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Abstract. Transient mixed-mode elastodynamic crack growth along arbitrary smoothly varying 
paths is considered. Asymptotically, the crack tip stress field is square root singular with the 
angular variation of the singular term depending weakly on the instantaneous values of the crack 
tip speed and on the mode-I and mode-II stress intensity factors. However, for a material particle 
at a small distance away from the moving crack tip, the local stress field will depend not only on 
the instantaneous values of the crack tip speed and stress intensity factors, but also on the past 
history of these time dependent quantities. In addition, for cracks propagating along curved paths 
the stress field is also expected to depend on the nature of the curved crack path. Here, a 
representation of the crack tip fields in the form of an expansion about the crack tip is obtained 
in powers of radial distance from the tip. The higher order coefficients of this expansion are found 
to depend on the time derivative of crack tip speed, the time derivatives of the two stress intensity 
factors as well as on the instantaneous value of the local curvature of the crack path. It is also 
demonstrated that even if cracks follow a curved path dictated by the criterion K~ = 0, the stress 
field may still retain higher order asymmetric components related to non-zero local curvature of 
the crack path. 
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1. Introduction 

Since Irwin I-1] observed that the elastic stress field near the tip of a static crack 
has a universal spatial structure, and the magnitude of the stress field is 
controlled by a scalar quantity, the elastic stress intensity factor, this quantity 
has played one of the most important roles in linear elastic fracture mechanics. 
For propagating cracks, the early analytic results of Yoffe [2], Craggs [31, 
Broberg 1-4], Baker 1-5] and Freund 1-6], among others, revealed that the 
asymptotic stress field near the moving crack tip has a universal structure as 
well. As stated by Freund and Clifton [71, the stress field with reference to a 
Cartesian coordinate system moving with the crack tip of "all plane elasto- 
dynamic solutions for (smoothly turning) running cracks, for which the total 
internal energy is finite," can be asymptotically described by the square root 
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singular expression, 

K~(t) K~,(t) H 
a,~ - ~ E~B(O, v) + ~ E,~(O, v) + 0(1), as r ~ O. (1) 

Here (r, 0) is a polar coordinate system traveling with the crack tip, E~a(0, v) 
and ii E~a(0, v) are known universal functions of 0 and crack tip speed v, and 
K](t) and K~i(t) are the mode-I and mode-II stress intensity factors, respect- 
ively. They are dependent only on the specific geometric and loading condi- 
tions of a problem. In addition to the most singular asymptotic representation 
of the stress field, Nishioka and Atluri [8] and Dally [9] also developed the 
entire higher order asymptotic expression for the stress field near the tip of a 
dynamically moving straight crack under steady state conditions. 

Expression (1) is strictly valid only in the immediate vicinity of the crack tip. 
To apply this expression over a region of finite extent, one must show that the 
asymptotic solution indeed dominates over this region, and this domain is then 
referred to as a region of Kd-dominance. Recent experimental evidences 
obtained by means of optical techniques, e.g. the method of caustics (Krish- 
naswamy and Rosakis [10] and Rosakis et al. [11]) and the Coherent Gradient 
Sensing technique (CGS) (Krishnaswamy et al. [12]), have shown that the 
assumption of Ka-dominance is often violated during the process of dynamic 
fracture, and that the expression in (1) is insufficient to characterize the 
deformation field near the crack tip. It was observed that the violation of the 
assumption of K~-dominance is often associated with the existence of highly 
transient crack growth motions involving crack tip accelerations as well as fast 
varying stress intensity factor histories, evens that are typical of most labora- 
tory dynamic testing situations. 

By using the asymptotic methodology introduced by Freund [13], and by 
relaxing the assumption of K]-dominance, Freund and Rosakis [14] have 
provided a higher order asymptotic expansion for the first stress invariant 
(quantity of interest for both caustics and CGS) and showed that this 
expansion provides an accurate description of crack tip fields under fairly 
severe transient conditions. Later, Rosakis et al. [15] obtained the higher order 
asymptotic stress field near the tip of a non-uniformly propagating mode-I 
crack. In a related study, Liu et al. [16] have also applied these results to the 
interpretation of optical caustic patterns and have confirmed the advantages of 
the higher order expansion in analyzing experimental data. 

This paper represents the natural continuation of the studies discussed 
above. Our purpose is to understand the nature of the mixed mode asymptotic 
field that dominates the region near a transiently propagating and curving 
crack tip. In this paper, we develop a new methodology to obtain the higher 
order transient asymptotic elastodynamic field near the tip of a crack that 
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propagates non-uniformly along an arbitrary and smoothly curved path. Here, 
we consider crack growth in a homogeneous, isotropic, and linearly elastic 
material. The deformation is assumed to be plane strain. However for plane 
stress similar results can be obtained by changing the expression for some 
material parameters. By using the asymptotic procedure proposed by Freund 
[13] and utilized by Freund and Rosakis 1-14], the governing equation is 
reduced to a series of coupled partial differential equations, and the problem 
can be further recast into a Riemann-Hilbert problem. Upon solving the 
Riemann-Hilbert equation, the higher order near-tip transient elastodynamic 
asymptotic field can be obtained. The results show that the singular terms and 
the so-called T-stress term have the same spatial form as those obtained under 
steady state conditions. However, the dynamic stress intensity factors and the 
crack tip velocity are now allowed to be functions of time. The third term, on 
the other hand, depends not only on the instantaneous values of the crack tip 
speed and the stress intensity factors, but also on the past history of these 
time-dependent quantities (i.e. on /~(t), /~t(t), and b(t)). For a crack that 
propagates along a curved path, the third term also depends on the curvature 
of the crack path at the crack tip. Some implications of these analytic results 
on the interpretation of experimental observations of crack curving are also 
discussed. 

2. General formulation 

Consider a planar body composed of homogeneous, isotropic, linearly elastic 
material. In the body, there is an arbitrarily propagating crack. Introduce a 
fixed orthonormal Cartesian coordinate system (x 1, x2) so that at a time t = 0, 
the crack tip happens to be at the origin of the system. For any t > 0, the 
position of the propagating crack tip is supposed to be given by (X 1(0, X2(t)), 
see Fig. 1. If the deformation is plane strain, we may consider the two 
displacement potentials, q~(x 1, x2, t) and ~,(x 1, x2, t), and then the two non-zero 
displacement components can be expressed by 

U~(XI, X2, t) = (]),a(Xl, X2, t) q- e~ljdj,p(x l, x2, t), (2) 

where a, t ie{l ,  2} and the summation convention is employed here. e~a is the 
two-dimensional alternative symbol and is defined by 

e12 = - e 2 1  = 1, e l l  = e22 = O. 

The components of stress for the material we consider can be expressed by the 
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s(t) X2(t) 

- -  - -  ~ 11 

i ~ Xd t )  -- 

Fig. 1. Crack growing along a smooth curved path under two-dimensional conditions. The 
instantaneous crack tip position is xl = X~(t), xa = X2(t), and the instantaneous crack tip speed 
is v(t) in the local ¢:direct ion.  

displacement potentials like 

} axx =/* [7-~, a ~b= - 2q~22 + 20,12 

} ~22 = ~ [ ~  ~b.= - 24L1, - 20,12 

= + 0 , =  - 0 , , , }  (3)  

where/t  is the shear modulus, and % G are the longitudinal and shear wave 
speeds of the elastic material, respectively. In terms of the shear modulus kt, cz 
and G are given by 

c , = [ x _ l  pJ  ' c s=  (4) 

where x = 3-4v for plane strain and x = (3 - v)/(1 + v) for plane stress, and p 
is the mass density of the material, v is the Poisson's ratio. By changing the 
definition for the longitudinal wave speed in Eq. (4), the solution correspond- 
ing to the plane stress deformation can be obtained. Meanwhile, c~ and G in 
both plane strain and plane stress, are related by 

c s ~'x - 1~ 1/2 
c - ~ = [ ~ : + l J  " (5) 

The equation of motion in the absence of body force in the fixed coordinate 
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system, in terms of ~b(x 1, x2, t) and ~(x 1, x2, t) is 

31 

1 
~b ~(x ,, x2, t) -- c-~ ~(x 1, x2, t) = 0 

O,~(x 1, x2, t) -- ~k(x 1, x2, t) = O. (6) 

Now introduce a new moving coordinate system, (41, 42), so that the origin 
of the new system is at the moving crack tip. The 41-axis is tangential to the 
crack trajectory at the crack tip and coincides with the direction of the crack 
growth. The angle between the ~l-axis and the fixed x~-axis is denoted by B(t), 
as shown in Fig. 1. Therefore, the relation between the coordinates in these two 
systems is 

4, = {x, - X,(t)} cos fl(t) + {x 2 - X2(t)} sin fl(t) 

42 = - { x ,  - Xl(t)} sin fl(t) + {x2 - X2(t)} cos fl(t). (7) 

In this new system, the equation of motion (6) for q~(4 l, 42, t) and ~b(41, 42, t) 
will be 1-13] 

1 

c-7 

1 
+ + 20.,,4= + 0.,,} = o. (8) 

If the length of the trajectory that the crack tip travels during the time interval 
[0, t], is denoted by s(t), then the magnitude of the crack tip speed v(t) will be 
~(t), and the curvature of the crack trajectory at the crack tip, k(t), is given by 

dfl /~(t) 
k(t) = ds v(t)" (9) 

In terms of the crack tip speed v(t), and the crack tip curvature k(t), we have 
the relation 

1 = - v ( t )  + v(t)k(t)¢ 2, ~2 = - v(t)k(t)~l .  (10) 

As a result of Eq. (10), we can also express the ~', in terms of the crack tip speed 
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and the crack tip curvature. Now, the equation of motion (8) can be rewritten 
a s  

1 2w/-v 1 
~,1~ + a-7 ~,= + a,~¢-7 {'rio, '}" - a,~¢--7 ~.'' 

vZk 
~ c 2  {qb z + 2{,qb ,= - 2~=(a.l,} 2v  - - 

- a~¢----T { , / ~ { ~ , ,  - ~<=)},, 
/ )2k2  
_ _  2 

+ a~c{ { ~ b  , ,  - 2 ~ 4 , , ~  + ~ , ~ , =  - ¢ ~ , ,  - ~ , ~ }  = o, (11) 

and 

1 2x/~ 1 
q,, , ,  + = q,,22 + ~ { v g ~ ,  ,},, - ~ ~,,, 

as as Cs as Cs 

z 2 ---2 + 2 - , -  1 2 - - 2 - 2 -  xt- 2 2 
as Cs ' Ors Cs 

v2k 2 
2 

2 - -  2 ~ 1 ~ 2 1 / / , 1 2  + ~1~// ,22 - -  ~ l l / t , 1  - -  ~21// ,2} ~--- O, 
as Cs 

(12) 

where the two quantities a, and % depend on the crack tip speed, and therefore 
depend on time t through 

v2(t)~/2 
al . , ( t)= 1 - ~  . 

Cl,s J 

Notice that in Eqs. (11) and (12), the derivative with respect to time, t, is 
distinct from that in Eq. (6). Here, ~i, ~2 are held fixed, whereas in (6), xl, x2 
are held fixed. Throughout this study, we will use d/8t, or { }., to denote the 
differentiation with respect to time, t, where the moving spatial coordinates are 
held fixed, while using {'} denote the same operation but the fixed spatial 
coordinates are held fixed. 

At this point, we employ the standard asymptotic device used by Freund and 
Rosakis [14] for the analysis of transient mode-I crack growth. We assume 
that q~(~l, ~2, t) and ~(¢1, ~2, t) can be asymptotically expanded as 

~b(~ l, 42, t) = ~ ev"q~m(r/1, rl2, t) 
m = O  

~(~ 1, ~2, t) = ~ ev"~pm(~/1, r/2, t), (13) 
m = O  
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as r =  (4 2 + 422) 1/2 --,0, where G = ~/e,  ~t~{1,2}, and e is a small arbitrary 
positive number. The parameter e is used here so that the region around the 
crack tip is expanded to fill the entire field of observation. As e is chosen to be 
infinitely small, all points in the (41, 42) plane except those very close to the 
crack tip, are pushed out of the field of observation in the (r/~, r/2) plane. If the 
trajectory of the moving crack is smooth enough, the crack line will occupy the 
entire negative r/:axis in this scaled plane. By taking e = 1, the above equation 
will provide the asymptotic representation of the displacement potentials in the 
unsealed physical plane. 

In the asymptotic representation (13), the powers of e are 

Pm+l =Pro+½, m = 0,1,2 . . . . .  (14) 

so that the nontrivial solutions for (~m(r/1, ?/2, t) exist. Since the displacement 
should be bounded throughout the region, but the stress may be singular at 
the crack tip, Po is expected to be in the range 1 < Po < 2. We also should have 
that 

evm+"(bm+,(r/ l, r/z, t) 
gPm(Dm(r/1, r/2' t) 

- ,0 ,  as e ~ O ,  (15) 

for any positive integer n. Meanwhile, as we return to the physical plane, we 
will have 

G, t) 
~bm(~,, ~2, t) 

~ 0 ,  as r = ~//~1 + 42 ~ O, (16) 

for any positive integer n, so that in the physical plane, (41, 42), tk,~(4 1, ~2, t) are 
ordered according to their contributions to the near tip deformation field. The 
above properties for ~b,~ hold for if= as well. 

Substituting the asymptotic representations for 4(4x, 42, t) and ~b(41, 42, t), 
Eq. (13), into the equations of motion, (11) and (12), we will obtain two 
equations where the left-hand side is an infinite power series of e. Since e is an 
arbitrary number, the coefficient of each power of e should be zero. Therefore, 
the equations of motion reduce to a series of coupled differential equations for 
~bm(r/l, r/2, t) and ~m(r/1, r/E, t) as follows 

1 1 2 , f i  + - -  
0~2C 2 

(1 -~fi)k 
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2 x / ~  {x/'~(t/2to,.-4,1 - r/,to,.-4.2)},, + 
+ ~e----T 

(1 - ~2)k2 

- -  2r/lr/2tOm-4,12 + / ~ 2 t O , . - 4 , 2 2  - -  ~ l t O , . - 4 , 1  - -  ~ ] 2 t O " - 4 , 2 } ,  (17) 

and 

1 2v/-v 1 
q',."' + ~  0"'= = - ~,~ c,a {,,/; O"- 2. d', + ..-~_~ 0 " - , . , ~  c, 

(1 - ct2)k 
+ 2 {~',.-2,2 + 2r/10,.-2,12 - 2r/2Om-2al} 

+ ~ { . . / ~ t , 2 0 , . - , . l  - ,10, .- , .2)}. .  + 
O~s Cs 

(1 - ct2)k 2 

2 - 2rhr/z~',.-4.,2 + rh0,.-4.22 - r/,~b,._4., - r/zO,.-,.a }, (18) 

for m = 0, 1, 2 . . . . .  and where 

tO,.={Oto,, for m>~O {0 ~ for m~>O (19) 
for m < 0 '  ~ , . =  ,. for m < 0 "  

It is noted that, for a crack propagating along a straight trajectory, k(t) = 0, 
and Eqs. (17) and (18) reduce to that given by Rosakis et al. 1-15]. The term 
"coupled" is used above in the sense that to" or ~"  with higher values of m will 
be affected by the solutions for tO,. or ~k,. with lower vlues of m. Furthermore, 
for the special case of steady state crack growth, the crack tip velocity, v, will 
be a constant, and at the same time, tO,.,, = ~b"., = 0, for m = 0, 1, 2 . . . . .  which 
means that tO" and ~b" depend on t only through the spatial coordinate t/t. In 
such a case, the equations in (17) and (18) are not coupled anymore and each 
one reduces to Laplace's equation in the coordinates (~/1, ~:12) for tO,. and 
(qi,~sr/2) for ~b,., respectively. The corresponding functions tO,, and ~k" are 
independent of time in the moving coordinate system. The solution for this case 
is discussed by Dally 1-9] who attributes the original results to G.R. Irwin. 
However, for the transient case, the crack may propagate along an arbitrary 
path, the crack tip velocity, v(t), may be a continuous function of time and so 
is the crack tip curvature. Also, tO"(r/l, r/2, t) and qJ,.(r/1, ~2, t) may depend on 
time explicitly in the moving coordinate system. The only uncoupled equations 
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are those for m = 0 and m = 1. As m > 1, we can see from Eqs. (17) and (18) 
that ~bm( q x, r/2, t), or ~,,(r/1, q2, t) is composed by two parts, one is the particular 
solution which is completely determined by the previous terms, the other part 
is the homogeneous solution which satisfies the Laplace's equation in the 
corresponding scaled coordinate plane. Suppose that there i s  no traction 
applied on the crack faces, then the combination of the particular and 
homogeneous solutions should satisfy the traction free condition on the crack 
faces. In the following section, we will solve q~m(r/1, q2, t) and ~O,,(r/l, r/2 , t) for 
the most general transient situation of a crack propagating along an arbitrary 
path. 

3. Solution for the higher order transient problem 

As we have discussed in the previous section, in Eqs. (17) and (18), the only 
uncoupled equations are those for m = 0 and m = 1. As m > 1, the solutions 
for ~b,,(q 1, ~2, t) and ~Om(r / x, r]2, t) will be affected by the solutions with smaller 
m. Thus, in this section, we consider the situation of m = 0 and m = 1 first. 
After we get solutions for m = 0 and 1, we will subsequently solve thin(r/1, t/2, t) 
and ~k,,(~/1, r/2, t) for higher order terms. 

3.1. Solutions for  c~m(ql, rl2, t) and ~/m(ql, q2' t) for m = 0 and 1 

For m = 0, or 1, the equations of motion (17) and (18) reduce to 

1 
dPm, ll(rll, t12, t) +--5777,., 49,,,12(rll, q2, t) = 0 

1 
~, . , , , (rt~,  ,Tz, t) +--w:r,~, ~, . , ,~( ,11,  ,7~, t) = o. 

ct~tt) 
(20) 

They are Laplace's equations in the corresponding scaled plane (1/t, cq(t)rl 2) for 
~bm, and (ql, ~(t)q2) for ~bm. The most general solutions for Eq. (20) can be 
expressed as 

C~m(q l, q2, t) : Re{Fm(Zt; t)} 

I]/m(?]l,//2, t) = Im{G,,(zs; t)}, (21) 

where the complex variables z z and z s are given by 

Zl = lll  + i~lll2, Zs = //1 + iCtst/2, 
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and i = x /~- ]  -. F,,(zl; t) and Gm(z~; t) are analytic everywhere in the complex 
z,-, or z:planes except along the nonpositive real axes. In the analytic functions 
Fm(Z~; t) and Gm(z~; t), the time t appears as a parameter. This suggests that 
qSm(ql, rl2, t) and ~bm(r/l, r/2, t) may depend on time t not only through the 
complex variables, z~ and zs, but also explicitly through the time t itself. 

Associated with these q~ and q~,, the contributions to the displacement and 
stress components are given by 

utlm)= Re{F'(z,;  t) + ct~G'~(z~; t)} 

t . f . ut2 m) - Im{CtlFm(z t, t) + Gm(Z~, t)}, (22) 

and 

a ~  ) = p Re{(1 + 2 ~  - us)~2'Fn'ra[zl; t) + 2~G~(zs; t)} 

2 ,, . 2 " tr~"~ ) = - # R e { ( 1  + ~)Fm(zt, t ) + ct, Gr,(Z~;t)} 

2 I I  . tr~ ) = - #  Im{Zct,F~(z 6 t) + (1 + ~)Gm(zs, t)}, (23) 

where the prime represents the derivative with respect to the corresponding 
complex argument. 

Denote that 

lim f~(z) = f~+(t/,)] 

~=-~°+ ~, z = rll + irl2. 
lim f~(z) = f~-(r/1)[ 

T / a ~ O -  , /  

As ql < 0 and 1/2 ~ 0 -+, the traction free condition on the crack faces implies 
that a~)(ql, 0 ±, t ) =  a~"~)(t/1, 0 ±, t ) =  0, or, in terms of the complex displace- 
ment potentials, Fm(Z,; t) and Gm(Z~; t), 

(rll ' t)+Fm (rlx ' t )}+2t~s{G" (r/l't)+(~mv(r/1;t)} Vr/1 < 0, 

2/~t{Fm±(r/l; -,,T- . z ,,_+ . t ) --F m (q l , t ) }+l~( l+~){Gm ( q l , t ) -  G-"~-m (/'] 1," t)} ' 

(24) 

where the overline stands for the complex conjugate. Here, it seems that we 
have four unknown functions, F,(z  6 t), ff m(Zt; t), Gm(zs; t), and Gm(zs; t), while 
we only have two independent relations in Eq. (24). However, these four 
functions can be related by the fact that the displacement components and the 
traction components should be continuous when they cross the real axis ahead 
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of the crack tip, or  in terms of the complex displacement potentials, Fm(zt; t) 
and Gm(zs; t), along ql > 0 and r/2 = 0, we should have 

u(1 + ~){F';, + (r/,; t) + F;,-(r/,; t)} 

+ 2#~s{G~,+(r/1; t) + G;,-(r/1 ; t)} 

2 o- . - ~t(1 + e , ) { V , ,  (r/1,t) + F ~ + ( r / 1 , t ) }  

- -  2 f l 0 ~ s { G m - ( r / 1  ; t) ql_ (-~r~+(r/1 ; t} = 0 

"+ ;t) - " -  • 2#~t{Vm (r/1 - Fm (r/1,t)} Vr/, > 0, (25) 

+ / 4 1  + e2){G'£,+ (r/,, t) - " -  • • - O,. (r/l ,t)} 

- 2Ucq{F~,-(r/l ;t) - ff~,+(r/l; t)} 

2 i t -  #(1 + ~ s ) { G ~  ( r / 1 , t )  "~"+" • - " - - O r e  t r / 1 , t ) } = O ,  

and 

--t- . t 

{F~n+(r/1; t )  +Fm ( r / l ,  t ) }  + O~s{G~n+(r/1; t )  + (~n-(r/l; t ) }  

-- {F;.-(r/1 ; t) + ff~,+(r/l ; t)} -- as{G~,-(r/, ; t) + C~n+(r/1 ; t)} = 0 
,+ . Vr/1 > 0. 

O t l { F m  ( r / 1 ,  t )  - ' -  . . . ' - -  Fm (r/l, t)} + {G~,+(ql, t) - (~,,-(r/l, t)} 

- -  O t l { V ' m - ( r / 1  , t )  - -  - ' +  " " t )  Gm+(r/1; t)} 0 • F,. ( r / l ,  t ) }  - -  { G ~ - ( q l ,  - -  = 

For  simplicity, define the following matrices 

P = [/~( 1 + a2) 

L2u~, ~(a + ~ ) j  

and 

1 "1 v l l  
% 1 ' - ct t 

[ /41 +~2)  2/~Cts 1 

q = L - 2 # ~ ,  - / 1 ( 1  + a ~ ) J '  

(26) 

Also define the following complex vector 

fro(z; t) = (Fro(z; t), Gin(z" ~ t)) T, 

where z = ql + Jr~2. Then, the traction free condit ion on the crack faces, Eq. 
(24), can be rewritten as 

Pf~+(q l ; t )  + Qf,~-v-(ql;t ) = o, Vr h < 0, (27) 
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and the continuity condition of the displacement and traction ahead of the 
crack tip, Eqs. (25) and (26), become 

- - i v  - . t !  - . ~ f t t  + Pfm+("l "t) + Qfm (ql.  t) - P f"  (,1. t) - -  Q m (rtl; t) = O~ 
--!  - , v -- . - - t  + . ' Uf~,+O/x;t) +Vf~, ( t / a , t ) - U f ; n  ( q l , t ) - V f ~  ( t / , , t ) = o  3 Vt/1 > 0 .  (28) 

The continuity conditions in (28) can be rearranged as 

• - - v t  + . t t  - , - - t t  - , 

P f m + ( q l . t ) - Q f m  (r/1.t) = P f ~  , ( r / x . t ) - Q f  ~ (t / , , t)  Vr/1 >0"  
U f m  + ( r ] l  , t )  - - t  + " t - . - - t  - . ' • Vfm (?/1, t )  = Ufm (q 1, t) - Vfm (q 1, t) J 

(29) 

From above equations, we may define two new functions by 

" " Qfm(Z, t) K m ( Z ; t  ) = Pfm(Z,t) - -"  " 

= ' - Vfm(Z ; t). Om(z ; t) Ufm(Z ; t) - '  
(30) 

Kin(z; t) and 0re(Z; t) are analytic functions throughout  the z-plane except along 
the cut occupied by the crack• F rom Eq. (30), it can be seen immediately that  
Eq. (28) is satisfied identically• So, the issue now is to find the analytic functions 
Km(Z ; t) and 0,,(z; t). 

• and fro(Z; t) from Eq. (30) to get Solve for fm(Z, t) -" 

f~,(z; t) = P - ' H -  l{0~,(z; t) - LKm(Z; t)} (31) 
--,'p . 1 H -  f~(z, t) -- Q -  l{0m(Z ; t) -- LK,,(Z ; t)}, 

where 

L = U P  -1, L = VQ -1, H = L -  L. 

Here, we have assumed that  the inverse matrices P-1  and Q-1  exist• Notice 
that  the determinants of P and Q are both equal to D(v), where 

D(v) = 4 a t ~  ~ - (1 + a 2 )  z.  

Therefore, we exclude the situation where the crack propagates with the 
Rayleigh wave speed of the elastic material. This ensures the existence of P -  1 
and Q -  1. 

Substituting the expressions in Eq. (31) into the traction free conditions on 
the crack faces, (27), and notice that  H # o for v(t) ¢: O, we get 

0m + (q 1 ; t) - LKm+(r/x; t) + 0~,- (r/l; t) -- LKg (t/1 ; t) = 0 ]  
* ~ ' V ? ] I  < O .  

Om-(ql; t) LK,7, (ql; t) + O~+(ql;t) LK~(t/1;t  ) = o 
(32) 
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Subtracting the second equation in (32) from the first one, we obtain 
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K~ + (q ~; t) - K~, (q ~; t) = o, Vr/1 < 0, (33) 

which implies that Km(z;t ) is continuous across the negative real axis except at 
the crack tip and therefore ~m(Z;t) is analytic in the entire complex plane 
except at z = 0. However, the condition of bounded displacement requires that 
[K,,(z;t)l = O(Izl ~) for some ~ > - 1 ,  as Izl-,0. So that any singularity of 
Km(Z; t) at the crack tip is removable. Therefore, K,,(z; t) is an entire function. 
Now, both equations in (32) become 

¢¢ 

0ff(r/;t) + 0~,-(r/1;t) = (L + L)Km(r/~;t), Vr/1 < 0, (34) 

where 

~m(n, ; t) = K~+(nl; t) = ~ ( n ,  ; t). 

Equation (34) constitutes a Riemann-Hilbert  problem. Its solution 0~,(z; t) 
is analytic in the cut plane. Along the cut, 0~,(z; t) satisfies Eq. (34) for some 
arbitrary entire function Km(z;t). Also, from the requirement of bounded 
displacements at the crack tip, as Izl--" 0, 

! . 10~(z, t)l = O(Izl% (35) 

for some ~ > - 1 .  
In Eq. (34), the solution 0~,(z; t) is composed by two parts, the homogeneous 

o A t , 

solution 0~,(z; t), and the particular solution 0,,(z, t). The homogeneous sol- o 
t . ution 0~(z, t) can be obtained as 1-17] 

o, . x /2h, . (z;  t), 0re(z, t) = z-  (36) 

At ° 
where hm(z; t) is an arbitrary entire function. The particular solution 0,,(z, t) 
can also be easily constructed by considering that Kin(z; t) is an entire function 
and by using the identity theorem for analytic functions. The particular 
solution is given by 

¢¢  

Om(Z , t) ~ ( t  + L ) K m ( Z ' t  ). ( 3 7 )  

The final solution for 0~,(z; t) is then 

q¢ 

0~,(z; t) = z-x/2h,,(z; t) + 2&(L + L)Km(z; t). (38) 
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Substituting Eq. (38) into (31), we have 

f~(z; t) = P -  ~{z-~/%.(z; t) + k.(z;  t)} 

~',~(z; t) = Q -  ~ {z- ~/Za,.(z; t) - b,.(z; t)}, 

where 

a.,(z; t) = H -  ~ , . ( z ;  0, ~,.(z; t) = ½~,.(z; t). 

(39) 

we obtain 

a~(z ;  t) - ~ ( z ;  t) = o, a~( z ;  t) + ~ ( z ;  t) = 0 

b~)(z; t) + ~ ( z ;  t) = O, b~)(z; t) - ~ ( z ;  t) = 0. (40) 

As a result of above relations, the four undetermined entire functions a~)(z; t) 
and b~)(z; t) (a = 1, 2) can be reduced to two by defining 

Am(z ; t) = ~'t~ral'"(1)'q,~ , 't) ~- ~(ml)(Z ,'t) "~v a(m2)(Z ; t) -- ~(m2)(Z ; t)} 

B.,(z;  t) = ±~)t..2w~ , - ,  t) - ~ ' ( z ;  t) + b~)(z;  t) + ~)(z ;  t)}. (41) 

Now we can express the function f'~,(z; t) in terms of the two undetermined 
entire functions A, , (z;  t) and B,,(z  ; t) by 

t'~,(z; t) = ½z- '~{ l ' -  ~ A . ( z ;  t) + 0 . -  'n.~.(z; 0 

+ ½{P-'~lB,.(z; t) - Q -  ql~,.(z; t)}, (42) 

..-,:i,o _o, 1, 

Suppose that a~,(z; t) and b,.(z; t) have components  like 

am(Z ; t) = ( a ~ ( z ;  t), a~ ) (z ;  t)) "r 

bin(z; t) = (b2)(z; t), b~)(z ; t)) r. 

By comparing the conjugate of ~',~(z; t) with f'~(z; t) in Eq. (39), and by using 
the fact that 
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where ~1 = (1, 1) r. Since Am(Z; t) and Bm(Z; t) are entire functions, they can be 
expanded into Taylor series. Define 

½{Ar.(Z;t ) + .~..(z;t)} = - ~ A~(t)z" 
n=O 

½{A,.(z; t) - .~,.(z; t)} = - i  ~ a~],n(t)z" 
n = 0  

~{B~(z; ~) + ~m(z; t)} = -- ~ B~(t)z" 
n=O 

~{B.(z; t) -- ~m(Z; t)} = --i ~ B~]~(t)z", 
n=O 

(43) 

where A~(t). A~Tr~(t), B~")m(t), and B~,(t) are real functions of time t. Also. by 
considering the properties of our asymptotic expansion, (15) and (16). for 
m = 0 and 1, we have 

F'~(z,;t) = ~ ~1+~ 2G B~d(t)~} .~o ( ~--b-~ A~°(t)~"~-~/2 laD(~) 

- i  ~ ~ " 2G l+ct'2 } 
.= o (~--D-~ A~Yo(t)z]-,/2 --laD(v) B~)°(t)z] 

= - ) ,  / ' 
.=o ~laD(v) laD(v) 

+i ~ ~ "1+~2 2~, } 
n=o (~--D-~ A~)°(t)z"~- 1/2 laD(v) B~o(t)z~ (44) 

v~lz,;tt = - ~ ~, 2~, 1 + ~ .=o ~la~(~) 8~t(t)z] la~(~) - -  A~(t)z"t + 't~ } 

+ i  ~, ~ l + a ~  2as } 
.=o [ ~  B~',(t)z] laD(v) A~]l(t)z]+ ,/2 

G,~(zs;t)= ~ ~1 +~z, B~(t)z] 2~ A~,)fft)z]+ln } 
. =o ~ ~--D-~- laD(v) 

/_.~ .f 2~ B}"~l(t)z"~ 1 + ~2~ i 
.=o [#D(v) laD(v) 

- -  A~"?l(t)z"d 1/2 }. (45) 
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By integrating above expressions with respect to the corresponding argument 
z~ or z S, we can obtain the final expressions of the complex displacement 
potentials Fm(zz; t) and Gm(zs; t) for m = 0 and 1. If the crack propagates along 
a straight path, Eq. (44) actually has provided the complete solution for the 
steady state problem under mixed mode loading conditions, while all coeffi- 
cients do not depend on time. It can be shown that the coefficients of the most 
singular terms, AJ°)(t) and A~mo(t), can be rewritten as 

A~O)(t ) _ K](t) A~O)o(t) = K~1(t) x / / ~  , x / ~ ,  (46) 

where K~(t) and K~1(t) are the mode-I and mode-II dynamic stress intensity 
factors at the moving crack tip, respectively. 

3.2. Solutions for (])m(?~l, ?]2' t) and @,.(r/1, ~2, t) for m = 2 

For m = 2, the equations of motion (17) and (18) are coupled. They take the 
form, 

1 
4'2.1~(~/1. r/2. t) + a-7 4'2.22(~1. ~2. t) 

( 1  - 
- -  2 - - -~  {~/V q~o, 1 },t -+- - -  

1 
q~2.tt(n 1. '/2. t) + ~  02.=( ,1 .  ,2. t) 

(1 - ~2)k 2v/v {V/700,1},, + -  
- -  2 2 2 

O~s Cs Ors 

{(~0,2 + 2t/1(~0,12 - -  2r/2(~o,1 1} 

{I//0,2 + 2~/1~0,12 - -  2~/21~0,11}" (47) 

where ~bo(t/1, t/2, t) and ~bo(r/1, r/2, t) have been given in the previous section. 
In order to obtain the next most singular term in ~b2(r/1, r/2, t) and 

IP2(t/1, r/2, t), we should only consider the most singular terms in ~bo(t / 1, th, t) 
and Ipo(r/1, r/2, t). As a result, ~bo(r/1, r/2, t) and Ipo(t / 1, t/2, t) can be written as 

Cko(rl l, t12, t) = Re{ Kt(t)z3/2 }, ~bo(rl,, 112, t) = Im{ K~(t)z3/2 }, (48) 

where 

4(1 + c(~) 8ct~ 
Kt(t) = 3 x / ~  pD(v ) K~(t) - i  3 x / ~  pD(v ) K~a,(t) 

8~ 4(1 + ~2) 
K~(t) - 3x/~--~/zD(v ) K~(t) + i 3 _~--laD(v)x/2n Ka1(t). 
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Substituting Eq. (84) into (47), we get 
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1 
q~2,x, + a-~ q~z,22 = Re{R,( t )z~/2 - S t ( t ) z t z t  x/2} 

1 
~bz,,, +--~ ~b2,z2 = Im{R~(t)z~/2 - S~(t)f~z~-'/2}, (49) 

where 

Rt.~(t) = D~,~{K,~(t)} + ½B,.~(t) + Mt.~(t) 

Sl,s(t) = ½B,.s(t) + Xt.~(t), 
and 

d 
D~.~{K,,~(t)} = 2 2 dt {x/~Kt'~(t)} O~l,sCl,s 

3vZb 
B,,,(t) = 2a~ct---~ K,.~(t) 

3(1 - ~L)(1 + 3~L) 
Ml.,(t) = i 4a3t,~ K,.~(t)k(t) 

3 ( 1  - ~t2,~) ~ 
Nt,s(t ) = i 4a~,s K*'s(t)k(t)" 

The most  general solutions to Eq. (49) are 

~bz(q l, q:, t) = Re{F2(zt; t) + Z,,ft(zt; t) + 22g,(zt; t)} 

~02(t/~, q2, t) = lm{G2(z~; t) + 2~f~(z~; t) + ~z~g~(z~; t)}, 

where 

(50) 

A,s(ZI,s'~ t )  1 3/2 1 112 = -gRt,~(t)zt,~ , gt,~(zl.~; t) = --zSl,,(t)zt, ~ , 

and F2(zt;t), G2(zs;t ) are two analytic functions in the corresponding cut 
planes. It can be seen that ft,s(Zt,s; t) and gt,s(Zt,s; t) are totally determined by 
the solutions ~bo( q 1, q2, t) and @o(r/1, r/z, t), and they depend on/(la(t), /(~a1(t), 
b(t), and for a crack propagates  along a curved path, they also depend on the 
curvature of the path at the crack tip, k(t). 
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Associated with q52(q 1, r/2, t) and ~k2(ql, r/2, t), given in Eq. (50), the corre- 
sponding componen t s  of displacement can be expressed as 

u~ z) = Re{F'2(zt; z) + ~G'2(zs; t) 

+ [2,tf{(z,; t) + ~9~(z,; t) + ft(z,; t) + 2~tO,(z,; t)] 

- -  ! . - 2  ! . + t) + t) - L(z ; t )  - 2 sg (z ; t)} 
! . t . u~2 z~ - Im{~tF2(z  t, t) + Ge(z~, t) 

+ ch[~lf{(zt; t) + 22(zt; t) - fz(zt; t) - 22tOt(z,; t)] 

- -  ! . - 2  ! . + [ z j s ( z , ,  t) + z,o~(z ~, t) + f~(z~; t) + 22~O~(zs; t)}. 

The stress componen t s  are 

a~ 2) # R e { ( l + 2 c t  2 2 . . . . .  z "  = - ~ )F2( z , ,  t) + 2ct~ G2( ~, t) 

+ ( 1  + 2 ~  2 2 . . . .  -z ,, . 
- ct~)[zz~ (z t, t) + zt 91(zl, t) + 291(z,; t)] 

I 2~2(~2 - ct2)l 
+ 2  ( 1 - ~ 2 ) +  - ( - - ~ z  j [ f{(z , ; t )  + 2~O~(zt;t)] 

-- t! . - 2 t! . t + 2c~[z~f~ (z~, t) + z~os(zs, t) - 20~(z,; t)] , 
. /  

2 tt . ¢t . _~2) - / ~ R e  (1 + ~q)Fe(zl, t ) + 2~Gz(z~ , t )  0 2 2  ~ -  

2 - t ¢  . + (1 + ~) [z t f t  (z,, t) + 2291'(zl; t) + 291(zl; t)] 

- 

+ 2 (1 - e2) i 25~7 J [J~'(z,; t) + 2~,Oi(z,; t)] 

- , . - 2 tt . t + 2~[z~f~ (zs, t) + z~o~(z~, t) - 2Os(Z,; t)] , 

and 

2 ¢ t  . tr]22 ) = --~t Im{2cqF~(z 6 t) + (1 + ~)Gz(z~,  t) 

+ 2~t[2,tfz"(z 6 t) + ~29~'(zt; t) - 29z(zt; t)] 

2 - It . -- 2 , . +(1 + cq)[zj~ (z,, t) + z ,9 , ( z  ~, t) + 29,(Zs; t)] 

+ 2(1 - e2)[f/(z~; t) + 2229'~(z,; t)]}. 

(51) 

( 5 2 )  

(53) 

(54) 
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To produce a more compact form of the above expressions, one needs to 
define the following quantities, 

2~, ~(I + ~bl '  L 2~, -~(1 + @ ' 

. [ i_ , ]  . [ 1 ] _ ,  
U =  V =  - 1  ' -~t 1 ' u~ 

and 

M=[/~ {(1-~x 2) 

N =  [/l {(1 - o ~  z) 

2(~ff_ -__~) ~ ] 
1_o~ 2 j 0 

0 p(1 -- ~2) 

2(~ - ~)'~ ] 
T-~7 ~ o 

J 
. 

0 -- p(1 -- ~ )  

Also, let 

f2(z; t) = (Fz(z; t), G2(z; t)) r 

f(z; t) = (ft(z; t), f~(z; t)) r 

g(z; t) = (at(z; t), as(z; t)) r. 

As in the procedure we used to obtain the complex displacement potentials for 
m = 0 and 1, we may define two new functions Kz(Z; t) and 02(z; t), so that the 
continuity conditions ahead of the crack tip are satisfied identically, as follows, 

Kz(Z; t) = P{f~(z; t) + zf"(z; t) + zZg"(z; t)} 

-Q{~(z;  t) + z["(z; t) + ?~"(z;  t)} 

+ 2M{f'(z; t) + 2zg'(z; t)} -- 2N{~'(z; t) + 2z~'(z; t)} 

+ 2Pg(z; t) - 2Qfg(z; t), (55) 

and 

02(z; t) = u { f i ( z ;  t) + zf'(z;  t) + z2g'(z; t)} 

-v{~i(z; t) + ff'(z; t) + ?~,'(z; t)} 
* * _ 

+U{f(z; t) + 2zg(z; t)} - V{f(z; t) + 2z~(z; t)}, (56) 
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where K2(z; t) and 02(z; t) are analytic in the cut plane. In order to keep our 
notation short, define a new quantity, 

g2(z; t) = f~(z; t) + zf"(z; t) + ?g"(z ;  t) 

+2P-IM{f ' (z ;  t) + 2zg'(z; t)} + 2P-IPg(z;  t). 

Now, the expressions (55) and (56) can be simplified to 

K2(z; t) = Pg2(z;  t) - Qfg2(z; t) 

t . . . . .  q(z ; t)}, 0z(Z,t) Ugz(z; t )  V~z(Z;t) {q(z, t)  * 

where 

q(z; t) = 2(LM - I){f'(z; t) + 2zg'(z; t)} 

+ 2(LP -- U)g(z ; t) 

~(z; t) = 2(I~N - J){f'(z; t) + 2zg'(z; t)} 

+ 2(LQ - V)g(z; t), 

and 

I= [10  011 ,  J = [ 1 0  _01]. 

By solving Eq. (57), we obtain 

gz(z;t)  = P-1H-l{0~(z; t )  -- LK2(z;t ) + q(z;t) -- q(z* ;t)} 

g2(z; t) = Q - 1 H - ~ { 0 ~ ( z ;  0 - LK~(z; 0 + qIz; t) -- ~(z; t)}. 

(57) 

(58) 

Pg2~(r/l;t) + Q ~ ( r / l ; t  ) = 0, Yr/l < 0. (60) 

Substituting Eq. (59) into the above boundary conditions, and similar to the 
procedure used in the case for m = 0 and 1, one can show that K2(z; t) is an 
entire function. Meanwhile, conditions (15) and (16) require that Kz(Z; t)[ = 
O(Izl), as Izl ~ 0. Finally, Eq. (60) become 

It can be seen that the above equation is very similar to Eq. (31), except the 
termq(z; t )  * - q(z; t) which is totally determined by the solution for m = 0. On 
the other hand, it can also be shown that the traction free condition on the 
crack faces reduces to 

(59) 
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0~+(q 1; t) + 0~-(t/1; t) = (L + L)K2( q 1; t) + ~(q 1; t), ~/ql < 0. (61) 

where 

5+ 
~(r/1 ;t) -- - {q+(ql  ;t) + q-( t /1; t )  - q (~1 ;t) - -  ~l -(//1 ;t)}. 

and q(z; t) into above relations, we get By substituting the expressions of q(z; t) * 

~ ( q l ; t ) = o ,  Vr/1<0. 

Therefore, the equation that 0~(z; t) should satisfy, is 

0~+(r/l;t) + 0~-(ql; t  ) = (L + L)K2(ql;t), Vql < 0. (62) 

This is exactly the same as Eq. (34). One basic difference, however, is that from 
the properties of our asymptotic expansion, (15) and (16), as [zl ~ 0, 

[01(z; t)[ = O([z['), (63) 

for some e > 0 (recall that before ~ > - 1). As a result, the solution of 0~(z; t) 
will be 

0~(z; t) = zl/z~l(Z; t) + ~ L  + L)Kz(Z; t), (64) 

where g2(z; t) is an arbitrary entire function. 
In constructing the solution for g/(z; t), only the leading term in (64) is 

considered. This is consistent with the fact that Eq. (48) contains only leading 
terms of the solution for m = 0. The final solution for gl(z; t) is therefore 

gz(z; t) - ½{P-~qAz(t) + Q-~rlAz(t)}z 1/2, (65) 

for some undetermined complex function of time Az(t ). 
Our final target is to find the function fz(z; t). After some manipulations, we 

obtain 

fz(Z; t) = ~ { P -  lqA2(t ) + Q -  ~nAz(t)}z 5/2 

+ 4{Fv( t  ) - ~o(t)}z 5/2, (66) 

where 

V(t) = (Rt(t), R~(t)) ~, co(t) = (St(t), S~(t)) T, 
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and 

F = D(v) 8 D(v) 
2~m t (1 + ~ff)m~ 1 ' 
D(v) O(v) 8 

/1 + 1 

D(v) + ~ ~ 16 D(v) • D(v) I 
D(v) 1 I" a =  2~,m t 2~,(1 + ~ )  (1 + ~ ) m ~ + ~ + ~ . A  

D(v) D(v) D(v) 

* 

In the matrices above, the quantities m~, m~, and D(v) arc given by 

1 ~ ~ )  2(~ - ~)~  
m t = ~ ( 1 -  ~ .j 

1 {1 -- a~} ~ s ~  

* 
D(v) = 4 ~ ,  + (1 + ~)~. (67) 

In this section, we have provided a procedure which allows us to investigate 
higher order transient effects systematically. By imposing the boundary condi- 
tions along the crack faces and the continuity conditions ahead of the crack 
tip on the complex potentials, the problem can be recast into the Riemann- 
Hilbert methodology. In summarizing, in the unsealed physical plane, let 

z~., = ~ + i~,,~, z = ~ + i~z, 

and 

f~(z;t) = (F~(z;t), G~(z;t)) v, m = 0, 1,2. 

Then 

to(Z; t) = ~{P-~nAo( t )  + ~-~n2o(0}z ~/~ 

L(z; 0 = k{P- ' nA , (0  - ~ -  ~n2~(t)}z ~ 

f~(z; t) = k { P -  'nAb(t) + Q -  ~n2~(0}z ~/~. 

+ ~ { r 7 ( t )  - a ~ ( t ) } z  ~/~. (68) 
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Notice that since Am(t) (m = 0, 1, 2) are arbitrary functions of time, we have 
redefined them in Eq. (68). Specifically, Ao(t ) is related to the so called 
mixed-mode dynamic stress intensity factors, Kd(t) and K~t(t), by 

4 
Ao(t ) - 3 x / ~  {K~(t) + iK~t(t)}. (69) 

The corresponding displacement potentials ~bm(~ 1, ~2, t) and @,,(¢ 1, ~2, t), will 
be given by (21) for m = 0 and 1, and (50) for m = 2, respectively. Finally, 

2 

m=O 

4~(~ ,, 42, t) + O(r 3) 

2 

~k(~l, ~2, t) = ~ ~k,~(~l, ~z, t) + O(r3), (70) 
m=O 

~2 ~2~1/2 where rt. ~ = (~] + ~ l , s % 2 3  " 

Equation (70) provides the first three terms of the asymptotic expansion for 
the two displacement potentials ~b(~ 1, ¢2, t) and ff(¢ l, ~z, t) for a dynamic crack 
propagating non-uniformly along an arbitrary path. This expansion is based 
on an assumption that the fields are indeed two dimensional right up to the 
crack tip. It is observed that the first two terms are the same as those obtained 
under the steady state mixed-mode condition and the crack path is straight, 
except here the coefficients Ao(t ) and A2(t ) are arbitrary functions of time and 
the crack tip speed takes the instantaneous value at time t. However, generally 
speaking, under the mixed-mode loading conditions, the crack will no longer 
propagate along a straight path and it is commonly believed that the crack will 
seek the direction where locally the mode-I condition prevails. So the crack will 
propagate along a curved trajectory for the most general loading conditions. 
Even if the loading condition is mode-l, and the crack does propagate along a 
straight path, when the crack tip speed is sufficiently high, the moving crack 
will lose its stability and deviate from the original straight path to propagate 
along a curve. The third term, or the higher order term in (70), takes into 
account the recent past history of the mixed-mode stress intensity factors and 
crack motion. This term involves the time derivatives of the dynamic stress 
intensity factors, K~(t) and K~(t), and crack tip speed v(t). It also involves the 
crack tip curvature k(t) as well. From Eqs. (17) and (18), it can be seen that as 
we go further to the terms with m > 2, higher order time derivatives of K~(t), 
K11(t), and crack tip speed v(t) must be involved, so is the time derivative of 
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the crack tip curvature k(t). The procedure discussed in 
constructive and it can be repeated to any order. 

this section is 

4. The asymptotic elastodynamic field around a non-uniformly propagating 
crack tip 

For the planar deformation of a homogeneous,  isotropic, linearly elastic 
material, the ordered array [us,esp, tr~a], ~, fl~ {1, 2}, is said to be an elasto- 
dynamic state in the absence of body force density, if the following conditions 
are satisfied 

e,a = k(us,a + us,s) ) 
ass = 2/a~s~ + 2e~fss(,t" 

) o's#,S = piis, 

~, fl~ {1, 2}, (71) 

where p is the mass density and 2,/~ are Lam6 constants of the material. In 
addition, the field quantities us, ess, and ass must satisfy the smoothness 
requirements outlined in Wheeler and Sternberg [18]. 

In the Cartesian coordinate system (~1, ~2), let q~,,(~ 1, ~2, t) and ~b,,(~ a, 32, t) 
be solutions of Eqs. (17) and (18), m = 0, 1, 2 . . . .  , such that  

q~m+.(~t, ¢2, t ) - .0]  
Om(~,, ~2, t) t 

~.+.(~,, ¢2, t ) ~ o j  
~m(~l, ~2, t) 

as r = V/~12 + ¢2 ~ 0 ,  m = O, 1, 2 . . . .  (72) 

for any positive integer n. Thus, ~b,,(~ 1, ~2, t) and ~/ra(~l, ~2, t) will be two 
asymptotic sequences as r = (~] + ~)1/2 ~ 0. Define ~b(~ 1, ~2, t) and ~O(~ 1, 32, t) 
by 

I~(~ 1, ~2, t) = ~ (])m(~ 1, ~2, t), I]/(~ 1; ~2, t) = ~ I]/m( ~ 1, ~2, t). (73) 
m=O m=O 

Then, the array [u s, ess, trsa], a, fl ~ { 1, 2}, will constitute an asymptotic elasto- 
dynamic state as r = (~] + ~2)1/2 ___, 0, if it satisfies 

u, = 4',, + e,sO,e ) 
1 ~sa = ~us,a + ua.s) , 

asp = 2/~s~ + 2~6s~  

~, fl ~ { 1, 2}. (74) 
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Let the two displacement potentials be given by (73), where each term of the 
asymptotic series is the solution which has been discussed in the previous 
section. The asymptotic elastodynamic state near the tip of a non-uniformly 
propagating crack along an arbitrary path, can therefore be obtained from 
relations (74). For its importance in the experimental investigation, we pro- 
vide here the asymptotic expression of the stress components around the 
moving crack tip by using the constitutive relation (3). With respect to the 
41-axis, we can observe that the two displacement potentials ~b(41, 42, t) and 
~'(41, 42, t) are composed by two parts, ~ba)(41, 42, t), ~a)(¢ 1, ¢2, t) and 
4#I)(~ 1, 42, t), ~btn)(~ 1, ~2, t). This separation is very similar to the decomposi- 
tion of the deformation field into mode-I, or the symmetric part, and mode-II, 
or the asymmetric part, when we deal with near tip deformation of a straight 
moving crack and claim that the deformation field is the superposition of these 
two modes. As a result of this separation, in writing the expression of the stress 
components a,p(41, ~2, t), a, fie {1, 2}, we may also separate a~a(~ 1, ~2, t) into 
two parts, the part a~(~ 1, ¢2, t) associated with the symmetric deformation and 
the part af~)(~ 1, 42, t) associated with the asymmetric deformation. Meanwhile, 
define the scaled polar coordinates (rt,~, Ot,~) by 

~2 ):2 
"Cl,s = N/~  2 + l,s~2, 

Oll,s~2 0"~ = tan-1 41 

Then, we have 

(75) 

The stress components associated with the symmetric deformation in Eq. (75) 
are 

a~x} Kid(t) {(1 + 2az -- cqzX l + c d  ) 01 4cqct~ x/2 ~ }  
I~ ~x//~ D(v) ri- 1/2 cos 2 D(v~ r- cos 

+ 
4~(al z - ~ )  

I~D(v) Re{A,(t)} + R e { [  -15(1  4/~D(v) 
+ 2~t z - a2)(1 + ~f) 

A2(t) 

1 a 2 cq(-aL ~-~)'~ Rt(t ) cos -- +(1 + 2 a  2 -a~) f t ( t  ) + - - +  1 - a ~  J 2 

E ( 2 2 2  ] - ct, ~_t --2 as ).'~ 30t + 1 +2~ 2 az~ Rl(t ) _  1 a~+ 1--~2 jSt(t) cos 2 
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and 

,u 

+ l+2~?-a~S'(t)  16 c°s -~2} r/n 

O, 1 30s 
+2~ s Re [ L ~  ~'[ 15~, Az(t ) + 9s(t) cos ~ + ~ Rs(t) cos --2 

-4- -~ S,(t) cos r~/2 + O(rt.~), 

a~]2 ) - K~(t) { (1 +a~)z r7 '/2 0, 4a, cq _~} It lt~/2~ O(v--------~ cos ~ + ~ r~-1/2 cos 

- R e { [  15(l+~2~)2A2(t)+(l+~2)ft(t)4pD(v) 

+ . l -a2  ~ - - 5 ~ R t ( t  ) cos-- 
1 _ ~ 2 ]  2 

I-l-I-or ff ( - a f t  ~ S ~ h ] 30t + L  ~ Rl(t ) _ 1 2 2 
1 -- o~? ] St(t) COS 

1+  ~2 ~2} + ~ Sz(t ) COS r~ ;2 

O~ 1 30~ ~[ 15cq A2(t ) + O~(t) cos + R~(t) c o s -  - 2~ Re [[2pD(v) 2 8 2 

1 70,~ r~/2 + -~ s~(t) cos z )  + O( r ,.s), 

(76) 

(77) 

_ K](t)2az(l+~){ri_l/ZsinOl ~}  px//-~ D(v) -~ - r~-1/2 sin 

{I 30_, 
-2~  t Re 15(1 + as 2) A2(t ) + g,(t) sin -~ - ~ R,(t) sin 2 

4#D(v) 

1Sl(t) sin TOI.} rl/2 
16 

1 - ~,~ ] O~ 
- R e  [L~'[15cq(l~-fD~)- + a~) A2(t ) + (1 + ~2)f,(t) + ~ R~(t) sin --2 

I1 8a~ R~(t) 1-aZS s~(t)lsin 30S l +a2 S~(t) sin.70~_}~l/2 
- - -  "2 2 16 -~ 

+ O(rJ 
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The stress components associated with the asymmetric deformation in Eq. (75) 
a r e  

_ _ a  (II) _ 2~,K]l(t){1-k-2~2- ~2 rt_ 1/2 sin Ol __1+~ _~} 
12 #x//~ O(v) 2 D(v) r*- 1/2 sin 

0"(2/2/ )  = - -  

+ Im{[  -15as(l+2a2-a2)2/~D(v) A2(t ) - (1 + 2a{ - a2)fi(t) 

_(1  2 a______~ 2 ~2~{ ___~)'] Ot 
4 1 - ~  JRt(t) l s in~-  

+ 
.1 + 2a 2 - a~ z 

8 
Rl(t ) _ (1 2¢x_.~z 4 ] 30, 

1 -- O~ z J St(t) sin 2 

+ 1+2azt-a2S'(t)16 sin~2} r]/2 

~T.15(1 +__a~) Az(t) _ g~(t) 1 sin 0~ 1 30~ + 2% Im [L 4pD(v) -2 + -8 R~(t) sin 

+ --~ Sdt) sin r 1/2 + O(rt,~), 

K]t(t) 2~(l + ~)  {ri-~/: sin Ot ~ }  # x / ~  D(v) ~ - r; 1/2 sin 

I 15~(1 + ~ff) 
-- lm 2pD(v) Az(t ) - (1 + a2)fz(t) 

( 2 2 ] 
-- -2 1 -  a 2 ] Rt(t) sin~- 

1 ~z 1 - - a  2 a_i--~'~ 30z 
+ - -  Rt(t) - 2 1 - ~2 ] Sl(t) sin T 

l+a2St(t ) sin ~J} r~/2 +--ig-- 

-2a~ Im ~T 15(1 _+_~2) A2(t) _ g,(t)]  sin 0~ 1 30, 
(L 4pD(v) -2 + -8 R,(t) sin -~- 

1 
+]-~ S,(t) sin r~/z + O(rt.,), 

(79) 

(80) 
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a~ ~ Kdn( t )~4~  ri_~/2 O, ( I + ~ )  z r~_~/z _~} 
-~-= #--~ ID-- ~ cos 2 D(~-----~-- cos 

~ 1 30 l f,[ 1.~ a~t) + ~,(0 co~ + ~ ~,lt) co~ ~ -2a~ Im [L2pD(v) - -  

, ~},,~,, + -~ S~(t) cos 

_ lm {[  15(l + a~)~ A~(t) + l - a~ ] O, 4pD(0 - ~  R~(t) cos ~- 

[ .~ 2 ] 30~+l+~t~ 1 ~ 1 - ~ ,  S~(t) cos S~(t) cos + ~ Rdt ) ~ -~  ~ 

+ O(r,,3. 

7~--~ } r]/2 

(81.) 

In the above expressions for components of stress, K~(t) and K~l(t) are the 
mixed-mode dynamic stress intensity factors. The complex functions f~,~(t) and 
O~,s(t) are given by 

L(t) = - - -  

~,,,_~ (,1+~,,~, ~_),,,t,_ (,~+~,~,. ,~,~,, ~) 
O(v) O(v) ~ ~ + S~(t) 

~ ~%~ + ~h) sdo 2~m~ R~(t) + 4 
D(v) ~ D(v) 

2a~m t (2~m~ 2a~(1 + a~)) St(t) 
o(0 a,(t) + ( ~  + o(O 

* 

+ ~)m~ + ~)m, . 0 (0  ~(~0,~, ~)~(t,_(,.,~ ~~)~(~, 
.,(,>__(.+...,o, ~)~,,,>_(~,+...,o, ,,.) >,) 

D(v) o(0 + O(O s,(t) 

2%m, ~2~m~ 2~(1 + ~)) Sdt) 
O~v) n,(t) + ~ + O(O " 

2~,m~ (2a~m, 2a,(1 + ~])) S,(t) 
9,(t) = ~(0 ~(t) + k ~  + o(~) 

+(...~>~. ~)~.~,>_(~,+.~>~..,.> ) 
~(0 ~(0 + ~(0 ~ sdt), (82) 
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where m~, m~, and O(v) are functions of the crack tip speed and are given in 
Eq. (67). Also, more explicitly, we can express the quantities St,~(t ) and R~,~(t) 
in terms of the mixed-mode dynamic stress intensity factors K~(t) and K~t(t), 
the time derivative of the crack tip speed b(t), and the curvature of the 
trajectory at the crack tip k(t) as follows 

)" V2(1 + ~2) 
S,(t) = [ p x / ~  D(v)~ c~ 

2a~(1 - ~2)2 } 
K~(t)i(t) + # x / ~  D(v)a~ K]t(t)k(t) 

~ 2v2~% (1 + ~2)(1 - a~)z 
- i  - } 

_~ 2v2~' 
ss(t) = t . v ~ o ( v ) ~ d  

(1 + a~2)(1 -- a~2) 2 } 
K~(t)~(t) 4 #x//~ D(v)~ ~ K~i(t)k(t) 

~ V2(1 + ~2) 2~(1 - ~2)2 
"{-i [.p~((V~4sC~ K~I(t)~(t ) ~-'~-~(V--~ K/d(t)k(t) }' (83) 

and 

R~(t) - 

Rs(t) - 

1 ~4x/~ d [v/~(1 + ~2) K~(t)~ 
~x//~ [ ~c~ 2 dt k ~ ( ~  3 
2a,(1 - ~ 1  + 3a~) ~ 

D(v)a~ K]~(t)k(t) 

1 ~8~ d [~,  K~,(t)] 2~" 
+i ~ [a~c~ ~ L D(~) D(O~4 K~,(t)i(t) 

(~ + ~)(~ - ~ 1  + ~ )  ~(0~(0 } + u(v)~ 

1 ~ 8 ~  d [ ~ ,  K~(t)7 2v:a' 
[~c~ • [ ~(0 J o ( 0 ~ d  ~f(t)o(t) . ~  ~ 

_ (1 + a~)(1D(v)~]- ~ 1  + 3~) K~(t)k(t) } 

i f 4 ~  d [ ~ ( 1  + a:) K~,(t)] 
~ i g ~  ~ [~,~, • L ~(~ 

2~,(~ - ~ ) ( ~ .  3~) ~(t)~(t) ~. 
+ ~(~)~] 

v~(~ + ~) Kf(t)~(t) 
D(~)~ct 

~(~ + ~) 
~ ~ K~(t)~(t) 

D(V)a~ c, 

(84) 
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In the expressions of the components of asymptotic stress field near the 
moving crack tip, (76) through (81), Rt(t ) and Rs(t ) depend not only on the 
mixed-mode dynamic stress intensity factors, K~(t) and K~1(t), and the crack 
tip speed, v(t), but also on the time derivatives of these quantities. Meanwhile, 
R,(t) and Rs(t ) also depend on the trajectory curvature at the crack tip k(t), as 
shown in Eq. (84). Sz(t) and Ss(t) also have these properties, but they do not 
depend on the time derivatives of the mixed-mode dynamic stress intensity 
factors. In most of the experiments, the study of the dynamic crack growth is 
under mode-I loading conditions and the crack propagates along a straight 
path. Under these circumstances, k(t) -- 0, Kd1(t) ---- 0, and all quantities of the 
form Im{'} disappear, and the deformation field is symmetric. At this point, 
Eqs. (76) through (78) provide the stress field of a non-uniformly propagating 
mode-I crack. This is the same as that given by Rosakis et al. [15]. If the crack 
tip velocity, v(t), is a constant, i.e. b(t) = 0, and therefore, Sz(t) = Ss(t) = 0, we 
can obtain the asymptotic stress field corresponding to transient crack growth 
with constant velocity and varying stress intensity factor (see [14]). A classical 
example of such a transient crack problem is the one analyzed by Broberg [4]. 
Furthermore, if the time derivative of the dynamic stress intensity factor,/(d(t), 
is also zero, so are R~(t) and R~(t); we obtain the familiar asymptotic stress field 
for the steady state situation up to the third term. This is the case considered 
by Nishioka and Atluri [8], and Dally [9]. 

5. Discussion and concluding remarks 

In this paper, a procedure for obtaining the higher order transient asymptotic 
representation of the elastodynamic field around the tip of a propagating crack 
has been developed. The crack propagates transiently along a smooth but 
otherwise arbitrary path. The material is considered to be homogeneous, 
isotropic and linearly elastic. The formulation is based on the two displacement 
potentials, ~b(4 l, 42, t) and ~0(41, 42, t). These two potentials can be expressed in 
terms of the real and imaginary parts of some complex functions, respectively. 
By imposing the continuity condition ahead of the crack tip and the traction 
free boundary condition along the crack faces, the problem can be recast into 
a Riemann-Hilbert problem. Upon solving the Riemann-Hilbert problem, the 
two displacement potentials are obtained. Meanwhile, the transient asymptotic 
representation of the near-tip stress field up to the third term is also provided. 
The transient effects and the geometrical characteristic of the crack path are 
included in this analysis. 

The general form of the near-tip stress field, Eqs. (76) through (81), exhibits 
some noteworthy features. First, it is noted that the spatial structure in the 
radial direction of the transient elastodynamic field is the same as that under 
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the steady state conditions. The differences between the results for the transient 
and the steady state analyses appear in the angular distribution. Secondly, it is 
observed that the angular distribution for a mixed-mode curving crack is 
identical to the one corresponding to a mixed-mode crack propagating along 
a straight line (see [14] and [15]). The information regarding the path 
curvature k(t) only appears in the coefficients of the expansion. It should be 
also observed that in the local coordinate system (¢~, ~z), the two components 
of the crack tip acceleration vector are (b(t), k(t)v2(t)) at any instant. The above 
results, as expected, contain both components of crack tip acceleration in the 
coefficients of the transient high order terms. In the case of a mode-I crack 
propagating along a straight line ([14] and [15]), only b(t) appears in these 
coefficients. 

Suppose that a crack propagates along a straight path, then k(t) = 0 at any 
time during the propagation. Under this situation, (76) through (81) provide 
the customarily mixed-mode stress field for a mode-I and a mode-II straight 
crack, respectively. However, as we have mentioned earlier, under the most 
general loading conditions, the crack will grow along a curved path. When this 
happens, even though the deformation field can be separated into a symmetric 
part and an asymmetric part, the so-called mode-I and mode-II types will be 
coupled together. This happens since in the higher order contributions to the 
expression of the stress components associated with the symmetric deforma- 
tion, the crack tip curvature k(t) always appears as a product with K~l(t) which 
is the dynamic stress intensity factor for mode-II. Similarly, in the asymmetric 
deformation field, the crack tip curvature k(t) always appears in a product with 
K~(t) where Kd(t) is the dynamic stress intensity factor for mode-I. An 
interesting consequence of the above observation is .the following. Suppose that 
the propagating crack follows the path of K~1(t) = 0 for any time (as proposed 
by Cotterell and Rice [19] for the quasi-statically growing crack). Then since 
k(t) will not be zero, the asymmetric part of the stresses will in general survive 
even if the first term disappears. This may produce an experimental illusion of 
the existence of a nonzero K~I, if the experimental data are recorded at some 
distance away from the crack tip. Rossmanith [20] has studied the rapid 
curved crack propagation using the dynamic photoelastic method. In the 
interpretation of his experimental data, Rossmanith used the singular (or the 
Ka-dominant) stress representation. He found that the values of K d and K~I 
depend on the positions of measurement (or depend on fringe order). By using 
the extrapolation, he observed that as the distance from the moving crack-tip 
r ---, 0, or the fringe order tends to infinity, K~ tends to a finite value while K~I 
becomes infinitely small. Similar experimental observations have been reported 
by Chona and Shukla [21], and by Shukla and Chona [22], who conducted 
extensive studies of this phenomenon. They also used dynamic photoelasticity 
to investigate dynamic crack growth along a curved path. Although their 
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isochromatic data were analyzed on the basis of a mixed-mode, steady state 
higher order expansion, they reported very small values of KIt (up to 10% of 
K] at each time). They observed that even if they force K~I to vanish in their 
expansion, they can still fit the higher order asymmetric isochromatic patterns 
by adjusting the coefficient of the third (r ~/2) term in their expansion. This is 
exactly the term that in the transient expansion involves the product k(t)Kai(t) 
which appears in Eqs. (79)-(81). 

To visualize the above discussions, consider the following special situation. 
Suppose that at time t, locally, the crack-tip undergoes mode-I deformation 
which conforms to the criterion proposed by Cotterell and Rice [19]. This 
criterion requires that the crack will follow the path which will assure that 
K/dr = 0. Meanwhile, assume that at this time, the crack-tip acceleration, the 
time derivatives of the stress intensity factors, and the higher order coefficient 
A2(t ) all vanish. In addition, suppose that the crack propagates along a curved 
path, so that the instantaneous crack-tip curvature is not zero. By using the 
higher order transient asymptotic stress representations obtained in previous 
sections, the contours of the following field 

1 a l  - a2  ( 8 5 )  
m(¢,, ¢2) - 2 K](t)/x~ ~ '  

are plotted. In (85), a I and a 2 are the two principal stresses, and R(t) is such 
that k(t) = 1/R(t). Notice that the contours of the field m(¢ ~, ¢2) actually 
simulate normalized photoelastic fringe patterns surrounding the moving 
crack-tip. These simulated fringe patterns are given in Fig. 2 where the 
Poisson's ratio for the solid has been chosen as v = 0.3 and the crack-tip speed 
has been set to v/c~ = 0.35. Figure 2(a) shows the fringe pattern observed in a 
relatively large region. The fringe pattern is apparently mixed-mode. However, 
by recalling that locally, the crack-tip field is pure mode-I, this apparent 
mixed-mode fringe pattern is due to the "mode-coupling" that stems from the 
geometrical shape of the curved crack which results in non-zero asymmetric 
higher order transient contributions. Although in this case, the tangtential 
acceleration of the crack-tip, b(t), is zero, the instantaneous angular acceler- 
ation is finite and equal to k(t)v2(t). Figure 2(b) represents a view of the same 
fringe pattern taken much closer to the crack-tip than the view in Fig. 2(a). 
Figure 2(b) clearly shows that the near-tip field is indeed symmetric. The above 
observations suggest that the accurate measurement of the dynamic stress 
intensity factors at a moving crack-tip requires that data points should be 
chosen either very close to the crack-tip, so that Kd-dominance is valid and can 
be used, or otherwise a complete higher order transient asymptotic representa- 
tion should be used to interpret the measurements. 

In conclusion we should point out that the field presented above contains, 
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Fig. 2. Simulated photoelastic fringe patterns surrounding the tip of a crack propagating along a 
curved path, (a) larger observation region, (b) observation in the region very close to the crack tip. 

for the first time, both the transient and the geometric features of crack growth. 
In this sense, it is hoped that it may prove useful in studying crack-tip kinking 
or curving even in laboratory situations where specimen size and geometry 
make the existence of transients unavoidable. 
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