariant in the material
above the interface will be given by

7 +o"” { 2+ 5 — 12
Zttéo[c\ —af) = Re {Ag(Dag()z; "2+ Ay (by(t)z 7
—+ e 2‘“g *(/i (f)—i—/? (f))+on(f)a (I),.I;2+u:_+_§7(t)b ([)7lr'3" .
uD@)(14+w) ! ! 2ANag()z L(bo(D)z)
+[A (D2 4 B (DFzy T C(Fn - (87)

S A2 P B(nFz = C Az

+[A/([):ll'3+iz;+Bl(t)Z—.lzl I‘2+i::_AI([)ZII,2~1::__B’(I)Z-IZI~ 1,2 i»:] In 3

QN2 — Q021 (Inz) ) +O(1z1])

where
2(l+oc|)
A0 =Q,(0)— ) {G+ie)D{ae(n)} +EK(Nae(t)} —2Bi(Day(1),
. : 2(1 _ _ _
A0 = Q,(0+ %{r D (i85, bo(0} + KDbu(0} + 2B (Db,
B, (1) = — (3 +ie) (3 +ie)Difag()} —26(1 +ie) Ki(Day(t) — ( Lre 1)( +ig) Bi(f)ay(1),
(1_+ )

B, (1) = G—ie) (L ~ie)Di{bol(n)} +26(1 —ie) R(1)bo(r) + (3 —ie) BD)by(1),

l'_ OC]? 2
Co) = G+ E)B(Das(t). Co(t) = — (348 B()by (D),

21+
A(f)—Q()—L;a)

: 5 +i8) K1) ay (1),

A (1) = Q AN+ gi+“') 3

Ki(Dbo(1),

]

B,(1) = —é(3+1e) (3+ie) Ki(Day(1),

B,(1) = é(3—ie) B —ie) Ry(n)bo(0),

v K(t)

4\/27505 ¢t 2 (3+ie) (G +is)”

In expression (87), functions of time Ao(t), A\(t) and A,(¢) are undetermined by

K} =
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the asymptotic analysis. On the other hand, functions A4,,(¢), B,(1), C,(1). .;!,,(I) .....
are known in terms of A (7). the crack-tip acceleration #(¢) and the time derivative of
/f“(r). As a result, these functions are also undetermined by the asymptotic analysis.
However, their dependence on time derivatives of #(7) and A7) constitutes the
mathematical demonstration of transient effects.

It is often convenient to express the first stress invariant in terms of real quantitics.
For any complex function of time W{(z), let its magnitude be denoted by | W], and its
phase be denoted by ®(1¥). Meanwhile, a scaled polar coordinate system (1. )
centered at the moving crack tip is defined by

e

n=1{&i+ad) . O=tan ',
S
The first stress invariant in the material above the interface can therefore be expressed
as

Tt [Ag(O]{Z(8) cos (¢In rl)+i(,((),) sin(elnm)ry 17

5

2uai —a7)
4o, ;

: A (D) cos (A
+11D(l‘)(1+(l)5)| () cos®(A)
—H':{Z‘,((),)cos(:;lnrl)ﬂ—i,((),) sin(elnr)) el (nr)” . (88)
+{Z,(0)cos(elnr) +i,((11) sin(slnr)} }‘,‘ *Inr

+{Z,(6) cos (nlnr,)+i,,(()]) sin(elnm)) e

+14-(0] {Z.(0)cos(einn) —{—ﬁ LGy sin(elnny e+ 00

where

=

o 0
Zy(0) = ao(ne ) COS( ] (D(A<a)>+/70(7) ¢ COS<7I +(D(An)>~
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0 ) {0
Yo(0) = ay(t)e "sin <?' CD(AU)>~/)0(I) e sin <71 —HD(A(,)>,

o =

] .
o) = ag(e cos< 1 +<D(A3)>+h“(r) ¢ cos <7' — (A z)),

» 0 0 )
X.(0) = — {u(,(l) e “Usin <2‘ +(D(A(,)> — ho(t) e sin (7' ~<!)(A(,)>}*

0 . { «
TA0) = 1Q0le cos( ‘ +cb<ﬂl,)> Q0] e cos <7' +<1>(Q,/)>,

2

. 0 Ve (0 .
2(0) = ﬁ{m{,u) le " sin (7' +(D(Q(,))+ 1Q,(2) Je™ sin (?‘ +<1>(Q.,)>},
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2,(0) = |A,(1)]e ™ cos @ +(D(A,)>— |4,(1)] e cos (Z‘ +cb(}1,)>
w0 36, . " 36, .
+ |BAn)]e " cos <§ —(D(Bf)>— [B, (1) €™ cos <2 —(D(B,)>
B 0, . (e .
—29{ |Q,(5)] e sin ( +(D(Q,)> |Q,(1)| e sin (2 +(D(Q,,)>}9.,
* el s 6, y 0, o O, y
z0)=— {IA,(I)I e “isin (2 +(D(A,)>+ |A,(t)] €' sin (2 —HD(A,))}
o . {30 . .. (36 .
+1B(H)e" 'sm( 5 —KI)(B,)>+ |B.(N} e sin <2 —<I>(B,)>
. e 9| b ; OI i
~2£{|Q,,(t)l e " cos (5 +(D(Q{,)>+ |2, ()] ™ cos (5 +(D(Q,,))}0,,
C 0, o,
Z,(0) = |A,(t)| e " cos <§ +(D(An)> lAu(l)| e COS( +®(A4 n))

+ 1B, (0] e cos (329 —<1>(B,,>>— |B.(n] ¢ cos (35 —@(is,,)>

7

>

76,
+1C, (D) e rcos '~‘D(Cn)> ICn(l)Ie“"COS< ‘D(Cn)>

_ {|A,(z)| ¢ sin <2‘ +®(4, )) |4,(£)] & sin < (A, ))}el

+ {]B,(t)l e "sin| —.- —(I)(B )) lB (0| e sin ( <I)(B )>}01

|

(o)

—é{|Qd(1)| e cos (Z‘ +(D(Q(,)>— lfld(t)l e cos < +(I)(Q,,)>}912.
Ea(0) = — {[Al,ml ¢ sin @ +<D<At,>>+|11,,<r)| e sin< +<I>(A“)> {

+ (B, ()| e *sin ( (D(th)>+ 1B (1) e®sin | - *CD(BH)>

+1C(n)] e sin ( )>+ (CulD)] e sin (729' @(6,»)

— {IA,(I)I e % cos < +®(4, )>+ 121,(:)1 e cos <i‘ +CI)(;I,)>}0,
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, 30, . , 30, .
f{)B/(f)le ""COS<7 *(D(B,)>+IB,(f)le""cos< , (D(B,)>}U1

t . Y . .
+:z{|§z(,(z)| e "sin (7' +(D(QL,)>+ 1Q,(1)] ¢ sin <7‘ +(I)(Ql,)>}();.

The first term in (88) has a square root singuarity and oscillatory nature. It is
associated with the complex dynamic stress intensity factor K‘(1) [defincd by YANG
et al. (1991)] which is related to the complex coefficient A ,(7) by

K'(t)y= =2 2n 4,(1).

The second term is the so-called T-stress term. and is independent of position. The
first two terms have the same spatial form as those obtained under stcady-state
conditions by DENG (1992). However, the remaining four terms, proportional 1o
the square root of the radial distance from the crack tip, are more complicated and
have some unusual features. The part associated with |A4.(7)| has the same form
as that predicted by the steady-state solution and is of order r'?. The term of order
r' 2 (In )7 has a coeflicient proportional to ¢ = ¢'(r)r’(1). This term vanishes either
when ¢ = 0 and/or ¢ = 0. The remaining two terms contain the functions X,(0,).

*

200, Z,(0)) and i,,((),) which depend on the time derivatives of the complex dynamic
stress intensity factor and the crack-tip speed. 1.e. they depend on transient cffects.
Thesc parts also vanish for steady-state crack growth. The term of order r' * In r was
first observed by WiLLIS (1973) who analyzed the stresses in the case of constant
speed. transient interfacial crack growth. In this case, ¢ = 0. K # 0. and the only
surviving terms will be of order ' * In r and r'*. If the two elastic materials that
constitute the bimalterial system become identical. the terms associated with #' * (In

ry* and ' 7 In r will disappear. However. in this case, the [unctions X,(0,) and i,,((),)
do not vanish and reduce to the ordinary transient terms given by Liv and Rosaxis
(1992) in studying the transient growth of a crack in homogencous materials. Tt is
significant to note at this point that transient effects may noticeably change the r and
0 structure of the field from that predicted by the steady-state approximation [e.g.
existence of logarithmic r' * In r and +' = (In r)” terms).

5. PROPERTIES OF THE MISMATCH PARAMETERS IN DYNAMIC INTERFACIAL FRACTURE

In the analysis of an interfacial crack dynamically propagating along the interface.
there are two mismatch parameters which depend not only on the propertics of the
materials that constitute the bimaterial system, but also on the crack-tip velocity. The
properties of these parameters are very important since we have seen that the asymp-
totic representation of the crack-tip field is drastically changed due to their presence.
One of these parameters is defined by

1 1—p o hy

e = In . = . (89)
L+f \/'//H:/’:l

T 2n
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h)
S e 90
1 \/hlz 0)

and the other one by

In the above definitions,

, _{Zalas—(lﬂ-af)} {2a.as—(l+cxf)}“

SRR YO ITS S D) )
_ fn-a) as<1—a3>} L

h”‘{ uD() }+{ uD@) J ’ ©h
_ Jui-a) m“—@}

2y ‘{ D) }+{ uD@) s J

where

2\ AT
o = (1—i> m= (1—::) L D) = dme— (1 +20)".
1 N

To illustrate the properties of the mismatch parameters, we choose a bimaterial
system composed of PMMA and AISI 4340 steel. We denote PMMA as material-1
and ATSI 4340 steel as material-2. The mechanical properties for these two materials
are listed in Table 1.

For both plane strain and plane stress, Fig. 2 presents the variation of the parameter
n with respect to the crack-tip speed. We can see that n varies smoothly from 1.0 for
the stationary interfacial crack, to oc as the crack-tip speed approaches the shear
wave speed of PMMA (c¢!"). However, the situation is different for the parameter f.
In Fig. 3, we can observe that if the crack-tip velocity is less than the Rayleigh wave
speed of PMMA (c}"), f# varies smoothly and tends to — 1 when the crack-tip speed
is very close to ¢§'’. Since D () will change sign as the crack-tip speed crosses ¢4, f
jumps from —1 to 1, and then tends to o as the crack-tip speed tends to ¢{". Figure
4 shows the variation of f§ when the crack-tip speed is bigger than ¢{’. Figure S
presents the behavior of the parameter ¢ when the crack-tip speed is below the Rayleigh

TaBLE 1. Properties of selected materialst

Parameter  p(GPa) v ¢(ms D% ¢(ms )8 e(ms ') cx(ms™Y) p(kgm )

PMMA 1.20 035  2081.7 1761.5 1004.0 937.8 1190.0
AIST 4340 80.0 030 59788 5401.9 3195.8 2959.8 7833.0

+ The parameters for PMMA are from CYRO Industries, Woodchff Lake, NJ 06675 the parameters
for AISI 4340 steel are from Aerospace Structural Metals Handbook, Battelle Columbus Laboratories,
Columbus, OH.

1 Plane strain, § plane stress.
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F16. 4. Velocity dependence of mismatch parameter f§ for plane stress and plane strain at the vicinity of
the shear wave speed of PMMA. (Bimaterial combination : PMMA -steel.)
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FiG. 5. Velocity dependence of mismatch parameter ¢ for plane stress and plane strain. (Bimaterial
combination: PMMA steel.)
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FiG. 6. Velocity dependence of the real part of mismatch parameter ¢ lor plane stress and plane strain at
the vicinity ol the shear wave speed of PMMAL (Bimaterial combination: PMMA steel.)

wave speed of PMMAL. It shows that ¢ tends o = as the crack-tip speed is very close
1o ¢i''. However, as the crack-tip speed crosses the speed ¢, since f3 is larger than
1. & will become complex, and thus ¢ can be written as

. 1. -1

. | L
c=C451, ¢= 2nll][3+l'

(92)
Figure 6 gives the variation of the real part of ¢ (i.e. &) with respect to the crack-lip
speed when the interfacial crack is running at speeds between ¢§’ and ¢!". We can
see that the real part of ¢ changes from — oo to 0 when the crack-tip speed is in the

range of ¢! < v < ¢!,

6. THE ASYMPTOTIC FIELD OF AN INTERFACIAL CRACK PROPAGATING AT A SPEED
BETWEEN THE LOWER RAYLEIGH AND SHEAR WAVE SPEEDS

In recent experimental investigations, described in Section 7, bimaterial specimens
composed of PMMA and AISI 4340 steel have been tested dynamically. This bi-
material combination exhibits a remarkable stifiness mismatch. It was observed that
under impact loading conditions, interfacial cracks may propagate at speeds exceeding
¢, see Section 7. This experimental observation motivates our attempt to investigate
dynamic crack growth in interfaces at speeds exceeding the lower Raylcigh wave
speed. In homogeneous materials, an infinite amount of energy has to be transmitted
to the crack tip to maintain extension at the Rayleigh wave speed if the dynamic stress
intensity factor is non-zero (FREUND. 1990). This makes it impossible for a crack in
a homogeneous solid to exceed the Rayleigh wave speed of that material. However,
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for a crack growing along a bimaterial interface, it has been shown that as the crack-
tip speed approaches the lower Rayleigh wave speed, say cy'’, only a finite amount of
energy has to be transmitted to the crack tip if the dynamic stress intensity factor is
non-zero (see YANG et al., 1991). Accordingly, there is no energetic restriction for an
interfacial crack to exceed the lower Rayleigh wave speed. Indeed, the experimentally
obtained velocity histories reported in Section 7 (see Fig. 14) are seen to largely exceed
the Rayleigh wave speed of PMMA.

In the analysis of previous sections, the governing equations hold for crack-tip
speeds in the range 0 < ¢ < ¢!", if material-1 is more compliant than material-2. Also,
the development of the asymptotic stress ficld around the tip of a non-uniformly
propagating interfacial crack is dependent on the complete solution of the Riemann-
Hilbert problem. However, from the procedure provided in Appendix 2, we can see
that there are no restrictions imposed on crack-tip speed from this procedure. The
only consequence of the restriction that the crack-tip speed is in the range of 0 < ¢ <
e, is that all parameters appearing in the solution are real. Nevertheless, the math-
ematical approach is not imited by this restriction, even if some of the parameters
become complex. Therefore, we can directly extend our solution to the case where the
crack-tip speed exceeds the lower Rayleigh wave speed.

Suppose the properties of the materials constituting the interface are such that
" <, and ¢’ < v < ¢! As we have shown in the previous section, the par-
ameter # remains real, but ¢ becomes complex and is given by (92). If only the leading
term is considered, under the requirement of bounded displacement, or integrable
mechanical energy density (FREUND, 1990), the two complex displacement potentials
in (46) for the material above the interface, become

* W
(1+{x3)~21a5]€”” 24in
Fagin = - EEImERET )
(2+1e)(1 +ie)uD(v) sinh en
1+a2)+2 ocs]e’T:" .
Mrmoremle T i g,
(2—ig)(1 —ig)uD(r)sinhen g . (93)
2o — (1 +02)] e it
Golzzny = - —LATMIHELNET iy
(2+ie)(1 +ig)uD(v) sinhen
2utnp(l+adle ™ L
L PaaOedle t o

(2—ig)(1 —ig)uD(v) sinhen

for an arbitrary complex function 44(7). To obtain this result, the definition of ¢ in

the speed range cf’ < v < ¢!V, (92), has been used. For the material below the

interface, we need to change & to —éx in the above expressions. By setting
A1) = A(1) 7,

the first invariant of stress for the material above the interface becomes
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A DA

T+ 05 = {ZY]O(NCOSh [;(7’[-()11 ] (()4)

D(v)sinh&n
— (1 +=2)sinh [£(m— 0)]} cos (& In 1+ B(£))

It can be observed that oscillations still exist along the radial direction. However,
there is no singularity at the propagating crack tip.
At a position, r, ahead of the interfacial crack tip, the traction on the interface can
be expressed as .
No (Do (i) = =2 A (0). (95)

At a position. r, behind the interfacial crack tip. the crack tace displacement difference
is found to be

. Ss(rin) 2k #TE
O (rit)—1 = . *A(,(r). (96)
'l sinhe | +1e
Il the interfacial crack extended an amount o. then the energy released by this
extension, AW(d) can be calculated by

] nl . 3 ) ‘ A ; 5
AW (o) = 7[ 1022(E1:00,(0 =& 1) +0,:(E 1001 (0—&1nfdEy. (97)
“~ JU
By using (95) and (96). we ¢can express the above equation as
21/ 7A t 2 o 57: |fij(“: i
Aoy = 1l L’( M im {J (0= e dg.} (98)
sinh & 0 141

Further, it can be shown that

LEFEN oyI4ing i REFEN N1 i i

(0—<1) "¢ . (0—<y) "dY L

J‘ ! . ! dg 1 = : . l d; ]
0 1 +ie o | —ie

Therefore, the energy release rate at the tip of an interfacial crack moving at speeds

in the range ¢’ < ¢ < ¢!". %, will be

AW(O
4 = hm ‘(()

50 0

= (). (99)

This result may be anticipated since in this range of speeds, both stress and strain are
bounded. Equation (99) states that if the speed of the interfacial crack is in the range
A < v < elP, no energy is needed to create new surfaces.

7. EXPERIMENTAL EVIDENCE FOR THE IMPORTANCE OF TRANSIENT EFFECTS IN THE
DYNAMIC FRACTURE OF BIMATERIALS

To investigate the validity of the analysis presented in this work, a sequence of
dynamic impact experiments of bimaterial specimens has been performed. Stress
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waves generated by impact, load an interfacial pre-crack, which subsequently propa-
gates dynamically along the bimaterial interface. High speed interferograms of the
near-tip region of the propagating crack are recorded. The optical method used is the
newly developed method of Coherent Gradient Sensing (CGS) (Tippur et al., 1991
Rosakis, 1993) described below.

7.1. Experimental technique (transmission CG.S)

Consider a planar wavefront normally incident on an optically and mechanically
isotropic, transparent plate of imtial uniform thickness # and refractive index a.
As shown in Fig. 7, the specimen occupies the (x,, x,)-plane in the undeformed
configuration. When the specimen undergoes any kind of deformation (static
or dynamic), the transmitted wavefront can be expressed as S(x,, x,, x;) = X3+
AS(x,, x,) = constant, where AS is the optical path change acquired during refraction.
As discussed in detail by Rosakis (1993), AS is related to the deformation state by
the relation,

12 02
AS(x,,xz)=2h(n——1)j 833d(x3/h)+2hj And(xs/h). (100)
0

0

The first term of (100) represents the net optical path difference due to the plate
thickness change caused by the strain component ¢;;. The second term is due to the
stress induced change of refractive index of the material. This change in refractive
index An is given by the Maxwell relation,

An=D(0,14+02:+033), (io1)

Collimated
Laser Beam

Specimen

Grating G,

Grating G,

Filtering Lens L X3

Filter Plane

High Speed Camera

F1G. 7. Schematic of the optical sct-up for CGS in transmission.
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where D is the stress optic coefficient and ¢;; are Cartcsian components of the nominal
stress tensor. The above relation is strictly true for isotropic, linearly elastic solids.
For such solids, the strain component .5 can also be related to the stresses, and (100)
then becomes:

1.2 - N
AS(x},x-) :2114 {(awm[l—nz( o )J} (xhy.  (102)
0 V(g +0a5)

. __1
\'D\+\(” )

D::— N

where

and E, v and ¢, are the Young’s modulus, Poisson’s ratio and stress optical coeflicient
of the material, respectively.

A schematic of the experimental apparatus is also shown in Fig. 7. When the
transmitted wavefront emerges from the specimen after being distorted. 1t passes
through two high density gratings, G, and G of pitch p, separated by a distance A.
The gratings have their rulings parallel to either the x,- or x.-dircction. The action of
the gratings is to displace (shear) the diffracted beam and recombine it with itself,
thus creating an interferogram after G, The filtering lens L processes the light
emerging from G, and its frequency content (diffraction spots) 1s displayed on the
back focal planc of L. By physically blocking all diffraction orders except for cither
the &1 orders, information regarding the gradient components of AS(x,, v,) along
either the v - or v,-axis is obtained on the image plane. The camera is kept focused
on the specimen plane. For grating rulings perpendicular to the x,-axis, the resulting
fringe pattern is proportional to ¢(AS)/Cx,. ze | 1. 2].

A first order analysis described by TipPUR e al. (1991), or a higher order Fourier
optics analysis by LEE ef al. (1993). have shown that the resulting {ringes can be
related o gradients of AS(v ). x,) as follows:

C(AS) B k,p

2e 1,2}, 103
(’1_\,7 A N jel § ( )

where
{m for x=1.m=0.+1,%+2....
k,=

n for =2 n=0,+1.+2....

and #7 and # are the fringe orders for the x|, x, gradient contours respectively.
Invariably a near-tip three-dimensional region will exist in any recal specimen
geomelry. However. outside this three-dimensional zone, a plane stress approximation
will be valid. A numerical study of cach particular specimen configuration is needed
to identify the extent and exact location of such a planc stress region. Such a calculation
has been performed by Lk and Rosakis (1993) for a three point bend bimaterial
specimen. A rather large two-dimensional plane stress region was seen over d sig-
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nificant portion of the specimen. In this region, ¢33/v(6,,+0:2) (a measure of three-
dimensionality) tends to zero. For points outside the three-dimensional region
[05:/v(6,,+0,,)—0], the optical path difference in (102) will simplify to

AS(xy,x5) ~ C’a/7{6'| (X, x2) + 620Xy, xl)}v (104)

where 6,, and ¢, are thickness averages of the stress components in the plate.

As a result, for points outside the near-tip three-dimensional region, the CGS
patterns assume a simple interpretation in terms of two-dimensional stress field
approximations. In particular, (103) and (104) now indicate that fringes obtained
from regions surrounding the three-dimensional zone can be related to the in-plane
gradients of ,, + @5, as follows.

(G, +d:) mp 6, +6.,) np
L == h— = . L E2,
ox, A ’ ax5 A’ ’

. h (105)
where in the case of transmission ¢, is the stress optical coefficient of the material (e.g.
PMMA).

7.2. Experimental set-up and procedure

Bimaterial specimens used in the dynamic experiments are of the three point or
one point bend configuration and are made from 9 mm thickness sheets of com-
mercially available poly-methylmethacrylate (PMMA)(material-1) and AISI 4340
steel (material-2). The bonding procedure is outlined in TIPPUR and Rosaxis (1990).
A bond strength calibration experiment was also performed in that study, dem-
onstrating that the bond toughness was at least as much as that of a homogeneous
PMMA specimen. This fact testifies to the strength of the bond and becomes important
in the discussion of the dynamic experiments presented below.

The bimaterial specimens have either a pre-cut notch, or a sharp pre-crack of length
25 mm along the interface. The specimens are either impact loaded in a drop weight
tower (Dynatup-8100A) or a high speed gas gun. After the impact event, the crack
propagates dynamically along the interface. The transmission CGS technique in
conjunction with high speed photography is used to record dynamic fields around the
crack tip (only on the PMMA side, of course). A rotating mirror high speed camera
(Cordin model 330A) is used. A Spectra-Physics Argon-ion pulse laser (model 166)
is used as the light source. By using short pulses of 30 ns duration, we are able to
freeze even the fastest of running cracks and thus produce a sharp interference pattern
during crack growth. The interframe time (controlled by the interval between pulses)
is typically set at 1 us for a total recording time of 80 us. The laser pulsing is triggered
by a strain gage on the specimen that senses the impact.

Truc symmetric one or three point bend loading cannot be achieved since it is
extremely difficult to apply the impact load exactly on the interface, which is very
thin. In addition, since the wave speeds of PMMA and steel are vastly different, the
loading history at the crack tip would be completely different if the specimen were
impacted on the PMMA or the steel side. Thus it was chosen to impact the specimen
a small distance (7 mm) into the steel side of the bond.
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A sequence of high speed interferograms from a PMMA—steel test is shown in Fig.
8. This is a three point bend test conducted in a drop weight tower. The impact speed
was 4 ms '. When the crack initiates (¢ = 0 us), intense stress waves emanate from
the crack tip. These waves are visible in Fig. 8 as discrete kinks in otherwise smooth
fringes and as carcular lines centered at points along the crack line (see frames at

= 16.5 us and t = 23 us). This observation is a reliable sign of a highly dynamic
event, as will be discussed later.

7.3. Analysis of experimental data

In subsequent sections we shall present an analysis of CGS interferograms of
dynamic bimaterial specimens first using a K‘-dominant assumption and then using
the higher order transient field described in Section 4.

7.3.1. Singular field (K'-dominance). The governing relations for CGS (105) can be
used to estimate fracture parameters from points outside the three-dimensional zonc
of a given interferogram. One could expect that the plane stress region surrounding
the near-tip three-dimensional region would be well described by the most singular
term in the asymptolic expansion for stress. i.c. that a K%-dominant region would
exist somewhere around the crack tip. This is something to be verified though and
should not be taken for granted, especially in regions relatively far from the crack tip
or in experiments showing transient effects (e.g. rapidly changing crack-tip speed). In
such cases the deformation field around the crack tip may be better described by a
higher order analysis.

As was stated earlier (see Section 4), for c¢racks propagating dynamically under
steady state conditions in bimaterial specimens, YANG et af. (1991) and the first part
of the present analysis observed that near the crack tip the stress field assumes the
form,

d i d i
aw::Rc{Kf }ﬁwaq+hn{Kf }5$w&vy (106)
\ 2mr / 2mr
where (r, 0)) are polar coordinates of a coordinate system translating with the crack
tip at speed ¢. and K9 is the complex dynamic stress intensity factor. The material
mismatch parameter ¢ = &(r') is now a function of crack-tip speed and ot the clastic

moduli of the materials of the bimaterial system. Analytical expressions for ¢4 and

G4 are given by YANG ef al. (1991).
By using (106) and after some algebraic manipulations, ¢,,+ 4., can be wrilten as
. . A1)
011 +0:2= -

0
: {(I + ol —2na) e’ " cos (2' —d(r) —;;lnr,)
2y (107)

N 0
+ (4ol +2na)e " ”"cos<7]+(1)(t)+glnr,>}

where

(0(:2 ‘OCE)IVK"(VI)I
D(¢)cosh (¢m) °

, K50

A() = ki)'

K4 = Ki(O)+1K4(1). ®() = tan



1929

Transient interfacial crack growth

(‘umoys s1 uowroads 931V NN
10 3p1s YWD 3yt A[uQ) “1uawuadya samol jySiom doip [ewrjiaiu puaq jutod 9a1y) & ui Yord SUImoi3  Jo swetSolajaul §00) Jo aduanbos Pa1091as *g oI
S W 0g8g=A 1-S W gQ8=4
sm ze=1 st ¢z=1

(S W O6L=A

st ¢'91=3




1930 C. Lwu et al.

t=16.5 ps
v=1100 m s! v=1100 m s!

F1G. 13. Selected sequence of CGS interferograms of a growing crack in a one point bend interfacial gas
gun experiment. (Only the PMMA side of PMMA -steel specimen is shown.)
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L Crack tip

Fig. 16. Comparison between the CGS fringe pattern and the fitted higher order transient stress field,
(109), for a propagating crack in a PMMA-steel interface.
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v=360 m s!

t=8.5 s
v=1100 m s! v=1210 m s’} v=1300 m s!

F16. 18. Selected sequence of CGS interferograms of a growing crack in a one point bend interfacial gas
gun experiment. (A blunt starter notch was used.)



Transient interfacial crack growth 1933

t=10 ps t=12.5 ps

t=15.5 ps t=18.5 us
v=1190 m s’! v=1470 m s!

F1G. 19. CGS interferograms providing visual evidence of the highly transient nature of dynamic interfacial
crack growth.
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and %, r, and 6,, have been defined in previous sections. The mismatch parameters
y and ¢ are functions of crack-tip speed and of material properties. These functions
are given in Section 5 and appear in Figs 2 and 5, respectively. Note that (107) is the
first part of (88) in Section 4. The field quantity of interest in analyzing the CGS
patterns for material-1 is ¢,d(¢,,+ 6,,)/¢x,. By differentiating (107) with respect to
X, we have

NG 11 +622) iy ¥e A1) ]
ax, 2\/271

30
x {—(l +ocf*2;7as)el"‘"”"cos< 2] —®()—¢ln rl)

c.h

30
— (140 +2na,) cos (2] +@(s) +¢ln r|> { (108)

" s oy [ 300
+2e(14o; —2paye=" “sin ) —O(r)—¢lnr

— 2e(1 + o+ 272 sin (320‘ + ®(r)+eln r,)}
where A(r) is as defined in (107) and 0 < 6, €< 7.

From the above discussion it becomes obvious that extraction of parameters like
K9 is now possible provided that experimental data are gathered from a region near
the moving crack tip characterized by the structure presented in (107) and (108). In
a laboratory specimen of finite size where transient effects may be important, the field
may not be K%dominant and the use of a higher order analysis may be necessary.
The necessity of a higher order analysis in the interpretation of optical data from
crack growth in homogeneous specimens was demonstrated by FREUND and ROSAKIS
(1992) and KrisuNaswaMy and RosakIs (1991). An equivalent analysis for a tran-
stently propagating interfacial crack has been provided in previous sections and its
effect on data interpretation is discussed in the next section.

7.3.2. Higher order transient analysis. In Section 4, a higher order expansion for
the trace of the stress tensor in plane stress is shown in (88). By differentiating with
respect to the x,-coordinate, we obtain a relation for the x,-gradient of 6,,+4,>,
which is relevant to the analysis of CGS interferograms,

(6“+033):

—_— f: . ~ 1 : 1 3! ) .32
2 = o) |- o ()| {I1o(6) cos (eInr) + 11o(6) sin (eIn )} ry

+&é{[1,(6) cos (¢lnr)+ I:L,(HI) sin(elnr)}ry "2 (Inr)’

. S 109
{I1,(8) cos (¢Inr) +I1,(0) sin (elnr)} ri " Inr (109

+ {I1,,(6)) cos (¢Inr)+ ﬁ,,(Ol) sin(elnr)}ry 2

+ 12> {TL(8) cos (e Inr) +T1, (B sin (e In )}y 2 +0(r) J
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The functions of time .7 ((¢), o7 (t). o, (1), ..., that appear in the above expressions,
are related to functions A(r), A-(r). A,(D. ..., in (87) by

oA o(t) = (= 1 +ie)Ao(1), o) = G+ie) A1),
o (1) = (A +ie) A4, (1) + A, (D) + B, (1),

A1) = G—18) A, () +A,() + B, (1),
,@”([) = (“ é +i8)Bn(’) + Bt(t) +2Cn(t)5

B, (1) = (— 1 —ie) B (1) + B, (1) + C, (D),

Gou(t) = (= 3+ie)Cu (1), €o(t) = (=3 —ie)C, (),
A (1) = (%—I—ia)A,,(l)—f—ZéQd(t)—l-B (1),

oA (1) = (L—ie) A, (1) + 26001 + B, (1),
B(1) = (—+ie)B(1). B,(1) = (= s—ie) B.(1),

2,(0) = (= +i8)Qu(1).  2,(1) = (l—ie)Q(0).
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The gradient contains four orders in . They arc r, * 7. ¢y "> (In /)% 1 ' In #, and
r, 2. It also contains 28 undetermined constants. The first two constants |.«/ ] and
O(</ ) are related to K| and ® (or K9, K¢) of the expression of YANG ez af. (1991)
[see (108)]. In fact the most singular term of (109) reduces to (108). Under steady-
state conditions, (109) reduces to an expression with four terms which are identical
to the first four terms of the higher order stcady-state expression derived by DENG
(1992). The transient contributions to the cxpression for the gradient (108) arc those
that exhibitan r; ' * (In )" and r, '~ In 1, radial dependence. It is worth noting that
most of these transient terms are muiltiplied by the quantity &, the rate of change of
the oscillatory index with time (¢ = ¢’(¢)¢). Thus, to a certain extent. & is a measure
of transicnce of the propagating crack. If £ = 0. most, but not all transient terms
disappecar. Those that remain are those related to the rate of change of the complex
stress intensity factor. Note that it is possible for & to be small even if a large
acceleration exists, but ¢'(r) is small. Conversely it is possible to have a large ¢
corresponding to small ¢ but large ¢'(¢). It should be noted that &'(¢) tends to infinity
as ¢ tends to ¢ (sce Fig. 5). Whether or not ¢ can be used as a reliable measure of
transience will be investigated in the subsequent section.

It is clear at this point that analysis of the fringe patterns obtained from a dynamic
cxperiment can be made using either (108) or (109). The choice of one or the other
depends on whether a region of K'-dominance has been established somewhere outside
the near-tip three-dimensional zone. Use of cither equation allows cstimation of the
time vartation of the relevant parameters. This is done by performing a lcast squares
fitting procedure to data points digitized from the CGS interferograms obtained
during an experiment. Of course the crack-tip speed () is measured independentty.
There are two undetermined parameters in (108) and 28 undetermined constants in
(109).

7.4, Results and discussion

The velocity and acceleration histories corresponding to the sequence of photo-
graphs in Fig. 8 are shown in Figs 9(a) and 9(b). This is a test performed in a drop
weight tower under the relatively small impact speed of 4 m's ', Indeed the terminal
speed in this test seems to be about 90% of the Rayleigh wave speed of PMMA, ¢}
[see Fig. 9(a)}. In contrast, previous experience with dynamic crack growth in homo-
geneous PMMA specimens of the same configuration show a maximum speed of
about 0.35¢4”. Note also that in this particular bimaterial case there is a very large
crack-tip acceleration (approximately 107 g, where g is the acceleration ol gravity)
immediately after the crack initiates [see Fig. 9(b)]. This would suggest that transient
effects would be present close to initiation (1 = 0 us). As was mentioned earlier the
rate of change of the oscillatory index with time (£) may be considered a partial
measure of transience. For the same test as Fig. 8, we have plotted ¢ and ¢ versus time
in Figs 10(a) and 10(b). In Fig. 10(b), ¢ cxhibits a local maximum at about 1 = 10
us after initiation. It then starts increasing again after 25 us. At short times after
initiation, ¢'(r) is close to zero although ¢ is large (107 g). This accounts for the
initially low values of &. In this regime transient effects arc demonstrated through
large changes in the complex dynamic stress intensity factor. As time increases the
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FiG. 9. Velocity (a) and acceleration (b) time histories for the experiment shown in Fig, §.
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combination of & (2) and ¢ results in a local maximum in & At later times (1 > 25
us) and as the crack-tip velocity approaches the Rayleigh wave speed of PMMA, &
increases again.

To demonstrate the need of a transient analysis in interpreting experimental data,
let us now attempt to analyze the frame of Fig. 8 at r = 9.5 us. This corresponds to
a local maximum value of ¢ in this particular test. By following the fitting procedure
described in Section 7.3.2, we can obtain the coefficients of either (108) or (109). The
result of such a fit for the K%-dominant field [equation (108)] is shown in Fig. 11(a).
The diamonds are digitized data points from the interferogram at ¢ = 9.5 ps. The
solid line is the contour of the quantity é(6,,+d,,)/0x, calculated numerically by
using the results for K¢ from the fit generated by the same data points. As can be
clearly seen, (108) cannot represent the data to any reasonable extent. The deformation
field of this particular picture therefore is nowhere near K-dominant. In fact the main
feature which is that the fringes vertically approach the interface cannot be captured
at all by (108). The result of the fit of the transient higher order field [equation (109)]
derived earlier is shown in Fig. 11(b). The data points are exactly the same as before
and the solid line is the result of the fit. Clearly the fit is very good over a large area
of the specimen. All features of the field are successfully captured by (109). This shows
that the K*-dominant analysis cannot be used for cases where ¢ is high,

To further investigate the effect of € on the interpretation of optical data, we chose
to analyze an interferogram corresponding to the minimum value of ¢ within the
duration of the test. This occurs at + = 23 us. Figure 12(a) shows the result of the
K‘-dominant fit to the experimental data. As the crack tip is approached, (108) seems
to adequately describe the experimental measurement. However, as the distance
from the crack tip is increased, K*-dominance is lost. Nevertheless, the lack of K*-
dominance in Fig. 12(a) (6 ~1.0x10° s™') is not as dramatic as in Fig. 11(a)
(6 ~ 1.2x10* s '). Figure 12(b) shows the result of the fit of the transient higher
order field to the same experimental data as Fig. 12(a). The fit is now much better
over the whole range of radii. The above observations show that in general a transient
analysis of data is necessary if fracture parameters such as K¢ are to be obtained with
confidence.

7.5. Transonic terminal speeds

The next cycle of experimentation involved bimaterial specimens loaded at higher
loading rates than in a drop weight tower. This was achieved by using a high speed
gas gun. A one point bend impact geometry was used. Again the issues of crack-tip
loading history, as dependent upon PMMA or steel side impact, arise. It was chosen
to impact the specimens on the steel side, to remain consistent with the drop weight
tower tests. The gas gun projectile was 50 mm in diameter and the impact velocity
was 20 m s ', thus resulting in considerably larger near-tip loading rates than in the
drop weight device. A sequence of interferograms from such a test is shown in Fig.
13. Its corresponding u(f), #(t), (¢) and £(r) plots are shown in Figs 14(a), (b) and
15(a), (b). In general terms the results are similar to those obtained from the drop
weight tower experiments. A main difference is that the speed and acceleration are
much higher. In fact the crack-tip speed seems to exceed the Rayleigh wave speed of
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PMMA after a relatively short time. In some cases (as in Fig. 14) the velocity even
exceeds the shear wave speed and approaches the longitudinal wave speed of PMMA,
thus entering the transonic speed range for the PMMA side.

For a crack speed less than the Rayleigh wave specd, we can repeat a fitting
procedure exactly as before. For the frame at 1 = 8 us in Fig. 13, the result of such
fit is shown in Fig. 16. Here the white lines, obtained from plotting the ficld of (109)
using the values of the fitted parameters, are superposed on the actual picture (instcad
of the digitized points as in Figs 11 and 12). The illustration is the same though, i.c.
that a transient field is necessary to describe a picture such as this which corresponds
to a high ¢ and acceleration.

Unfortunately given the existing theoretical analyses, we do not have the tools to
fit any field to interferograms having a speed in the transonic range for PMMA
[el" < < ¢!Y]. These large speeds were observed in a number of tests involving one
point bend interfacial specimens containing sharp pre-cracks lying along the interface.
When a specimen containing a blunt starter notch was impacted, recorded crack-tip
terminal speeds were even higher ; in some cases approaching the longitudinal wave
speed of PMMA. Such a velocity history is given in Fig. 17. Here the maximum crack-
tip speed is estimated to be 0.9¢{". These observations are very interesting because to
our knowledge no cvidence of transonic or supersonic crack propagation has ever
been seen in homogeneous materials even though a large number of theoretical
studies exist on the subject (FREUND, 1990). It is believed that transonic crack growth
is possible in a bimaterial situation because of an cnergy transfer mechanism from
the stiffer to the softer material. 1t can be seen in Fig. 13 that the nature of the fringes
changes, approximately around the time at which the crack-tip speed exceeds the
Rayleigh wave speed. A sequence corresponding to the same test whose velocity is
shown in Fig. 17 (blunt starter notch) is presented in Fig. 18. In these pictures, we
see an even more drastic change in the nature of the fringe patterns as the crack-tip
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Fig. 17. Velocity time history for the experiment shown i Fig. 18.
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speed exceeds both Rayleigh and shear wave speeds. To see this effect clearly, compare
the second frame in Fig. 18 to the sixth frame. Finally, additional visual proof of the
existence of large transient effects is shown in Fig. 19. We are now in the process of
developing an analysis for the propagation of an interfacial crack at speeds exceeding
¢!V, Tt is hoped to be able to predict fringe patterns as those observed in Figs 13, 18
and 19.

8. CONCLUSIONS

Experimental observations of high speed (transonic terminal speeds) and high
acceleration (10* m s ~3) crack growth in PMMA -steel interfaces are reported for the
first time. Motivated by these observations, a fully transient higher order asymptotic
analysis of dynamic interfacial crack growth is performed. This analysis is valid for
crack-tip speed in the range 0 < v < ¢!" [¢!" is the shear wave speed of PMMA].
Explicit expressions for stresses are provided. In addition to the classical r %, r® and
r''2, ..., terms of steady-state expansion for the stresses, new transient contributions
of order #"? In r and r"* (In r)? appear. The structure of the near-tip field obtained
by the analysis is found to describe well the experimentally obtained stress fields. For
subsonic crack growth, the experiments demonstrate the necessity of employing the
fully transient expression in the analysis of optical experimental data. Terminal speeds
of up to 90% of the plane stress dilatational wave speeds of PMMA are observed.
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APPENDIX |. DEFINITIONS AND PROPERTIES OF MATRICES USED IN SECTION 3

Let P,, Q;, U, and V, be defined as in Section 3, and L, and I:A be given by
L, =UP; . L =VQ"
Matrices H and H are defined as
H=L,-L, H=L,-L.

17 2
By algebraic calculations, it can be shown that for ke {1,2},

_ Ui (L F (U UBP
L“[UN)A (/.,)A]’ L“[—(/z.)k (s }

where
2x.a\.-(1+13)} {a\.(l—af)} {al(l -as)}
i =9 - 0, L= 2 (=4 -
Urike { uD(r) 3 (i) uD() ) (e uD@)
and
D) = 4oy, — (1 +02)°.
Therefore.
hyy hys * hy —hys
H= - H= -
|:h21 | —hy hy )
where
ho=U) =) k=0 +W)y =)+ U

Notice that

HH = AHH = (b}, —h ko),
where I is the 2 x 2 identity matrix. Thus,
1 . x 1
H' — H, H'=~+5 —— .
i —=hyshy,

Also. it can be shown that

Ll =L.L. ke{l2}.

1949

A sequence of operator definitions follows. These are related 1o the analysis in Section 3.2.

Let p(¢) and ¢(¢) be two real functions of time ¢ and define the vector operators
d.{p(D.q(0} = {D{p(D)}. D{q(D}}i .

k {p(n).q(0} = {K(pln), K(Ng(D)}],
b {p(1).q(D)} = {Bi(")p(1), B(q(D)}],

where operators D, {-} and functions K, () and B, (1) have been defincd in Scction 3.2. With

the above definitions,
tip(D.q(n} = B+ 2ie) (LM, —Dd, { p(1), g(1)} +26(L M, =Dk, { p(2), q(1)}

+2[(1 +2ie) (LM, ~ 1) + P~ UuJb, { (1), g(0)}.
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where M, f’A and UA have also been defined in Scetion 3.2, In addition, for any given operator
m{p().q(n} = {m" {p(0). g0} i {p(0), q(D)} ]
the associated operator [;l,\ {p(0), q(0)} s defined as
m, {p(). () = {mt {p(D. gD —mi> p(. gt}
Also vectors f.y. € and g. arc defined as
B =t an(t).colt)) =t tho(0). do(n)]
¥ =t lag(0). (D)) —t, b0 do(1)}
E= (34 2)[(L,M, =Dk, {ao(n). (N — (LMy— DKo by (0). dy(1)!]
¢ = (3420 [(L-Ms— Dk fag (1), o)) — (LM, =Dk, 1ho(0).do(D)]]

and operators w, { p(0), ¢(1)} and w, i p(1). ¢(r)} as

W ip(DL gt = G+ie)[2P, "M, + i)k, ple). ¢(6)
wip(D.qt)) = G+i[2P "M, + (A +in)l]d, {pr).q(1)]

+26[P, "M, 4 (1 +ie)k, { pti). (1)

F2P, 'P+2(1 +2i)P, "M, — (L4 e)0b { p(1). q(1))

APPENDIX 2. SOLUTION OF THE RIEMANN-HILBERT PROBLEM

Consider the problem formulated as follows. Find a function
0(z) = (0,(2). 052",
= =5, +117,. which is analytic in the whole z-plane except along the branch cut — % <, < 0.
n- = 0. and satisfics the cquation
l:l()*(q\)—H() () =K(). Vi, <0, (A1)
where H and H are 2 x 2 matrices, defined in Appendix 1, and
k() = (k,()wa (g 0) '

with x, and », arc known functions of 5,. Near the origin, function 0(z) should satisfy the
requirement that

0] = O(z"). as |1 — 0. (A2)

for some real number %, and generally, 2 > —1.
In order to obtain the solution to the above Riemann—Hilbert problem, the eigenvalues and

cigenvectors of H, and H need to be studied first, By solving the equation
det {H-/I} =0, (A3)
where Iis the identity matrix, the cigenvalues for H are found to be
Avs =Ny, i\,f"h]zhﬂ. (A4)

The expressions of functions . i, and /., in our problem are dependent upon the mechanical
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properties of the constituents of the bimaterial system and the speed of propagation of the
interfacial crack, f1,,, h,, and h,, ensure that the eigenvalues, 2, and /,, are real, provided
that the crack-tip speed is less than the lower Rayleigh wave speed of the bimaterial. The
corresponding eigenvectors are

w2 = (1 +m', (A5)

o h
= s’

It can be shown that the eigenvalues for H are the same as those for H, which are given in
(A4), while the corresponding eigenvectors are

where the parameter # is defined by

Wl = (1L FpT. (A6)

L
B = .
h -

H =B 'HB. H =B 'HB.

Define the matrix B, by

and set

and

() =B '0¢), x(1,) =B 'k(n).
Then, (A1) becomes

0% ()~ HO (1)) = k(). V1, <O, (A7)

or, in component form,

izéT(').)—i](){(m) =K,(n)
. Y <. (A8)

/:163('71)—/12(): (n)= ’:;'2(’71)

It can be scen from the above analysis that H and H can be diagonalized simultaneously by
the same transformation. Therefore, the originally coupled equations (A1) can be reduced to
the uncoupled equations (A8).

If we express the ratio £,/4, as having the following dependence on §:

then the parameter  must be expressed as,
hy

f=- = _.
Vhiohy,
As a result. the solution for the first equation in (A8) can be obtained as

0,6)_ 1 [ x@d
L(z) ~ 2mi Je Lt (D) (z—2)

+ 2(:'), (A9)

where A(z) 1s an arbitrary entire function. C is a contour along the entire branch cut, and



1952 C. L et ol

extends from negative infinity to the interfacial crack tip. The function L(z) is given by

L{zy =z "R (A10)
where
o= l In =4
e 1+ p°

and A is an real integer. Integer A is chosen so that
[L(2)] = O(z]"), as |z} -0,
which complies with the restriction of (A2).

Similarly, we can obtain that

0.(2) 1 j K-(7)dt

L) = ami bos Dt (e — oy TBE (All)

where B(z) is also an arbitrary entire function. £ stands for the complex conjugate of /..
Returning to the original function 0(z),

| 1 L(z 1 L) 1 _ .
0(z) f{ =) (o) + . —( ) rK(T)}T( T_+L(:)A(:)C+L(:)B(:)C. (A12)

Tdni o s L () i L (0 —
where
| 1 ) | B 1
= i = i
n o1 -1 |
and

APPENDIX 3. SOME ASYMPTOTIC RESULTS OF THE STIELTJES TRANSFORM

In solving the Riemann-Hilbert problem, we need to cvaluate the integral

1(:):j '/)5-"_’)&;,. (A13)
. |~
Setting + = —#,, we gl
"W
(o) = — ) dr. Al4
( ) jl +- ( )

As we can see from (Al14), —1(2) 1s the Stielges transform of function f(r). Here we want (o
study the asymptotic behavior of the Sticltjes transform as = — 0. Alternatively, we may set
/= 1/zto get

I(z) = —AH[ 1 2], (A15)

where

HLJ ] :j l’l’})jd/. (A16)
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behavior of (A16) as A — <C.

Studying the asymptotic behavior of (A14) as = — 0 is equivalent to studying the asymptotic
is defined by

1953
Suppose that (1) is locally integrable in (0, o0). Recall that the Mellin transform of f(¢)

Mlf:s]= J £ () de, {A17)
0
and set
()= _ —.
o=
Then, by using the Parseval formula, we can obtain

Hlf:7] = l,i' J{" v”V ATMTh SIML S 1 —s]ds,

1t |

transforms M[h sl and M[f:1—s].

(A1B)
where the constant # is such that Re (s) = r lies in the common strip of analyticity of the Mcllin
After some manipulations, it can be shown that

Ml[h;s] =

5
Sin 7§

(A19)
where o = +

o

where M[h; 5] is analytic in the strip 0 < Re(s) < 1. In analogy to the particular problem of
interfacial fracture that we are interested in, we will define the function f(r) as
£ = r*(In )",

cxists in the generalized sensc. Let

¢ or 0. and f = 0, or 1. For this function, the Mellin transform M{[ f: s] only

(A20)
o @, e )00 e(0.1]
Sl = { 0. reflowy 0= {/'(z), refl. )"
Then we may wrilc
H[f 2] = L,(}) = ' ‘ll’—“)f—dt =1,2 (A21)
A s o L+Ar T
and
H[f 2] = L (A} +L.(4). (A22)
Also let
Gi(s) = Mlh;sIM( f;;1-5]. j=12. (A23)
Then.
G(s) = Ml sIML [ 1—s] = G () +Ga(s).
In addition, from the Parseval formula,
] V‘/'#Il
L) = 7[ JG(s)ds, j=1,2,
27 ), iy
and

(A24)

1 2 /',+i1
H['fl;/A”]:Z{i Zﬁ .

277G (s) ds.
j= 1 Jr, i

(A25)
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Using the specific function f°(r) chosen in (A20), it can be shown that

1 n

Gi(s) = = [s— (1 +is)]"* ' sin ms”

(A206)
In the above we can sce that G ((s) 1s analytic in the strip 0 < Re(s) < 1. Since M[ f>:1—s] is
analytic in the half planc Re (s) > 1. and M[/:5] can be analytically continued into the entire
s-planc as a meromorphic function, G ,(s) 1s a meromorphic function in the half planc Re (s) > 1
with simple poles at s = 2.3..... Then in (A24), we can always choose that 0 < r, < I and
ry > 1y Observe that if s = 5, 4+15.. G (s) has the property

l%m Golsy+is-) =0, r <5, <r.. (A27)
J5sl =~ s

Therclore., we can apply Cauchy’s integral theorem to (A25), which results in

roty
H{f: 2 = Z res | —z "Gi(s)) + i J A CG(s) ds. (A28)
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For our case, it is casy to show that G(s) = 0. So finally, we get
Vo T
H{f:7] = res e . A29
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Letting ry — + %, we get an infinite asymptotic series for fi[ f5 2] as 2 — «.
By applying the above analysis (o our particular problem, for o # 0. we will obtain the
following asymptotic results:
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n—: sinh mx %
Cas - -0, (A30)
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