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Abstract

The problem of a semi-infinite crack, loaded by a planar stress wave, which
after a finite delay time, extends with a constant speed, is revisited. We
use this particular problem to investigate the question of dominance of the
mode-I asymptotic elastodynamic crack-tip fields. The complete full field an-
alytical solution of stresses surrounding the stationary and moving crack-tip
is obtained using the procedure outlined by Freund (1973 and 1990). This an-
alytical solution is compared to the asymptotic structure obtained by Freund
and Rosakis (1992) and by Liu and Rosakis (1992}, and the coefficients of the
higher order transient asymptotic representation are thus determined. The
normal traction ahead of the moving crack-tip is studied and compared to the
field represented either by the square root singular term (K§-dominant term)
or by the higher order transient asymptotic expansion. The result shows that
the higher order transient asymptotic expansion is necessary to describe the
near-tip field at times close to the event of crack initiation, or at locations rela-
tively far away from the crack-tip. This observation suggests that in the event
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where transient effects are severe and cannot be neglected, the K§-dominant
field (square root singular field) should give way to the higher order transient
asymptotic representation. The plate impact experimental configuration uti-
lized by Ravichandran and Clifton (1989) and by Prakash and Clifton (1992)
to study dynamic fracture, can be modeled mathematically by the solution
given in Section 2. In Section 3, we provide an interpretation to their ex-
perimental observations. The result of our initial simulations which assume
constant crack-tip speed, shows that the higher order transient representation
successfully captures the overall features of the experimental results. Sub-
sequently, we relax the restriction of constant crack-tip velocity. Motivated
by the experimental measurements made by Zehnder and Rosakis (1990), a
fracture criterion that relates the dynamic stress intensity factor to the speed
of the propagating crack, is irtroduced. By solving the crack-tip equation of
motion, all time-dependent quantities in the higher order transient asymp-
totic representation are determined. The final simulation of the plate impact
experiments shows that the fully transient asymptotic field can describe the
measured particle velocities very well. It is found that the experimental obser-
vations can be interpreted most accurately by including the effects of crack-tip
acceleration and rapid changes of the dynamic stress intensity factor associated
with the initial stages of crack growth.

1 Introduction

In the last decade, extensive theoretical and experimental studies have
been carried out on the subject of dynamic fracture under stress wave
loading conditions. Due to the high loading rates which exist during a
dynamic fracture event, the effects of material inertia and strain rate
sensitivity cannot be neglected, and as a result the material may exhibit
totally different fracture behavior than the one exhibited under quasi-
static loading regimes. Because of the complex transient nature of the
crack initiation, growth and arrest problems, complete analytical solu-
tions of even elastodynamic problems are very scarce. Moreover, these
analytical solutions are only velid for those situations corresponding to
very special geometrical configurations and loading conditions so that
the mathematical models are tractable. Some of the theoretical and ex-
perimental studies on the subject are described below.

Baker (1962) studied the transient problem of a semi-infinite crack
suddenly appearing in a pre-stretched elastic body and simultaneously
propagating with a constant speed. He used the Laplace transform and
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the Wienes-Hopf techniques to obtain the distribution of normal tractions
ahead of the moving crack-tip, as well as the asymptotic leading term
of the stress field surrounding the crack-tip. This leading term whick
is square root singular in stresses and whose amplitude is the dynamic
stress intensity factor K¢(¢), will be referred to in this investigation as
the “K¢dominant field.” Similarly, the region near the crack-tip where
the stress field is well approximated by the square root singular term will
be called “region of K¢-dominance.” Achenbach and Nuismer (1971)
observed that Baker’s result was essentially the solution for the case of
a planar step-stress wave with a wavefront parallel to the semi-infinite
crack impinging on the injtially stationary crack. When the stress wave
hits the crack, the crack begins to grow with a constant speed. They
then extended the solution to include incident waves of arbitrary stress
profile, and also to include the case of oblique incidence. The unrealistic
restriction of instant crack growth when the incident stress wave reaches
the crack-tip in the above solutions was relaxed by Freund (1973), who
introduced a finite delay time between the two events of stress wave
arrival at the crack and the onset of crack extension. By using an elegant
superposition procedure, Freund obtained the expression for the dynamic
stress Intensity factor at the running crack-tip, and also generalized this
expression to the case of non-uniform crack growth speeds. He found
that for an unbounded body subjected to time-independent loading, the
dynamic stress intensity factor at the running crack-tip can be expressed
as a untversel function of instantaneous crack-tip speed multiplied by the
equilibrium stress intensity factor for the given applied loading and the
instantaneous amount of crack growth.

Since these early theoretical studies have revealed that the stress field
near the tip of a propagating crack can be represented in terms of a dy-
namic stress intensity factor, analogous to that for a static crack, a large
number of experimental investigations has attempted to measuxe this pa-
rameter for various specimen configurations and for various loading con-
dittons. The eventual goal of these studies was to use the dynamic stress
intensity factor concept in the formulation of a dynamic fracture crite-
rion. From the experimental point of view, Ravi-Chandar and Knauss
(1982) studied the dynamic fracture of a semi-infinite crack in an un-
bounded body subjected to a uniform step pressure applied on the crack
faces. The solution of this problem can be obtained from the solution for
the problem studied by Freund (1973) and described above. By using the
optical method of caustics, and by interpreting the experimental results
on the assumption of the existence of a K9-dominant field within which



the caustic pattern is formed, they found that when the crack starts
to propagate, a discrepancy exists between experimentally inferred dy-
namic stress intensity factors and the theoretical predictions. For the
same problem studied by Ravi-Chandar and Knauss, Ma and Freund
(1986) observed that for a point which is fixed with respect to the mov-
ing crack-tip, a surprisingly long time is needed for the stress intensity
factor controlled field (X ¢-dominant field) to be fully established. Their
observation suggested that optical measurements (by caustics or other-
wise) performed at finite distances from the crack-tip and at times close
to crack initiation should not be interpreted on the basis of the assump-
tion of the existence of a K¢-dominant field. The fact that the classi-
cal analysis of caustics assumes K¢-dominance whereas the deformation
field does not conform with this assumption, provided an explanation in
the discrepancy between the theoretical and the experimentally inferred
stress intensity factors in the experiments by Ravi-Chandar and Knauss
(1982). Further evidence for this phenomenon was provided by Krish-
naswamy and Rosakis (1991), who used a bifocal caustics arrangement
to directly investigate the accuracy of the classical analysis of caustics
in measuring dynamic stress intensity factors in the presence of tran-
sients. Their results identified the short comings of the assumption of
K¢-dominance and provided insight of the conditions under which this
assumption fails in laboratory size specimens. With the suspicion of
the Jack of K¢-dominance, as further emphasized by Krishnaswamy and
Rosakis (1991), the dependability of stress intensity factor histories mea-
sured from various experimental techniques is still questionable.

By relaxing the assumption of K¢-dominance, Freund and Rosakis
(1992) and Rosakis et al. (1991) have recently obtained a higher order
transient asymptotic expansion for the stress field surrounding the mode-
I moving crack-tip. The leading term of this expansion corresponds to
the classical square root singular stress field {{¢-dominant field). The
higher order, less singular terms in this interpretation are found to in-
volve coeflicients that are functions of the time derivatives of crack-tip
speed as well as the time derivatives of K§(¢). When highly transient
conditions exist, there exist regions near the crack-tip where the higher
order terms may be as important as the leading square root singular
contribution, and if so, K§-dominance will be absent. Such cases are
typically ones involving large crack-tip accelerations or sudden crack ini-
tiation or crack arrest events that may be a result of discrete stress wave
arrivals. Based on these results, Liu ef al. (1993) re-examined the optical
method of caustics and provided a new interpretation technique for the



analysis of caustic patterns and the accurate inference of the dynamic
stress intensity factors in the presence of transients, in cases where strict
K¢ dominance is absent. The analysis of Freund and Rosakis (1992) was
generalized for the case of a mixed-mode crack propagating along an ar-
bitrarily curved path by Liu and Rosakis (1992). This analysis provided
the higher order transient asymptotic representation of the elastodynamic
field surrounding the crack-tip. The higher order terms were fouand to
depend on the time derivatives of the complex dynamic stress intensity
factor K¢ + iK%, the crack-tip acceleration, as well as on the local value
of the crack path curvature. For generally anisotropic solids the same 1s-
sues for a transiently propagating mode-I crack were addressed by Willis
(1992).

The asymptotic analyses described above provide the spatial struc-
ture of the field near the crack-tip when transient conditions exist. As a
result, they are necessary for the accurate interpretation of optical high
speed photography measurements performed in laboratory specimens of
finite size where steady state conditions are usually the exception rather
than the rule. Such measurements may be performed by means of optical
techniques such as photoelasticity, caustics or the Coherent Gradient Sen-
sor (CGS). A discussion of the experimental verification of the existence
and the influence of transient higher order terms in dynamic fracture is
given by Krishnaswamy et al. (1992) and by Rosakis (1993).

The desire of producing very high loading rates and easily inter-
pretable dynamic crack initiation and growth experiments has recently
motivated Ravichandran and Clifton (1989) to devise a plate impact ex-
perimental configuration for the investigation of dynamic fracture. This
configuration is capable of producing extremely high loading rates K¢ ~
10®°MPa+/m-sec™* under stress wave loading and plane strain conditions.
The specimen configuration and loading condition they used, simulates
the problem of a plane strain semi-infinite crack subjected to a planar
stress pulse of finite duration. Consequently the experimental obser-
vations can be directly compared with the analytical results given by
Freund (1973). By monitoring the particle velocity at a point some dis-
tance away from the initial crack-tip, Prakash and Clifton {1992) have
observed some interesting phenomena which cannot be explained merely
by the existence of a pure K¢-dominant elastodynamic field.

The ultimate purpose of this study is to provide an interpretation
to the observation made by Prakash and Clifton (1992) for a suddenly
initiating and transiently propagating crack, within the framework of
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linear elastic dynamic fracture mechanics. In the next section, we re-
visit the problem studied by Freund (1973). Here, in addition to the
dynamic stress intensity factor history, we also try to obtain the full field
analytical soluiion for the stresses around the crack-tip. From the fuil
field solution, the coefficients of the higher order terms which appear in
Rosakis et al. (1991} and Liu and Rosakis (1992) are determined for this
specific problem. To demonstrate the existence of transient effects, we
also study the normal traction ahead of the moving crack-tip and com-
pare it to the equivalent traction of the K¢-dominant field and the field
represented by the higher order transient terms. The result shows that
even for a point which is relatively far away from the crack-tip, or for
times very close to crack initiation, the higher order transient represen-
tation provides a very good description of the actual stress field while
the K¢-dominant field is incapable of representing the stress field with
any accuracy. In Section 3, we use the result obtained in Section 2 to in-
terpret the experimental observations of Prakash and Clifton (1992) and
to thus provide further evidence of the existence of measurable transient
effects in dynamic fracture. In the process we also provide indirect evi-
dence supporting a particular fractuze criterion governing dynamic crack
growth. This provides an additional example of the influence of tran-
sient effects in a new and important specimen configuration for dynamic
fracture studies under very high loading rate conditiors.

2 Analytical solution

2.1 Description of the analytical problem

Let R be an unbounded two-dimensional region occupied by an isotropic,
homogeneous, linearly elastic body. The region R contains a straight
semi-infinite crack. Let (21, ;) be an orthonormal Cartesian coordinate
system such that the crack occupies the entire —co < 27 £ 0, z, = 0,
see Fig.l. Initially, the material surrounding the crack is at rest and
stress free, and the crack-tip remains stationary. A planar longitudinal
tension wave with a constant amplitude ¢™, propagates toward the crack
and the wavefront is parallel to the crack plane. At time { = 0, the stress
wave strikes the crack and is partially reflected and partially diffracted.
The diffracted waves radiate from the crack-tip and propagate into the
body. If the material occupying the body is of limited strength, then the
crack will stazt to grow at some later time, say t = 7. In oxder to obtain



Figure 1. A semi-infinite crack loaded by a planar longitudinal wave.

the complete full field analytical solution for this transient problem, we
assume that the rate of crack growth v is a constant, but we will relax this
restriction in Section 3. If the deformation is assumed to be plane strain,
the displacement field surrounding the crack-tip may be generated from
two displacement potentials, ¢(zy, 22, %) and ¢¥(z1, z2,1), by the following
relation,

ua(mla Lo, t) = Qsacr (xla T2, t) + eaﬁ¢:ﬁ (mla g, t): I (1)

where @, § € {1,2} and the summation convention has been used. e,g
is the two-dimensional alternator defined by

e1z = —eg =1, en = e =0

The components of stress associated with this deformation can be ex-
pressed in terms of the displacement potentials as

c? |
011 = [ {'C%Q&;aa —2¢h,22 +21,12

o

C2
T2 = [ {E%¢;aa —2¢,01 —2¢¥ 12 } s (2)

T1a = i {23?5:12 +¢:22 _71b511 }

where p is the shear modulus, and ¢, ¢, are the longitudinal and shear
wave speeds of the elastic material, respectively.

The equation of motion in the absence of body forces and in terms of
¢(x1, x9,t) and P(zy, z2,t), 1educes to

(b;acr (xlz Ia, t) - azé(xly Ty, t) = 0

Vsaa (xl’xht)_bz%{;(&:hﬁ%t) = 0

, (3)
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where a = 1/¢; and b= 1/c,.

The crack faces remain traction free during the entire process, there-
fore the boundary conditions will be

Taa(21,05,8) =0, —oco<z <v(t—T)H{E—7), ac{l,2}, (4)

where H(-) is the Heaviside step function.

At time t = 0, we can write the stress field inside the two-dimensional
body as

vo*

0'11(1:1,.'152,0) = l_vH(l'g)

a9a(w1,22,0) = o"H(z) s (21,22 ER, (5)

0’12($1, L, 0) = U

where v is the Poisson’s ratio of the elastic body.

To solve the above problem and obtain the complete full field solution,
we will follow the procedure outlined by Freund (1973 and 1990), namely
the method of linear superposition. As discussed by Freund, we consider
the following four separate problems shown Fig.2. In problem A, the
incident planar longitudinal stress wave with a constant amplitude o,
propagates through a body without a crack. This stress wave will induce
a traction on the plane which will be occupied by the initial crack shown -
as the dashed lines in Fig.2. In problem B, we consider a body containing
a stationary semi-infinite crack subjected to a uniform pressure om its
surfaces. The magnitude of the pressure is equal to the amplitude of the
plane wave considered in problem A. The combination of solutions for
these two problems provides the solution for the problem of diffraction of
a planar stress wave by a stationary crack. As a result of the stress wave
diffraction at the crack-tip, a traction distribution is generated along
the plane ahead of the crack-tip. In order to extend, the crack must in
effect negate this traction distribution. Accordingly, in problem C, we
study the case of the crack starting to grow with a constant speed v, at
some finite delay time 7 after the diffraction has occurred. During the
growing process, a traction distribution will appear on the newly formed
crack surface and this traction distribution will be equal but opposite to
the traction distribution ahead of the crack-tip in problem B. Finally,
in problem D, the crack propagates with the same constant speed v as
in problem C, and a uniform pressure with the magnitude o* is applied
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Figure 2: Schematic representation of the various boundary value prob-
lems considezed in constructing the solution for constant speed crack
growth under stress wave loading conditions.

on the newly created crack faces. The sum of solutions of these four
problems provides the final solution for the problem we considered in this
study, i.e., the one that corresponds to the case of a planar wave which
strikes the crack and then, after some finite time, the crack extends at a
constant speed.

In the following section, we will give the analytical results pertinent
to the problems discussed above with little development. Nevertheless,
besides the history of the dynamic stress intensity factor at the station-
ary and the moving crack-tips, which has drawn most of the attentions
in previous studies, we will also provide the full field solution for the
stresses surrounding the stationary and moving crack-tips. Due to length
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limit, we will omit most of the details in getting those solutions, however,
the reader can acquire these details from Freund (1973 and 1990}, and
Achenbach (1973).

2.2 The elastodynamic stress field

In this section, we study the four problems discussed in the last section
separately. The solutions of these four problems will provide the final
solution for our initial problem.

2.2.1 Problem A: Plane wave in an unbounded body

In this problem, we consider a planar longitudinal stress wave with a con-
stant amplitude ¢*, which propagates in an unbounded two-dimensional
region. In the Cartesian coordinate system shown in Fig.2, the wave
front is parallel to the z;-axis, and the wave propagates in the direction
of negative zy-axis. The wave speed is ¢; and the moment that the wave
front reaches the plane 25 = 0, is designated as ¢ = 0. For this problem,
we can write the in plane stress components aéfg(xl, x2,1) as follows:

» ~

. v
C’ii)(fﬂl,xz,t) = I_UH('!:-I-Q.?JQ)

C’é;)(i‘l;ﬁ?z,f) = o*H(t+ azs) >, (21,%2) ER. (6)

Ui;)($], Ty, t) = 0

#

Once again, H(-) is the Heaviside step function.

2.2.2 Problem B: Stationary crack subjected to suddenly ap-
plied pressure

Let’s consider the unbounded two-dimensional region R. The Carte-
slancoordinate system is chosen as in Fig.2, and the semi-infinite crack
occupies the semi-infinite line of —co < 2 £ 0, 23 = 0. For time £ < 0,
the body is stress free and at rest everywhere. At time { = 0, a uni-
formly distributed pressure with magnitude ¢*, is applied on the crack
faces. From the symmetry of this loading condition, we can see that the
deformation is mode-I type. Thus, we ouly need to comsider the half
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+
plane R, where

+
R={{z1,22) | —c0o <1 <0, 0<23< 0}

Let the two displacement potentials associated with this problem be
P (z1,29,t) and PP zq,z5,¢), then they will satisfy the equation of

motion (3) in the region 7.5, The boundary conditions are

o5 (21,07 ,8) = ~0*H(t), —oco <z, <0

o3 (z1,07,¢) =0, —co<Ty<oe p, t>0. (7}

u$(x1,0%,1) = 0, 0 <z <00
The initial conditions are

¢ (21, 22,0) = ™ {xy,25,0) = 0 .
: , ,  (z1,22) ER. (8)
¢y, 25,0) = 10(3)(331,3:2,0) =0

Meanwhile, since the displacement should be bounded throughout the
region, or the mechanical energy density should be integrable, but the
stress may be singular at the crack-tip, we also have

fo o mipi)an<e, Rk @)

To solve the above initial /boundary value problem, a one-side Laplace
transform with respect to fime ¢, and a two-side Laplace transform with
respect to the coordinate 2; are used. The transformed solution for the
two displacement potentials can be expressed as (Freund, 1990),

@(B)(C] _‘_Cz, S) = O'_* N &‘i(oe_sa(B){c)x2
# E]
o* Q(B)(C) , g € (U,oo)’ (10)
—~s3B) )
‘I’(B)(C’ xQ}S) = ; . Te BB )z
where 2 -
pe) = =X (0)

R FIQ)
_ 2070 R0

i (1)
WO =T FOQ)

11



,_. .
FUS S

and
RO = (87 —2¢%)" +40a®(OB™()

1/2 1/2

a() = (=), ) = (¥ -¢)
aP(0)
Fo ) = _ s

w0 TSP
In the above expressmns, appropriate branch cuts have been chosen.
Also, o (¢) = (a + ()*'*, ¢ = 1/cp where cp is the Rayleigh wave speed
of the elastic material, a.nd

: 1[4 - e ) g
SE(C) =exp{-;/; tan [ o) ] ??+C}'

The subscript + indicates that the function is analytic in the half plane
Re ( > —a, and this comes from the Wiener-Hopf procedure used to
solve this problem.

o

In order to obtain the stress field surrounding the stationary crack-
tip, we need to perform the inverse transforms of those transformed stress
components which can be obtained from the expressions in eqn (10).
Howeves, from the constitutive relation (2), it can be seen that the stress
components are related to the second derivatives of the two displace-
ment potentials, ¢®(zy,zs,¢) and ™ (z1,22,t). Let (¢, 7s,5) and
TER(¢, w2, 5) be the transforms of ¢,53 (21,22, t) and .54 (21, 24, 1), Te-
spectively. Then, we can write that

853(C, zg,8) = o R ) LeB e P )
peooo 3 €(0,00),  (12)
- O®) ’ T
(C;$2; ): _C_’“; Qafz(C) e—sﬁ(B)(C)rz
where
PR(¢) = ¢*PP(() () = *Q™(¢)
PR) = (a®~ ) P b, QRO = (1" -¢) Q™)

PE(() = —(a®(()P(() QR{() = —=(2(0)Q™(()

12



Several observations can be made at this point: i} P(¢) and P5(()
are analytic in the strip —a < Re ¢ < a; P55 ({) is analytic in the stxip
—a < Re { < a, but has a simple pole at { = 0; ii) Q(B)(C) are analytic
the strip —6 < Re ¢ < a, where o, 8 € {1,2}; iii) All smgulantles and
branch cuts lie along the real axis.

By using the Cagniard-de Hoop technique to the transformed sec-
ond derivatives in eqn (12) and by using the above observations for the
regions of analyticity for each function, the second derivatives of the dis-
placement potential associated with the longitudinalwave, ¢}z, z,,1),
can be expressed as (see Appendix)

o* : 8((3)
B30 (on2t) = 2 [t { PG T far - He )

*

a £ N a {B)*
b.57 (€1, %2, 8) = > f_w_ Im{c,(“’ PO C }d fCH({—ar) b,

b

*

= [ {P{ﬁ)(g(ﬂ))% }d’r-H(t—ar)

T 4l

Gﬁa% (9313 &2, t) =

(13)

t 12
Pz, x2,8) = ——0059-[-11,/——0,251119 (14)
r

and (r, ) are the polar coordinates centered at the stationary crack-tip.
(2% (x3, 24, 1) has the same form as that in eqn (14) except that z; should
be replaced by ]. Also

where

Similarly, the second derivatives of the displacement potential associ-
ated with the transverse wave, ¥®(zy,22,t), can be expressed as (see
Appendix)

*

88zt = Z{ [ Qe | ar - 1t

TH
, (15)

(B)

where o, f € {1,2}, and

t2
(P (21, 70, t) = —Ecos9+e1/~——bzsm9 (16)

13



In addition, in eqn (15), A®{8) = —bcosf, and 8 = 7 — cos™!(a/b).
Also,

AD() = H(t - (B (m)ea — 72a), 0 <1 < AP0)

It should be noted that the second part of the right-hand side in eqn (15)
provides informatiorn inside the head wave region.

By substituting eqns (13) and (15} into the constitutive relation (2),
we can get the siress field surrounding the stationary crack-tip for prob-
lem B. As an input to problem C, we need to know the normal traction
o2 (x1,t), ahead of the stationary crack-tip in problem B. I can be
shown that (Freund, 1990)

Jﬂfj(:r],t)=£{/: Im[ FE(0) }d—n}-ﬂ(t—axl), (17)

T zy F_%_BH (—nfz1)]

(B)

or o’(x1,t) may also be expressed as

plu) = G:_l {f:’uIm {%} d?w} - H (i -—a) : (18)

where u = z; /. It must be pointed out that the normal traction ahead of
the stationary crack-tip, o' (z1,t), or p{z1/t), is a homogeneous function
of 1 and t of degree zero. Finally, the dynamic stress intensity factor at
the stationary crack-tip for problem B is

20% (1 —2v)at
1—vw T

KIO(t) =

, t>0. (19)

2.2.3 Problem C: Moving crack with varying traction applied
on its new surface

In this problem, we study the semi-infinite crack configuration considered
in problem B. At time ¢ = 7, the crack starts to extend with a constant
speed v. At the same time, a compressive normal traction of magnitude
of p(z,/t), given in (18), is applied on the newly created crack faces,
0 < z; < v(t — 7). Since the traction distribution (18) has the property
of homogeneity, any fixed stress level in the scattered field radiates out
along the z;-axis at constant speed. As a result of this observation,
the solution for problem C can be further generated by the so-called
fundamental solution (Freund, 1990).

14



Consider the region R and a semi-infinite crack lying along the entire
negative zi-axis in the Cartesian coordinate system, (z1,%3). As time
t < 0, the body is stress free and at zest everywhere. At £ = 0, a pair of
concentrated forces p(t), of the form,

p(t) = po + pit,

where py and p, are constants, 1s applied at the crack-tip and tends
to open the crack. At the same time, the crack begins to propagate
with a constant speed v. Meanwhile, the concentrated force p(t) also
propagates with a constant velocity « < v toward the moving crack-tip.
Let ¢ (zy,%2,t) and ¥ (zy, zy,t) be the two displacement potentials
for the fundamental problem. Then, ¢™{zq, 25,t) and ¥ (zy, z4,¢) will
satisfy the equation of motion (3) and the same initial conditions (8).
The boundary conditions are

cré?(ml,(}"’,t) = —(po + p1t) 6{zy —ut) H(t), —oo <z <0t
Jggl(who-l-:t) = U} -0 < T <0 s

uy(zy,0%,8) =0, vt < 7 < o0
| (20)
where &(-) is the Dirac delta function. By defining the moving coordinates
(&1, &2) through & = @1 —vt, {3 = 24, and applying the Laplace transforms
with respect to ¢ and &, the solutions in the transformed plane will be

IV, by, 5) = % . &@e—aa(c)gz _n Al© T

83 # 84 )62 € (0100):
TO(C, £y, 5) = Po %le-sﬁ(oﬁs _ b, Ql_(oe—sﬁ(c)fz
p &3 u P
(21)
where (50 - ¢} Fulw)
_ W . + w
PO= - wRD R )
2wa(()  Fe(w) |’
W)= CowREO Fo(Q)
and
w {B2(() - *} [Fi(w)]
RO =S [ o)

_ 2w¢a(() _lﬂ(w)l’
R(OFL(C) [¢(—w

18
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In the above expressions, prime denotes the derivative with respect to
the argument w, where w = 1/{v — u}, and

R(() = 4Ca(08(0+ {84~}
a2 o’ 1/2

o) = (e-eafE-20) T
349 2\ 1/2

o0 = (w-e bhﬁ -E

O = & fEﬁ?;@)a ar(() = fot (1-7) C}w’

= o[l [ s [BC ()] d
su) = ool [ [EENER )

in which » = 1/v. Also,

J . S O
FT1xa/h FT1xb/h T T 1x/b

Similar to the procedure used in problem B, by defining

PR(0) = (R0 () = ¢Qu(0)
PR = (OB oy QBN =BHOQ()
PRUC) = —CalQ)Pu(¢) GO = =CBOR(C)

where k£ € {0,1}, the second derivatives of the displacement potential,
#F (&, &2,t), can be expressed as

653 (b1, &, )=;§i1 {Pé%’(c;)a@} H(t — wir, 8))
. (24)

L (PO, 0 A
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where a, 8 € {1,2}, and

t a. —ay ) i_ — a4
G (€1, €2,t) (n 5 cos 8; ) cos §; 3

¢ _ 2 _ 2] 1/2
+ 2 (— _ 2 Gt cos 9;) — (a + a+) sin &;
o] 2 2
wi{re, 0) = 7 (ah ; 2 cos by + -zi- a+)

The second derivative of the displacement potential, (¢, €5, 1), can be
expressed as

¢3E:3) (61)62)t)= %{I [ (0)(C)

”

¢,

} H(t — wi(rs, 8,)) | ‘
+ faiw [im (QX* () d(m)] dn.- H (8, — 91{)}
P {/:(e Im [ (@ )3‘:"} dr - H (¢ — wy(rs,65))

+ / e QLY () k()] dy - H (6, ~ sﬂ)}

where a, A € {1,2}. In eqn (25),

» (25)

—

b — b_ —b
(flufz, t) = — (i - b4 cos 95) cos @, ~— 5 +
it b —by 2 p4n, 0\
+ 1 =g cos 0, | — 5 sinf,
\Ts
w,g(rs) 95) =T (b“ -2_b+ cos 93 + b' .;- b+)
wnd b b. —b
_ b- +b, - — 0y
Mbs) = - ( 5 cos 8, + 5 )
2a b_—b
— —_ -1 + -+
e = 7 —cos (b_+b++b_+b+)
Also,

d(TJ) =§(t - [ﬁ(ﬂ)ﬁz - ?}'51])

} , ey £ < Atgs)-
h(n) = H (t — [B(n)é2 — 1)
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In eqns (24) and (25), (r,4,01,) are two scaled polar coordinate sys-
tems defined by

-1 al,s‘f2

&’

a? 1/2 P2 1/2
oy = l_ﬁ s 0’1“: 1—?&3 .

The components of stress field for the fundamental problem can be ob-
tained by using the constitutive relation (2).

1/2
e ={€+al&} ", 6, =tan

where

Returning to problem C, let ¢'™(&;, {s,¢;w) be any element of the
fundamental solution, such as the stress components, particle velocity,
ete., and the dependence of the fundamental solution on the parameter
- w is made explicitly here. Following the analysis given by Freund (1973
and 1990), the corresponding element ¢‘® (&3, &2, t) for problem C will be
given by

h* T “(w
q(C)(fllE% t) = /h Q(F) (EI:EQ: E(h* - w); ‘UJ) pu()g )dwa (26)

where A* = ht/7r, p*(w) = p((vw — 1)/w). It should be pointed out
that in eqn (26), quantities po and p, that appear in the fundamental
solutions have been changed to rw/h and 1, respectively. Finally, the
dynamic stress intensity factor at the moving crack-tip in problem C is
given by

K@) = ZJ*k(U)\/g{WW — ot - T)} , t>7 (37)

where k(v) is a universal function of the crack-tip speed given by

. 1—¢/h 1
He) = ST —afk’ hEy 28)

2.2.4 Problem D: Moving crack with uniform pressure applied
on its new surface

Similar to problem C, we study the semi-infinite crack configuration con-
sidered in problem B. At time t = 7, the crack starts to extend with a
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constant speed v. However, at the same time, a uniform pressure of mag-
nitude of ¢™, is applied on the newly created crack faces, 0 < 21 < v(¢t—7).
Let ¢'®)(21,z9,t) and ¢z, 21, %) be the displacement potentials of this
problem. For analysis convenience, consider that the crack-tip starts to
extend at £ = 0 and obtain the displacement potentials for this new prob-
lem, denoted as problem M. Therefore, ¢™(zy,7s,t) and Y™ (zy, 4, t)
satisfy the equation of motion (3), and the boundary conditions are

o (21,01 1) = —o"H(z ) H(vt — ;) H(t), —o0 < 71 < vt
o1z (21,07,8) =0, —o <z <oo p. (29)
uy Ny, 0%, ) = 0, vt < 2y < o

In the moving coordinate system (&, §;), after the Laplace transforms
are applied, the solutions are

(I’(M)(C._,é'g’.s) = 0’_* . P_(:M_;Qe—sa(f-]&
7 s
. Ao y &€ (0,00),  (30)
TOO((, 63, 5) = L - L) msmre
2 s
where . .
P(M)(O _ B (C) —¢ ) F.(h)

= (=WED Fi(Q)
M _ QCQ(C) . F"F(h’)
VO = THED O

where all quantities that appear in the above expressions have been given
in the solutions for problem C. By defining

, {31)

PRP(C) = (PPM() Q) = *@™(Q)
PR = SOP™() ¢, 2K = BO™) ,
PR = ~C()P™(C) 20 = —¢BOR™()
the second derivatives of ¢®2(¢;,¢z,t) and H*D(£;, &, ¢) will be
- a* o d
st =2 [ Im{Pég)(Cl)é%} dr - H (b — (),

(32)
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and

[t [(M,(C)acs]dT.H(t_w3<rs,9s))

Wy ("'spaa)

¢’:aﬁ (gl}fht) = T {

b [ i (@29 ) B0} 02 0, 60

" (33)
For problem D, we can get

(D) (‘51352)t) = ¢J(M) (51: £2)t - T)
m,B (61:&2: ) ¢) (61162: " )

The components of stress can be obtained from the counstitutive rela-
tion (2). The dynamic stress intensity factor at the moving crack- t1p in
problem D, is given by

(34)

KI®() = 20k(w)y 2T s (35)

T

Up to this point, we have obtained the analytical full field solution for
each problem. Returning o our original problem which corresponds to a
planar longitudinal stress wave of constant amplitude ¢* which strikes a
semi-infinite crack, and after some time 7, the crack extends at a constant
speed v, we can construct the final solution. For 0 < ¢ £ 7, the solution
is given by the sum of problems A and B. For ¢ > 7, the solution is
given by the sum of all four problems. Particularly, the dynamic stress
mtensity factors at the stationary and moving crack-tips are

- A=at — yy<q,
-V ™
K3(t) = | (36)
207k(v) [(1—2v)at st
l—v T

It is clear from eqn (36) that for an unbounded body under time-indepen-
dent loading conditions, the dynamic stress intensity factor at the run-
ning crack-tip can be expressed as a universal function of instantaneous
crack-tip speed multiplied by the equilibrium stress intensity factor for
the given applied loading and the instantaneous amount of crack growth.
It should be pointed out that the sum of problems B and C will give the
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solution for the problem studied by Ravi-Chandar and Knauss (1982)
and analyzed by Ma and Freund (1986). However, since the problem is
no longer self-similar, the dynamic stress intensity factor at the moving
crack-tip corresponding to this problem will not have the property stated
above.

2.3 Higher order transient asymptotic representa-
tion of the elastodynamic field surrounding the
moving crack-tip

In the previous section, we have derived the full field analytical solu-
tion for the problem stated in Section 2.1. This solution has considered
the transient nature of the problem. As one can see that the expres-
sions for the solution are complicated. In order to use the solution
in comparison with experimental observations, one is interested in the
asymptotic structure of this elastodynamic field, or the field very close
to the moving crack-tip. Recently, Freund and Rosalds (1992) and Liu
and Rosakis (1992) have developed the structure of the higher order
transient asymptotic representation for the stress field around a tran-
siently extending crack-tip in homogeneous and isotropic linear elastic
materials. Their asymptotic representation involves coeflicients which
are complicated functions of time thai cannot be completely determined
by the asymptotic analysis. The crack problem under consideration here
is highly transient. Assuchit is a good candidate to be used for obtaining
the coefficients of the higher order transient asymptotic representation of
the elastodynamic field surrounding the moving crack-tip. A comparison
of the transient expansion with the actual full field solution will give us an
indication of how well this transient asymptotic representation describes
the actual field.

To obtain the asymptotic expansion of the elastodynamic field de-
rived in the previous section, we consider the quantity ¢, (€1, &2,1). For
problem A, as t > 0,

1-2v

S (37)

J*
!E::A)r (€1a0+:t) = I

In problem B, by expanding the guantity ¢,&) (z1,0",¢) into a power
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series of £; for finite ¢ > 1, where z; = & + v{t — 7), we get

a* 1

(G ot =) 0N = e P+ 0G), (38)

as £, — 0%, where
Qe () = /” a*(n — ¢)(b* — 20*)°S(—n)
o ny/b{n — a) {(¥* — 29°)* + 16n*(n* — a*)(b* — 9*)}
+/Tr a*(n — c) (¥ — 2¢*)S(—n)
ﬁ{ B2 — 292)? — 4n? WW?F}
and the function ST’(¢) has been defined in Section 2.2.2.

For the fundamental problem, it can be showsn that

' — a2 2y KER
D60ty = Emaite) fR)

-1 “—"[(w;(v)#ﬁ) e R

dn

Y a k $3/2 /2

w? Fy (w)

cop o] @ 0@ b G- 0ot

as £ — 0%, where

and

4 o ol +af—20fal
Ro(v) = D—(U) {(1 - as) — o,

_ L 4n?B{—n)|a(—mn)| g
sute) = o [ B o |

D{v) = dao, - (1 + af)z

From this result, as ¢ > 7, we can get the corresponding expansion for
problem C by using relation (26). After some manipulations and using
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the property of the Heaviside function in (39), it can be shown that

of)(1+a?) Ki()
D(v) pV 2781

(C)(§1:0+rt) - (l_

‘oex

, (40)
a ) 2(1 - of)(1 + o) E . k(”)ﬂ,{zc)(t) 5_1 3/2
+ : +0(64")
@ D(v) b T CsT
as & — 07, where K{¥(t) has been given in eqn (27) and
AO() = Vv2(1 —2v) \/E wol{v) wo(v) +1
2(1 —v) /T \r‘t/'r—l
For problem D, it can be shown that as ¢ > 7,
S (£, 0%, 8) = (1—of)(1+af) i K?(D)(t)
D(v) py/ 28 (41)

o 20 —of)(1+al) [R k(v)ﬂém(f)\/g 3/2
T ey VBT a o Ve TG

as £ — 0%, where K7™ (t) has been given in eqn (35) and
wolv) +1

Finally, by superposing the above asymptotic expressions for the
four constituent problems, the asymptotic representation of the quan-
ity d,aa (€1,01, 1) of our original problem near the extending crack-tip
15

0P(t) =

(L—of)(1+al) Ki()

+ = .
é:aa (61;0 1t) - D(U) p\/z?é—l-"i" Q'1( ) (42)
4O 20 mad)(i+ad) \/E %) (& oy |
i D(v) b T CsT
as €1 — 0%, where K¢(¢) has been given in eqn (36) and
1-2 1
‘Q}(t) - 2(1 _ 1)') + - /_——1 — Vﬂl (t)




el

For a transiently propagating mode-I crack in a homogeneous, isotro-
pic, linearly elastic material, Freund and Rosakis (1992) have provided
the higher order transient asymptotic representation for the first stress
invariant. By using the notation of Liu and Rosakis (1992), for a mode-I
crack growing with a constant speed v, we have

bron(61,01,8) = 20 #432&; %) 4o (1)
+%QA1(1&) - {— 1501 - f?(f)*— o) 4,00 )
+| 5 a?a((l)+ e oy | )
_2%93{%(1‘)}} 4 o) J

as & — 0%, where
DB} = 2oL Al
D{Aoft)} = s 0 |

and

In eqn (43), Ao(t), A1(t), and As(¢) are undetermined functions of time.
They cannot be determined by the asymptotic analysis itself. However,
for the specific problem at hand, these undetermined functions of time
can be obtained by comparing eqns (42) and (43). This comparison
yields:

Adft) = “\/_\/M%(U\E\/?

T 2(1—1/)
At = Jt'qi((%% ot>T ()

Aty = ——Z .\/5(‘1—_2”),’*2(”)
2 - c,m 2{1l—v) \/;;; |
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where
ka(v) = 8 [2(1-af)(1+ad)my | Bau(l—af)m,
AT o2 D(v) (1 + a2) D(v)

el
The variation of the dynamic stress intensity factor K¢(¢) with time
t is plotted in Fig.3 for different crack-tip speeds. In this figure, the
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Figure 3: The dynamic stress intensity factor history for the stationary
and propagating crack under stress wave loading conditions.

dynamic stress intensity factor is normalized by the critical value of the
stress intensity factor at which the stationary crack begins to extend, and
the time ¢ is normalized by the delay time 7. These numerical results
are obiained by setting the Poisson’s ratio » = 0.3. Before crack initia-
tion, the dynamic stress intensity factor is a monotonic function of time.
After crack initiation, the dynamic stress intensity factor monotonically
increases with time as well. Although the crack-tip speed is constant,
the problem we studied here is characterized as transient, because as the
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Figure 4: Time history of the coefficient A;(¢) In the higher order tran-
sient asymptotic expansion for the moving crack under stress wave load-
ing conditions.
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Figure 5: Time history of the coefficient A,(f) in the higher order tran-
sient asymptotic expansion for the moving crack under stress wave load-
ing conditions.
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crack starts to grow, the time derivative of the dynamic stress intensity
factor is not zero which is contrast with the steady state situation. Notice
that in Fig.3, at the time of crack initiation, there 1s a sudden drop in
the value of the dynamic stress intensity factor. This is due to the release
of deformation energy by the formation of new crack surfaces associated
with crack extension. In addition, the time histories of the coefficients
in the higher order transient asymptotic representation of a propagating
crack, A;(t) and A,(t), are presented in Figs 4 and 5 for different crack-
tip speeds. Omnce again, their time derivatives are not zero due to the
transient nature of the problem.

2.4 Study of the normal tractions ahead of the
moving crack-tip

In previous sections, we have obtained the complete full field solution
for the stresses of the problem described in Section 2. We also obtained
the coefficients A;(t) and A;(t) of the higher order transient asymptotic
expansion. In order to examine whether the full field transient field is
representable by either a K¢-dominant field or a higher order transient
asymptotic field, we will investigate the normal traction ahead of the
propagating crack-tip. In other words, we want to investigate the re-
gion of dominance of the lowest order and the higher order asymptotic .
solutions.

By using the analytical results given in Section 2.2 regarding the
stresses surrounding the moving crack-tip, the normal traction ahead
of the crack-tip, o,(£;,t) can be calculated from the full field solution.
Meanwhile, the normal traction can also be represented by its asymptotic
form (up to three terms) as

4(t

(6, = LI - Ta0E” £ 06), s b0, ()
where the. dynamic stress intensity factor K${¢) and the higher order
coefficient 4,(¢) have been given in the last section. Here, we have two
choices for the asymptotic representation. In regions near the crack-tip
where the field is indeed K¢-dominant, the first term on the right-hand
side of eqn (45) will adequately describe the field. Otherwise, higher order
terms should be included in order to deal with the lack of K%-dominance.

In Fig.6, the distribution of the normal traction ahead of the moving
crack-tip is shown at different instants of normalized time ¢/r. One
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Figure 6: Distribution of normal traction ahead of the moving crack-tip
at different instants of time.

should recall here that ¢ = 7 corresponds to the time between the arrival
of the stress wave at the crack-tip and initiation of crack growth. This
distribution is calculated from the full field analytical solutions presented
in previous sections. Here, we have chosen a Poisson’s ratio of » = 0.3
and a crack-tip speed of v = 0.3¢,. It should be observed from this figure
that at short times after initiation, the singular part of the traction is
confined to points very close to the crack-tip and as a result, the region of

K¢-dominance seems to be initially very small. This issue is investigated
in detail later,

Quantitative comparisons of the near tip transient field with either the
K¢-dominant field or the higher order transient asymptotic field {three
term expansion) are given in Figs 7 and 8. In both figures, the normal
traction ahead of the moving crack-tip calculated from the analytical re-
sult is normalized by its asymptotic representation. The Poisson’s ratio
is chosen to be 0.3 and the crack-tip speed v is set to be equal to 0.3¢,.
In Fig.7, the variation of the ratio oy (£1,t)/o%’(¢y,¢) with Tespect to
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Figure 7: Comparison of the K ¢-dominant and the higher order transient
asymptotic distiibutions of normal traction ahead of the moving crack-tip
at different instant of time after crack initiation.

the nondimensional parameter & /¢7 which represents the distance from
the moving crack-tip, is presented. Results for different instants of time
after the crack inttiation are also presented in this figure. The hollow
circles are the value obtained by using the K¢-dominant representation,
while the solid ones are those obtained by using the higher order tran-
sient representation as the asymptotic description (45). To adequately
describe the near tip field, the ratio o.{&, )/’ (£1,1) should be close to
1. However, from Fig.7, we can see that the K¢-dominant field deviates
substantially from the actual field even when the observation position is
at a small distance away from the crack-tip. For the establishment of the
fully K¢-dominant field near the crack-tip, a rather long time is needed.
For example, at the position & = 2¢7, the time for the K§-dominant field
to be established is about ¢+ = 107. However, the higher order tranmsient
asympiotic representation can be seen to approximate the near tip field
much closer than the K¢-dominant field. Here, even at short times after
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Figure 8: Comparison of the time histories of the K¢-dominant and
the higher order transient asymptotic representation of normal traction
ahead of the moving crack-tip at different distances from the crack-tip.

crack initiation, say ¢ = 27, and within a distance & < 6gr7, the result
obtained from the higher order transient asymptotic field is about 90% of
the value of actual field. Similar observation can be made in Fig.8. Here,
the variation of the ratio o (&1,t)/0$’(£1,t) is plotted against the nondi-
mensional time ¢/7 for different positions ahead of the moving crack-tip.
In this figure, attention is focused on a moving point which is at a fixed
distance relative to the crack-tip. The time required for the K¥¢-dominant
field to be established is then calculated. Once again, long times are re-
quired for the K¢ -dominant field to approach the actual field, while at
a fixed position relative to the crack-tip the field is well described by
the higher order transient representation even at times very close to the
crack initiation. Based on these observations, we conclude that condi-
tions of K¢-dominance exist either extremely close to the crack-tip or
are eventually established at long times after crack initiation. However,
the higher order transient asymptotic representation is more successful
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in describing the actual field even at times close to the event of crack
initiation or at distances relatively far away from the moving crack-tip.
Similar observations were also made by Ma and Freund (1988). They
considered the problem of a semi-infinite crack subjected to a uniform
step pressure on its surface. After a finite delay time, the crack starts to
propagate with a constant speed.

2.5 Remarks on the analytical solution

Since Yoffe (1951) mathematically determined the stress field around
the tip of a steadily propagating crack with constant length, substantial
progress has been made in the areas of theoretical and numerical analysis
of dynamic fracture events in brittle materials. The uniqueness of the
neax tip stress field of a running crack was proved by Freund and Clifton
(1974). Their work also established that for a running crack the near tip
stress state can be characterized by a single parameter ~ the dynamic
stress intensity factor. However, interpretation of the stress field near
the edge of a crack in a loaded body in terms of a stress intensity factor
must always be based on the assumption that the dimensions of the
body and the details of the loading are such that a stress intensity factor
controlled (¢-dominant) field does indeed exist and the size of this K¢-
dominant field is sufficiently small compared to the crack length, distance
to the nearest boundary, or any other characteristic dimension of the
body. In addition to the limitation noted above concerning overall body
dimensions and crack length, the zone of influence of three-dimensional
effects around the crack edge should also be small compared to the K¢-
dominant field, especially when the case of a through thickness crack in
a plate is considered. Typically, the plane stress assumption is valid only
for points at half of the plate thickness away from the crack edge {Rosakis
and Ravi-Chandar, 1986; Yang and Freund, 1985).

If a cracked body is subjected to stress wave loading and the crack
growth process is dynamic, there is yet another important factor which
complicates the application of the stress intensity factor idea under con-
ditions of plane deformation. This factor is due to the wave character
of the mechanical fields in the body during crack growth. Consider, for
example, the case studied in the previous sections. This corresponds to
a semi-infinite crack in an otherwise unbounded elastic body subjected
to stress wave loading conditions. Even though this semi-infinite con-
figuration strictly satisfies all of the size requirements mentioned above,
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the application of the K¢-dominant field is still limited. Before initiation,
when the incoming stress wave hits the crack, the stress wave will diffract
around the crack-tip. A cylindrical longitudinal wave and a cylindrical
shear wave will be emitted from the crack-tip and will propagate into the
body. The assumption of K¢-dominance is valid only for points much
closer to the crack-tip than the distance of the cylindrical shear wave
front from the crack-tip. After crack imitiation, the situation becomes
even more complicated because stress waves are continuously emitted
from the moving crack-tip. This can be seen by observing that the inter-
pal stress in the elastic body at a point on the prospective fracture plane
will gradually build up as the crack-tip approaches and that this gradu-
ally accumulated stress is then suddenly released with the passage of the
crack-tip. As a result, the transient fields must radiate out continucusly
through the region surrounding the propagating crack-tip. This lack of
K¢-dominance was studied theoretically by Ma and Freund (1986) and
was observed experimentally by Krishnaswamy and Rosakis (1991) and
Krishnaswamy et al. (1992) by using a bifocal caustics arrangement and
the optical method of CGS.

By studying the specific problem of a stress wave loaded semi-infinite
precrack which eventually extends with a constant speed, we show that
the assumption of K§-dominance is inadequate in describing the near tip
stress state at short times after crack initiation. For this problem, the
transient effect is manifested through the time derivative of the dynamic
stress intensity factor even if the crack-tip speed is constant. This study
suggests that the use of the higher order transient asymptotic represen-
tation provided by Freund and Rosakis {1992), and by Liu and Rosakis
(1992) is necessary to represent the actual field near the moving crack-
tip. The work described above clearly shows that the coefficients of this
expansion depend on the time derivative of the dynamic stress intensity
factor. It is further shown that by including this higher order term in
the asymptotic expansion, the nature of the near tip stress field is indeed
captured. Because of the loss of K¢-dominance, even when the body is
unbounded and the crack is semi-infinite, this study also suggests that
the transient effects should be considered when any attempt i1s made to
interpret experimental measurements performed at finite distances away
from the moving crack-tip. In the next section, we will use the results
obtained in this section to interpret the experimental observation made
by Prakash and Clifton (1992) where crack initiation and growth was
studied under extremely high loading rates.
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3 Comparison of the theoretical predic-
tions to high loading rate plate impact
fracture experiments in AIST 4340 steel

3.1 Introduction

As a material parameter, the fracture toughness can only be obtained
through experimental measurements, Meanwhile, the fracture resistance
of materials is generally understood to vary with loading rate. Under im-
pact loading conditions, high loading rates are caused at the pre-existing
crack-tip. In dynamic fracture experiments, a parameter is defined to
characterize the loading rate under which the specimen is loaded, and it
is

I"f[ = -Bﬁ, ’ (45)

lo

where Ko is the mode-1 critical stress intensity factor at the instant of
crack initiation (fracture toughness) and f¢ denotes the time from the
beginning of loading to the instant at which fracture initiation occurs.
Usually, the crack-tip loading rates range from Ky ~ 1 MPa/m - sec™
for quasi-static loading to as high as K ~ 10® MPa./m - sec™? for im-
pact loading. Due to the presence of material inertia and strain rate,
the material may exhibit totally different behaviors from those under
quasi-static loading conditions. To understand the mechanism of crack
initiation, propagation, and arrest, various specimen configurations and
loading devices have been designed, and extensive research has been car-
ried out for various materials by using different experimental techniques.
Using the method of optical caustics, Kalthoff et al. (1979) have studied
rapid crack propagation and arrest in double-cantilever bearm specimen
made of Araldite B. Using the same experimental technique and speci-
men configuration, Rosakis et ol (1984) studied crack growth in 4340
steel. Kobayashi and Dally (1980} investigated the crack growth in dou-
ble cantilever beam 4340 sieel specimen but using the method of dynamic
photoelasticity. Ravi-Chandar and Knauss (1982) studied the dynamic
fracture in Homalite 100 material under stress wave loading. Zehnder
and Rosakis (1990) have conducted studies on crack initiation and prop-
agation in 4340 steel using a three point bend configuration impacted by
a drop weight hammer.

The interpretation of experimental observations involving dynamic
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fracture under stress wave loading has however proven difficult. This is
because the specimen configurations commonly used in laboratory test-
ing, cannot be completely modeled by existing mathematical methods,
even when the material response is assumed to be linear elastic. The
stress waves generated either by the external loading or by radiation
from the extending crack-tip, reflect back and forth inside the specimen
so that the stress state surrounding the crack-tip is too complicated to
be analyzed. Even in cases of specimen configuration such as the one de-
signed by Beinert and Kalthoff (1983}, which minimizes dynamic effects
caused by wave reflection, direct mathematical analysis is still impossible.

So far, the only geometrical configurations for which it is possible
to obtain exact solutions for the elastodynamic fields by solving an ini-
tial/boundary value problem, are ones involving infinite straight cracks
and unbounded bodies. For the problem of semi-infinite crack loaded by
a planar stress wave which after a finite delay time starts to extend with
a constant speed, the procedure of getting the complete transient solu-
tion has been discussed by Freund (1973 and 1990). The time history of
the dynamic stress intensity factor was also obtained and was generalized
to include the situation where the crack propagates with a nonuniform
speed. In the previous section, we have revisited this problem and ob-
tained the full field analytical solution for the stresses surrounding the
stationary and moving crack-tip. In addition, we have also obtained the
expressions for the coefficients that appear in a newly developed higher
order transient asymptotic representation of the near tip field of a tran-
siently growing crack (Freund and Rosakis, 1992; Liu and Rosakis, 1992).
We have shown that this higher order transient representation is able to
accurately describe the actual crack-tip field.

Ravichandran and Cliffon (1989) have developed a novel experimen-
tal configuration which involves loading a half plane crack by a planar
tensile pulse. This experimental method 1s designed to provide compara-
tively straightforward interpretation of experimental observation within
the framework of dynamic fracture mechanics. In this configuration, a
disc containing a pre-fatigued edge crack in its mid-plane is impacted by
a thin flyer plate of the same material. The resulting compressive pulse
propagates through the specimen and reflects from the rear surface as
a step, tensile pulse with a duration of about lusec. This plane wave
loads the crack and causes dynamic initiation and propagation of the
crack. Within the duration of loading and the extension of the crack, no
unloading waves reach the crack-tip. Therefore, this loading condition
corresponds to a semi-infinite crack subjected to a finite duration plane
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pulse. By using this experimental technique, one can attair loading rates
of approximately Kt ~ 10° MPa+/m - sec™!. This unique configuration
allows for the study of dynamic fracture processes which occur when the
loading times are in the submicrosecond range.

Prakash and Clifton (1992) studied the process of crack initiation in
a hardened AIS] 4340 VAR steel by using the high loading rate plate
impact experimental procedure described above. The total time period
of their experiment was approximately 1pusec. They monitored the mo-
tion of the rear surface of the disc at four different points simultaneously
during the experiment by using a multiple beam laser interferometer sys-
tem. An important observation they made in these experiments is the
appearance of a clearly marked change in the free surface velocity at
all four points at times that correspond to the arrival of waves emanat-
ing from the crack-tip during fracture initiation. Meanwhile, they also
simulated the dynamic process numerically using a visco-plastic finite
difference code. The measured normal velocity of the rear surface of
the specimen at a typical monitoring point agrees well with computed
scattered fields except for the appearance of a sharp spike in the exper-
imental data of a very short duration. To provide an interpretation for
the existence of these spikes, Prakash et ol (1992) developed a mathe-
matical model where they assumed that at the moment of initiation, a
small, but with finite size, hole suddenly appears at the crack-tip. The
stress field associated with this small hole radiates out into the body,
and the dominant singularity of this field is O(r~%2) which is stronger
than the singularity caused by the sharp crack itself as the crack-tip is
approached. In this case, the jump in the particle velocity on the wave-
front is infinite, a fact that is consistent with the existence of a spike.
However, one should recall that the measurements in their experiments
were carried out at points relatively far away from the initial crack-tip.
In such points, the information associated with the stronger singularity
would die out even faster than the inverse square root term correspond-
ing to the K%dominant field. This observation has motivated us to seek
a second, possible explanation for this phenomenon which lies totally
within the realm of classical transient elastodynamics of crack initiation
and growth.

In this section, we provide an alternative interpretation to the exper-
imental observations made by Prakash and Clifton (1992). In Section 2
of this chapter, we have obtained the full field analytical solution for
stresses surrounding the crack-tip. In addition, the coefficients in the
higher order transient asymptotic representation developed by Freund



and Rosakis (1992) and by Liu and Rosakis (1992), have also been calcu-
lated. Based on these results, we simulate the experimental observation
by using some parameters provided in the experiments. In the next sec-
tion, the experimental technique and procedure are briefly described. In
Section 3.3, the higher order transient asymptotic representation of the
particle velocity field is derived by using the result given in Liu and
Rosakis (1992). In this asymptotic representation, transient effects in-
cluding the time derivative of the dynamic stress intensity factor and
the crack-tip acceleration are taken into account. In the same section,
we use parameters from the experimental measurement, namely, the de-
lay time for crack initiation 7 and the amplitude of the incident stress
pulse ¢, to simulate the experimental output. This is done by using
the higher order transient representation and by initially assuming con-
stant crack-tip speed. The result shows that the higher order transient
representation successfully captures the overall features of the experi-
mental observation, i.e., a finite jump at the time of crack initiation is
ohbserved. To predict the experimental observations more accurately, we
subsequently relax the restriction of constant crack-tip speed. To do so,
in Section 3.4, we first introduce a fracture criterion that relates the dy-
namic stress intensity factor to the speed of the propagating crack. The
fracture criterion is motivated by the experimental measurements made
by Zehnder and Rosakis {(1990) on the same steel. By solving the crack-
tip eqguation of motion, all time-dependent quantities in the higher order
transient asymptotic representation are determined. The simulation of
the experimental observation shows that the fully transient asymptotic
field can describe the actual field very well. The information regarding
the changes of the dynamic stress intensity factor and the crack-tip accel-
eration associated with crack initiation that are carried out by the term
with r/?, seems to be enough to explain the formation of the spikes seen
in the experiments.

3.2 Description of plate impact experiments

A very detailed description of the experiment has been provided by
Ravichandran and Clifton (1989) and by Prakash and Clifton (1992).
The experiment is designed to load a semi-infinite crack by a planar
longitudinal tensile wave impinging at normal incidence. The specimen
consists of a round disc of 63mm in dlameter and 8mm in thickness,
which contains a pre-fatigued edge crack that has propagated half way
across the diameter. The crack is situated at the mid-plane of the disc.
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The specimen is impacted by a plate flyer made of the same material
as the specimen. The thickness of the flyer is 3mm. Compressive waves
of unjaxial strain are generated by the impact. The wave propagating
through the specimen reflects from the rear surface and subjects the crack
plane to a step tensile pulse. As the incident tensile pulse hits the crack,
part of it is reflected from the crack surface as a compressive wave and
part of it 1s diffracted at the crack-tip. The wave patterns of diffraction
and reflection are shown in Fig.9. As we can see from this figure, the

Imnpact Surface
I
Ty = g¥*
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Crack
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 O2=0
ABCD

T T T f Rear Surface

Figure 9: Wavefronts for the diffraction of a planar wave by a semi-infinite
crack.

transmitted wave ahead of the crack-tip will be reflected from the front
surface of the specimen and the reflected compressive wave will be re-
flected from the rear surface of the specimen. Before these two waves
reach the crack-tip, the stress state near the crack-tip can be modeled as
a planar wave diffracted by a semi-infinite crack in ai unbounded body.

The material used in the experiments is AISI 4340 VAR steel. This
is a high-strength, low-ductility, structural alloy having reduced levels of
phosphorus and sulfur to enhance the fracture toughness. Consequently,
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the choice of material allows the experimental results to be interpreted
within the framework of elastodynamic fracture mechanics. The speci-
men is cut from a notched cylindrical bar in which a fatigue crack has
been grown by subjecting the baxr to cyclical bending. In order to pro-
duce a homogeneous martinsitic microstructure, special care has been
taken in the process of heat treatment of the material.

The motion of four different points on the rear surface of the specimen
is monitored by using the interferometric technique. The experimental
configuration is shown in Fig.10. A fiberglass projectile which carries the
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| Gas Gun Barrel

j Prefatigued

Specimen
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Mirror

M B
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To and from Laser
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P
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Figure 10: Schematic of the experimental configuration.

flyer plate is accelerated by the nitrogen gas releasing at prescnibed pres-
sure and 1s propelled down the gas gun barrel. The velocity of impact 1s
measured within an accuracy of 1% so that the amplitude of the stress
pulse ¢* can be determined fairly accurate. The impact signal triggers
the recording system and the motion history of each point monitored on
the rear surface of the specimen is obtained. The duration of loading
is determined by the thickness of the flyer plate. For this special de-
sign of the experimental configuration and the specimen material, the
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loading duration is approximately lusec. Meanwhile, the design of the
experimental configuration ensures that within the duration of loading,
no unloading waves reach the crack-tip (see Ravichandran and Clifton,
1989; Prakash and Clifton, 1992).

A typical recording of the experiment obtained by Prakash and Clif-
ton (1992) is shown in Fig.11. This figure shows the particle velocity-time
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Figure 11: Experimental and numerical predicted (stationary crack)
velocity-time profiles at four different monitoring points, from Prakash
and Clifton, 1992.

profiles of the rear surface motion at the four monitoring points ahead of
the crack-tip. The horizontal axis has been normalized by the character-
istic time H /¢, where ¢ is the longitudinal wave speed of the AISI 4340
VAR steel and H is the half thickness of the specimen. The measured
particle velocity has also been normalized by the impact velocity V; which
is 0.0854mm/pusec for this particular experiment. The closest monitoring
point is located 0.68mm ahead of the crack-tip. The remaining three
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monitoring points are spaced at 0.48mm intervals. Ian the figure, the
solid lines correspond to the recorded velocity-time profiles at those four
monitoring points from A to D, which get closer and closer to the crack-
tip. The dashed curves correspond to the nmumerical simulation of the
experiment using the elastic-viscoplastic model of the material described
in Ravichandran and Clifton (1989), which assumes that the crack re-
mains stationary. Agreement between the computed and experimentally
obtained particle velocity histories at the four monitoring points is seen
to be very good up to the time which is wnderstood to correspond to the
instant of crack initiation. After this time, the experimental and com-
puted velocity-time profiles deviate. An interesting observation from this
figure is the appearance of sharp spikes of very short duration at instant
corresponding to the crack initiation. As the stress wave emitted due to
the crack growth reaches the observation point, the particle velocity in-
creases drastically and then drops very quickly. In the following sections,
we will provide an interpretation of these spikes by using the analytical
results obtained in Section 2 and the higher crder transient asymptotic
representation developed by Freund and Rosakis (1992) and by Liu and
Rosakis {1992).

3.3 Higher order transient asymptotic representa-
tion of the particle velocity field

By using the asymptotic methodology intreduced by Freund (1990}, and
by relaxing the assumptions of K§-dominance and steady state, Freund
and Rosakis (1992) have provided a higher order asymptotic expansion
for the first stress invariant and have shown that this expansion provides
an accurate description of crack-tip fields under fairly severe transient
conditions. Rosakis et al. (1991) have also obtained all of the components
of the higher order asymptotic stress field near the tip of a non-uniformly
propagating mode-I crack. For the most general transient situation, i.e.,
a crack propagates transiently along an arbitrary path, the asymptotic
elastodynamic field has been obtained by Liu and Rosakis {1992). In this
section, we provide the higher order transient asymptotic representation
for the particle velocity field surrounding the moving crack-tip. Based
on this representation, we will further offer a possible interpretation for
the experimental observations described in the previous section.

By using the notation introduced in Liu and Rosakis (1992), for
mode-I deformation, the two components of the higher order transient
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asymptotic representation for the particle velocity field surrounding a

transiently moving crack-tip are:
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In expressions {47) and (48), v(¢) is the time dependent crack-tip speed,
K$(¢) is the dynamic stress intensity factor at the moving crack-tip for
mode-I deformation, and A4,(¢), A2(¢) are unknown coefficients of higher
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order terms. Functions fi,(¢) and g;,{¢) are defined by
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(71,5, 01,¢) ate two scaled polar coordinate systems traveling with the crack-
tip and are defined by
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where the functions of time oy () are defined by
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and ¢, ¢, are the longitudinal and shear wave speeds of the elastic solid,
respectively. As we can see from eqns (47) and (48), the first terms in
the asymptotic particle velocity field have the same form as those under
the steady state conditions and have r~1/? singularities. However, here
the crack-tip velocity takes the instantaneous value at each moment and
the dynamic stress intensity factor K¢(t) may be an arbitrary function
of time. In the component 4;, the second term (spatially constant term)
also takes the form of steady state, but A;(¢) may depend on time explic-
itly. The third terms, which are proportional to r/2, are totally different
from the steady state results for %, and t; not only in their coeflicients,
but also in their angular distributions. Here, the coefficient A(2) may
be an explicit function of time. From the definitions, we also see that
the differential operators Dj,{Ao(t)} depend on the instantaneous val-
nes of the crack-tip speed and the dynamic stress intensity factor, as
well as their time derivatives. Meanwhile, B ,(¢) not only depend on
the instantaneous values of the crack-tip speed and the dynamic stress
intensity factor, but also depend linearly on the crack-tip acceleration.
In addition, the dynamic stress intensity factor K¢(¢) and the higher or-
der coefficients A;(2) and A;(t) cannot be determined by the asymptotic
analysis itself. They can only be determined by the specific boundary
and initial conditions of the problem. If the crack-tip speed v(¢) is con-
stant, i.e., if 9(¢) = 0, then B,(t) = 0, and D} {Aq(t)} will linearly
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depend on the time derivative of the dynamic stress intensity factor. Un-
der such circumstance, expressions (47) and (48) correspond to transient
crack growth with constant velocity and varying stress intensity factor.
This is still a transient problem. The problem we solved in Section 2
belongs to this category. Furthermore, if the time derivative of the dy-
namic stress intensity factor is also zero, then D} {Aq(2)} = 0 as well. In
this case, the higher order steady state expansion is obtained. However,
the coeflicients A; and A, are now time independent.

For the problem at hand, we have obtained the full field analytical
solution for the elastodynamic field surrounding the crack-tip in Sec-
tion 2. Also, we have obtained the coefficients of the higher order terms
A1(t) and Ao(t) for this problem. Therefore, for the case of constant
crack-tip velocity but varying dynamic stress intensity factor, we can use
expressions {47) and (48), with B;,(¢) = 0 for this case, to predict the
particle velocity at any position and at any moment. To simulate the
observations given in Fig.1l, we only need expression (48). However,
since the measurement is carried out at the traction free surface of the
specimen and eqn (48) is for a point inside unbounded body (traction
free condition is not met), the value of the particle velocity %, obtained
from eqn (48) has to be multiplied by a factor of two to provide a proper
comparison between the analytical and the experimental results. For the
particular test (shot No.8907, Prakash and Clifton, 1992), the following
parameters obtained from the experiment have been used in the simula-
tion: Impact velocity Vo = 0.0854mm/psec, Amplitude of the incident
stress pulse ¢* = 1941MPa, Delay time 7 = 0.1905usec, Material mass
density p = T600Kg - m~2, Poisson’s ratio v = 0.3, Longitudinal wave
speed ¢; = 5.983mm/ysec, and Shear wave speed ¢, = 3.124mm [ usec.

By using the parameters given above, Fig.12 shows analytical predic-
tions in which we have used the higher order asymptotic representation
for the transiently propagating crack with constant speed, to simulate
the particle velocity at monitoring point D. In Fig.12, the circles repre-
sent the experimental data while the various lines stand for the simulated
values. It should be pointed out that in Fig.12, before crack initiation,
the simulated particle velocity is calculated from the full field analytical
solution obtained in Section 2, while after crack imitiation, expression
(48) is used. It can be seen that before crack initiation, the particle ve-
locity calculated by using the analytical solution, agrees well with the
measurements. At the very beginning, however, deviation exists between
the theoretical prediction and the experimental measurement. This is
due to the fact that the specimen is preloaded by a compressive pulse
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Figure 12: Analytical simulation of the experimental measurement at
monitoring point D by Prakash and Clifton (1992), shot No.8907, Before
crack initiation, full field expression for the particle velocity is used. After
crack initiation, three-term tramsient asymptotic representation given in
eqn.(48) with constant crack-tip speed has been used.

reswlting from the initial impact while the mathematical model assumes
that the body is loaded directly by a tensile stress pulse. After crack ini-
tiation, the velocity-time profile at point D is simulated by the three-term
transient asymptotic representation given in eqn (48). Here, B ((t) = 0,
K¢(t) and As(t) have been given in Section 2 (see equs (36) and (44) in
Section 2). One can see from this figure that by including the transient
effect (through the time derivative of the dynamic stress intensity factor
K$(t)), we are able to capture the most important feature in the ex-
perimental observations for a particular choice of crack-tip velocity, i.e.,
v ~ 0.33¢,. At the instant of crack initiation, the particle velocity at the
monitoring point does not transit smoothly from the value corresponding
to the stationary crack to the value corresponding to the extending crack.
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This velocity has a jump at the moment associated with crack initiation
and this jurep depends on the magnitude of the speed of crack growth.

At this point, some qualitative observations can be made from Fig.12.
At the instant of crack initiation, the crack first jumps from stationary to
a velocity about 0.3¢, after that the crack-tip speed increases quickly and
approaches the value of 0.4¢,. After crack initiation, the crack-tip speed
oscillates about the level of 0.35¢,. It seems that because of the applied
stress pulse, deformation energy is accumulated at the tip of the criginal
semi-infinite stationary crack, and if the material is of limited strength,
the crack will start to grow and the deformation energy will be released.
Part of this released energy is consumed to form new crack surface, an-
other part becomes the kinematic energy of the crack-tip. However, this
process is not steady. The extending crack continuously increases its
speed to approach a “steady” state, i.e., the crack-tip speed approaches
a constant value. Therefore, the formation of the spikes in the experimen-
tal observations is attributed to the process of crack initiation and then
approaching the steady speed in a very short period of time. This descrip-
tion is only a qualitative speculation and does not provide a complete
picture about the dynamic crack initiation and transient crack growth
since we have assumed that the crack-tip velocity is constant when we
simulate the experimental observation in Fig.12, while change of velocity
has been involved in this process. Notice that in the higher order tran-
sient asymptotic representation of the field of particle velocity, equns {47)
and (48), the crack-tip acceleration plays a prominent role. Therefore, if
we can provide more accurate information regarding the crack-tip speed
during the extension, the picture of the transient crack growth will be-
come more complete. However, unlike the fracture experiments based on
optical caustics and CGS, the plate impact experimental technique can-
not provide an independent crack-tip velocity history. For this reason, in
the next section, we will introduce a criterion regardirg dynamic crack
growth first, and then we can predict the histories of the crack-tip speed
by solving the crack-tip equation of motion. After that, we will simu-
late the experimental observation again by including all of the transient
effects (i.e., terms involving both K¢(¢) and 3(¢)).

3.4 Crack-tip equation of motion

If the history of the crack-tip motion is specified, then the surrounding
mechanical fields in an elastic body can be obtained in principle within
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the context of linear elastic continuum mechanics, as long as the con-
figuration of the body and. the details of the loading are also specified.
However, since the motion of crack-tip is totally controlled by the defor-
mation state inside the surrounding material, the motion of the crack-tip
should not be specified a priori. Due to the fact that the constitutive
equation for the material does not include the possibility of material sep-
aration, we need a mathematical statement of a crack growth criterion
to be added into the governing equations. Such criterion must be stated
as a physical postulate on material behavior and at the same level as the
kinematical theorems governing deformation, momentum balance prin-
ciples, as well as the constitutive relation describing material response.
The most common form for such a criterion is the requirement that the
crack must grow in such a way that some parameter defined as part of
the crack-tip fleld maintains a value that is specific to the material. This
value, representing the resistance of the material to the advance of the
crack, is called the fracture toughness of the material, and it can be
determined through experimental measurements only.

During the process of crack growth, if the small scale yielding condi-
tion prevails, a possible fracfure criterton stipulates

Ki(t) = Kic, (52)

where the left-hand side is the dynamic stress intensity factor (in princi-
ple entirely determined through an analysis of a boundary/initial value
problem) and the right-hand side represents a material quantity called
the dynamic fracture toughness which can only be determined through
experiments. The dynamic stress intensity factor K¢(#) is known to be
a function of crack length a(t), crack-tip speed v(t), and some general-
ized measure of the applied load P(¢}. It has also been suggested that
the dynamic fracture toughness must be dependent on crack-tip velocity
(Freund, 1990; Rosakis et al., 1984; Zehnder and Rosakis, 1990). Thus
the fracture criterion as given in (52) becomes

K (a(t),v(t), P(t),1) = Kfg {v(t), ). (53)
Equation (53) is an evolution equation for crack growth, i.e., a crack-tip

equation of motion, since it represents a nonlinear, first order differential
equation for the crack length a(t).

For the specific problem at hand, the dynamic stress intensity factor
for the propagating crack is given by

Ké(t) = k(v)K}%)\/g, (54)
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where K% is the value of the dynamic stress intensity factor at the
instant of crack initiation (dynamic initiation toughness) and 7 is the
delay time between the instant of stress wave arrival at the crack and the
onset of crack extension (sec Section 2.1). k(v) is a universal function of
the crack-tip speed v, such that k(v) = L at v = 0 and k{v) = 0 at v = ¢cg,
where cg is the Rayleigh wave speed of the material. As for the dynamic
fracture toughness, one usually assumes that it is only dependent on the
crack-tip velocity and on material characteristics. We can thus express
K. as

Kis(v) = K35 (v), (55)

where 3% is the steady state quasi-static crack growth fracture tough-
ness for the material (asymptotic value of the small scale yielding, quasi-
static resistence curve). f(v) is a function of crack-tip speed such that
fv)=1latv=0. Asv—=0, K& (v) = ng The relation between the
dynamic initiation toughness KV and K35 that appear in eqns (54) and
(55) 1s supposed to be

K@ = aK3, (56)

where & > 1. Since K373 corresponds to the qua,SJ -static conditions, it
represents the situation where the loading rate is close to zero. Here
several effects have been included into the number ¢. First, 1t has been
observed that the critical value of the dynamic stress intensity factor
at crack initlation increases as the loading rate increases. Secondly, in
the laboratory situations, the crack-tip cannot be mathematically sharp,
and the bluntness of the crack-tip will also increase the critical value for
initiation. Even for high strength materials like AIST 4340 steel, some
tnitial plasticity is expected to blunt the fatigue precrack. As a result,
the number o is assigned to accommodate the effects of loading rate and
initial crack-tip bluntness.

By using relations (54), (55), and (56), the crack-tip equation of mo-

tion (53) becomes
akto) £ = o (57

The form of the universal function k(v) can be simplified as (Freund,

1990)
1—uvfen

V31— 'v/c;'

Also for the purpose of present study and from previous experimental
observations regarding the relation between the dynamic fracture tough-

k(o) = (58)
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ness and the crack-tip speed, we choose the form of the function f(v)

as
1+—1~tan (E—?—)
M 2 vy,

flo) = Ty

where M and v,, are two material constants. Notice that f(v) = 1 as
v — 0 and f(v) =& o as v — v, so that v, represents a “terminal
speed” that a crack can achieve in this particular solid. In most of the
dynamic fracture experimental measurements, the terminal speed of a
mode-I crack in the homogeneous material 1s about 0.3 ~ 0.5¢g. To de-
termine the constants M and v,, for the material AISI 4340 VAR steel
used in the experiments, we compare the curves given by eqn (59) to
the experimental measurements obtained by Rosakis et al. (1984) and
by Zehnder and Rosakis (1990). These experimental measurements are
shown here in Fig.13. In this figure, the circles represent the value ob-
tained from the experiments, and the various linres aze obtained from (59)
for different value of M. From this figure, we can see that v, ~ 0.34¢,. In
the same figure, it seems that M = 10 is best fitting for the experimental
values. However, one should notice that the material that the experi-
ment used is 4340 steel (see Rosakis et al., 1984; Zehnder and Rosakis,
1990) which is slightly different from the material used in Prakash and
Clifton (1992). The heat treatment processes are also different for these
two materials. As a result, the material nsed by Prakash and Clifton
(1992) is more brittle than the material used in Zehnder and Rosakis
(1990). Another reason for this conclusion is that the loading rates in
the experiments by Prakash and Clifton (1992) are much higher than the
rate in Zehnder and Rosakis (1990). Under high strain rate, material
will also become more brittle. Previous experiments have shown that
the more brittle the material is, the more abrupt the K¢ — v curve be-
comes. This suggests that larger value of M should be used to simulate
the experimental observations in Prakash and Clifton (1992).

By substituting the expressions for &(v) and f(v) into the crack-tip
equation of motion (37), we get

1 T v t
1+ — 2.2 - 2 = =0
+ i tan (2 'Um) o (1 CR) - =0 (60)

(59)

from which the time history »(%) of the crack-tip speed can be obtained.
Once the crack-tip speed history is determined, the crack-tip acceleration
can also be obtained by differentiating the crack-tip speed profile. From
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Figure 13: Comparison of the relationship between the dynamic fracture
toughness and the crack-tip speed. Different lines represent the predic-
tion using eqn (59) and circles are the experimental results obtained by
Rosakis et al. (1984) and Zehnder and Rosakis (1990).

eqn (60}, we can express the crack-tip acceleration in terms of crack-tip
velocity and time £ as:

o(t) = c;? 3(7); o (81)
where
o(v) = b+ (G ) 6-2)

Y O P I R R
oM o R M\ o, 2 v

Freund (1973) has shown that for an unbounded body under time-
independent loading conditions, the dynamic stress intensity factor at
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the runming crack-tip can be expressed as a universal function of instan-
taneous crack-tip speed times the equilibrium stress intensity factor for
the given applied loading and the instantaneous amount of crack growth.
Therefore, for the problem we considered in Section 2, even when the
crack propagates with nonuniform velocity, the dynamic stress intensity
factor K¢(2) is still given by eqn (54), where the velocity v takes the
instantaneous value at each instant of time. As a result, the time deriva-
tive of the dynamic stress intensity factor under this circumstance will
be expressed in terms of the crack-tip speed, acceleration, and the time

1 as:
Rfle) = K0) | 5+ )} (62)

By applying the crack growth criterion (53), we have been able to
determine the time histories of crack-tip speed, crack-tip acceleration,
and the time derivative of the dynamic stress intensity factor. Conse-
quently, the quantities that appear in the higher order transient asymp-
totic representation of the particle velocity field surrounding the moving
crack-tip, i.e., Df {Ao(t)} and B 4(t) in eqn (50), can be determined as
well. However, the explicit expression for the higher order coefficient
Ay(t) is obtained under the condition that the crack propagates with a
constant velocity (see Section 2). Nevertheless, if we expand the field for
the stationary crack subjected to stress pulse (superposition of problems
A and B in Section 2) to the third term and compare this term to our
expression for A,(¢}, we found that Ay(¢) has the same property as the
dynamic stress intensity factor, i.e., A;(t} can be expressed as a function
of instantaneous crack-tip speed times the equilibrium value of the third
term for the given applied loading and the instantaneous amount of crack
growth. Based on this observation, we conclude that for a crack prop-
agating with a nonuniform speed, the coefficient of higher order term,
Aj(t), has the same form as that for constant velocity except that the
crack-tip speed takes the instantaneous value at each instant of time.

The initiation and propagation of a semi-infinite crack subjected to
the stress wave loading conditions can be described by Fig.14. In Fig.14,
the solid line represents the relation hetween the dynamic fracture tough-
ness K¢, and the crack-tip propagating speed v(t). The intersection of
this curve to the vertical axis is the value of the critical stress intensity
factor of crack initiation under quasi-static conditions, i.e., K3g. Also,
this curve asymptotically approaches the vertical line denoting the ter-
minal speed of the crack-tip in this material. In the same figure, the
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Figure 14: Schematic description of dynamic crack initiation and propa-
gation.

dashed line gives the relationship between the dynamic stress intensity
factor A¢(t) at the moving crack-tip and the crack-tip speed v(t). The
point corresponding to v = 0 provides the value of the dynamic stress
intensity factor at the stationary crack-tip under stress wave loading. As
v = cp, the dynamic stress intensity factor of the moving crack will be
zero. At the time ¢ = 7, the initial crack-tip speed and the new value of
the dynamic stress intensity factor just after initiation are determined by
the intersection point of the solid and dashed lines. As we can see from
this geometrical construction, the dynamic stress intensity factor suffers
a drop relative to its value immediately before initiation. For this partic-
ular loading condition and specimen configuration, the initial crack-tip
speed and the drop of the dynamic stress intensity factor are completely
determined by the shape of the solid line. In other words, they are deter-
mined by the material property described by the crack growth criterion.
After crack initiation, since K §(t) is an increasing function of time ¢,
the intersection point will move upward along the crack growth criterion
curve. The crack-tip speed will increase as well and finally approach the
terminal speed. In Fig.15, the profiles of the crack-tip speed and crack-
tip acceleration are plotted. Here, we have chosen @ = 2.0 and M = 600
to simulate a brittle material experiencing high strain rate, and as the
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result of Zehnder and Rosakis (1990) suggested, we have also chosen that
the terminal speed v,, = 0.34c,.

By using the crack-tip velocity and acceleration histories given in
Fig.15 which results from imposing the crack growth criterion depicted
in Fig.13, and by using the expressions for A,(¢) obtained in Section 2,
we simulate the particle velocity at the monitoring point D again for the
experiment presented in Fig.11. This simulation is compared to the ex-
perimental results in Fig.16. In this figure, we can see that the theoretical
prediction is much closer to the experimental measurement than the the-
oretical prediction obtained under the assumption of constant crack-tip
speed. By imposing the crack growth criterion, the crack-tip first jumps
to a relatively low initiation velocity and then quickly approaches its ter-
minal speed. As a result, the particle velocity at the observation point D
also jumps to a high value at the moment of crack initiation at first, and
then quickly decreases to the average value of the particle velocity mea-
sured from the experiment at that point. Notice that even though the
theoretical prediction by our current higher order transient asymptotic
analysis has captured the essential feature of the experimental observa-
tion, the decay of the particle velocity obtained from calculation is not as
fast as the experimental result. The reason for this difference is probably
due to the fact that the measuring point is relatively far away from the
crack-tip, therefore even higher order terms in the asymptotic expansion
need to be used.

In the theoretical simulations in the present and the previous sec-
tions, we choose to compare the theoretical prediction and the experi-
mental observation from point D only. For other points, like points A,
B, and C in Fig.11, the results from theoretical calculation and exper-
imental measurements deviate progressively as the distance from point
D 1s increased. In particular, the further the horizontal distance away
from the crack-tip becomes, the larger is the deviation between the the-
oretical prediction and the experimental measurement. The explanation
for this deviation is that when the stress wave diffracts at the station-
ary crack-tip, or emanates from the moving crack-tip, cylindrical waves
radiate from the crack-tip and propagate towards the boundaries of the
specimen. As these waves reach the boundary, various kinds of waves are
generated from the reflection of the incident wave. If the incident cyhin-
drical waveis longitudinal or transverse, both longitudinal and shear type
of reflection waves are generated depending on the incident angle. At the
same time, surface waves are generated as well. So the effects of these
reflection waves influence the experimental measurements. However, in
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Figure 15: Time histories of the crack-tip speed (a), and crack-tip accel-
eration (b), where o = 2.0 and M = 600 have been chosen.
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our mathematical model, the specimen is considered to be unbounded
and the theoretical prediction cannot include the free boundary reflec-
tion effects. The only point that an accurate simulation can be expected
from the theoretical model, is the point just below the crack-tip on the
boundary (see Fig.9). At this point, the reflection effect can be accounted
for, by multiplying the theoretical value by a factor of two. Unfortu-
nately, there is no further experimental data from such points available
for our simulation. As a result, a complete numerical simulation of the
experiment is necessary. In such a simulation, the data obtained from
points just below the crack-tip can be compared with our theoretical
predictions. '

Shot No.8907; Monitor Point: D
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Figure 16: Analytical simulation of the experimental measurement at
monitoring point D by Prakash and Clifton (1992), shot No.8907. Before
crack initiation, full field expression for the particle velocity is used. Af-
ter crack initiation, three-term fully transient asymptotic representation
given in eqn {48) has been used.
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3.5 Discussion and conclusions

The experimental observations made by Prakash and Clifton (1992) are
reinterpreted on the basis of the newly developed higher order tran-
sient asymptotic analysis by Freund and Rosakis (1992) and by Liu and
Rosakis {1992). In this transient asymptotic representation, the leading
term in the expansion of the local stress field is the familiar stress in-
tensity factor distribution, that is, it is square root singular in the radial
distance from the moving crack-tip and its coefficient is proportional to
the instantaneous value of the dynamic stress intensity factor, K§(t).
The higher order terms, on the other hand, take into account the recent
past history of the stress intensity factor and crack motion. Therefore,
the transient nature of the local field is reflected in these higher order
terms. It should be noted that from the view point of asymptotic ex-
pansion, the coeflicient of each term of the asymptotic expansion carries
different information about the deformation field. The coeficient of the
first term, K¢(t), purely represents the intensity or the amplitude of the
local stress and deformation fields, and this coefficient depends on the
overall specimen configuration and loading condition, The coefficient of
the second term, A;(t), also possesses these properties. Inside the co-
efficients of the higher order terms, however, more information will be
present. One part of the information, like A2(2), ete. still relates to the
overall specimen configuration and loading condition. The other part will
relate to the crack-tip acceleration, time derivatives of the coeflicients of
the lower order terms, and if the crack propagates along a curved path, as
being shown in Liu and Rosakis (1992}, it also relates to the shape of the
crack trajectory. At this point, we have clearly known the asymptotic
structure of the deformation field near a transiently moving crack-tip.
Because each term in the expansion is associated with certain function
of the radial distance from the crack-tip, therefore, in order to correctly
interpret the observation data in an experimental investigation, either
we can change the observation position continuously so that we can pick
up one specific information we are interested in, or we cannot choose the
observation point freely so that we have to resolve various information
from the data we get. The dependence of the leading term on the radial
distance is r~1/2, so the effects of this term are restrained inside the re-
gion very close to the moving crack-tip. However, the dependence of the
higher order terms on the radial distance is 7}/? or higher. As a result,
as the observation position is relatively far away from the crack-tip, the
effects of the higher order terms will become profound and cannot be
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neglected in any attempt to interpret data obiained at that position.

The experimental configuration developed by Ravichandran and Clif-
ton (1989) and by Prakash and Clhifton (1992) bas the great advantage of
being correlated to the existing analytical results for two-dimensional dy-
namic fracture problems. However, the technique utilized by Ravichan-
dran and Clifton (1989) and by Prakash and Clifton (1992) cannot access
the crack-tip, so that the direct mnformation about the crack-tip speed
and the intensity or the amplitude of the local stress and deformation
fields can only be inferred from the information obtained at positions far
away from the moving crack-tip. Nevertheless, this experimental config-
uration is still a very good candidate for the study of dynamic fracture
behavior of materials under very high loading rates while the transient
effects associated with the crack growth should be taken into account in
the interpretation.

In the first part of this chapter, the mathematical problem by which
the experimental and loading configuration can be modeled, is revisited,
and the full field solution for the stresses is obtained. Meanwhile, the
coefficients that appear in the transient asymptotic representation of the
deformation field are also be obtained for the situation of crack propa-
gating with constant speed. By including the higher order terms in the
theoretical simulation, the result agrees fairly well with the experimental
observations (see Fig.12). We can conclude from Fig.12 that the near tip
deformation field is well described by the higher order transient asymp-
totic expansion, at least qualitatively. Since the experimental technique
cannot provide the complete histories of the crack motion, we have to
suppose that the crack growth is governed by a criterion which relates
the critical dynamic stress intensity factor and the moving speed of the
crack-tip. The mathematical form of this criterion is motivated by previ-
ous experimental measurements. Through solving the crack-tip equation
of motion, the history of crack-tip motion can be determined, so are those
quantities related to the transient effects. When all of these transient ef-
fects related quantities are cooperated into the asymptotic representation
of the particle velocity near the crack-tip, the simulation has become very
close to the expertmental observation. The meaning of this simulation
has two folds. One shows again the necessity of applying the higher order
asymptotic expansion which includes the transient history of the crack
growth to describe the near tip deformation fields. The other one shows
that the crack growth is indeed controlled by a material related criterion.
This critetion gives the unique relationship between the dynamic fracture
toughness K¢, and the crack-tip speed v. The existence of such a crite-
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rion in this simulation is supported by using the higher order transient
expansion, while the lack of the uniqueness of a relationship between
K¢, and v has been observed when the KX¢-dominant assumption or the
steady state higher order expansion is used (see Kobayashi and Mall,
1978, and Ravi-Chandar and Knauss, 1984). Therefore, the lack of the
uniqueness of correspondence between K¢ and v may be attributed by
the fact that there is no X¢-dominant deformation field surrounding the
crack-tip close to the crack initiation as has been prevailed in Section 2
and the study by Ma and Freund (1986).

However, some difficulties still exist preventing the complete simu-
lation of the experimental observations by using the existing analytical
solutions. This is due to the presence of free boundary in the experimen-
tal configuration. Complicated wave reflections will occur when the stress
waves emanated from the stationary or the moving crack-tip reach the
boundary. These reflections impose new difficulty for obtaining complete
analytical solution. As a result, in order fo deepen the understanding of
the mechanism of dynamic crack initiation and growth, detailed numer-
ical simulation should be performed.
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Appendix: Inversion of Laplace transforms —
Cagniard-de Hoop technique

Consider a quantity G((, ¢z, s) with the form
A ~—§Cx x
6(¢,22,5) = E& s e, 1)

where A(() is analytic in the strip —a < Re { < a. The inversion of G({, 23, 8)
is given by

1 {o+ioo

blonone) =g | A(¢)e P Qm~taagr (2)
a—io0

where (p is real and —a < {p < a. Set
P ({)azr — (zy =7 >0, (3)

and solve equ (3) for ¢, we obtain

(B) T . Tz 9
Gy =~-;COS§:&?. il sin 4, (4)
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where m
= /22 + 22 6 = tan™ =2,
T oy + 23, an 71
Notice that
Im C}iy =0, as 7T = ar
Im c“” - (5)

= Ftand, asT — o0
Re l:i:

From Fig.1 and the analysis above, we can see that the original integral contour
T; can be distorted into new integral contours ((B) and C(B), and the new
contour will not intersect with the branch cuts as § changmg from 0 to .

Im
1

@
C!-r

—acos@

Re(

3]
&

Figure 1: Distortion of the integral contour to evaluate the inversion of

G(C:$2)‘5)‘

Now, we can express §(z1,Zg,$) as

. 8 (B}
e { ()5 - A 5= } ordn (6)
Notice that (% = Z“(i). If A(¢) has the property A(C) = A((), then
1 oo C(B)
§(z1,22,8) = P _/ Im {A(Q(B)) } e dr. (7}
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Furthermore,

otico

1 .
glz1,20,1) = - 1,./ ’ g(ml,mg,s)e“ds. (8)
o

—100

After some reanipulations, it can be shown that

ar

{B)
glz1,22,8) = -71?/ {A(C}B)) 9y }d’r-H(t—a’r), (9)

where C}f_’(ml,mg,t) is given by eqn (4), from which 3(,(?_)/67' can also be
calculated.

On the other hand, if G{(, %2, s) has the form
G(Co2,5) = (E ) —aa®(()z2 (10)
where A(¢) is analytic in the strip —a < Re { < a. Write
e = 2 aiom,

then the inversion of A((,zs,s) can be obtained by using the Cagniard-de
Hoop technique we just discussed. It is

(B)
é(z1,22,5) = %_/ {A(C(B) ‘—L‘t} e~ Tdr. (11)
Notice that for the Heaviside function H(z,), we have
f H(z1)e @ dz, =1, for Re ( > 0.

From the composition product relation (van der Pol and Bremmer, 1955), the
inversion of G({, 22, 8) which can be rewritten as

A(C: T2, 3) 1

G(C,x;,s) = C

is given by -
der,a0,9) = [ aed, 0,9 H (e - 2)dad, (12)
—oo

i 1 gz { oo . C“”* ar \
#Hzy,29,8) = ;f {/ { (<3 (2) Y=t e dr » da, {13)
—D ar®
2
C(B)* —Lc039*+£1f%—a2sin9*,
r* T
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where
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and m
. 122
T = \J2}? + 2l " = tan 1;5—;.

1

Also, by performing the inversion of the Laplace transform with respect to
parameter , we can get

1 =t C‘B)*
9("51: $2?t) = ""/ { (C(B)g) } H(t — a‘r*)de (14)
T /-0
or ) )
1 Mil‘l(x]_ o] - C *
g(z1,22,t) = ;Lw‘ {A(C(BJ ) o } z3, (15)
where
;2 1/2
Wwp = (;I,—E — $g)
Finally, we have

xy (B )
g($1,$2,t) = -?l;fuw { (C(B).) C }d M H(t— CL‘I‘). (16)

Consider another quantity W((, z2, s) with the form
B .
W(C,mz,s) = _s(g.le--%ﬁ(n)(oxz’ (17)

where B(() is analytic in the strip —b < Re { < a. By definition,

{o-+ioo
B(z1,72,6) = — /c B(()e~ WP Cm—tmdeqe, (18)

273t Jeg—ico
where (g is real and —b < (3 < ¢ . Similar to previous discussions, we may set
B ()zy — (o =7 >0, (19)

and solve eqn (19) for {. Then

[r2
(8 = -—-c059 +1 % — b?sind. (20)

We also have the property that

Im () =0, as T = br

Im () : (21)
= rtanf, asT — 0
Re C(B)
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But it can be seen that as 7 = br,
B = _bcosd = AB)(8),
and as a result, when & is changing from 0 to 7, A®)(6) is in the range
b < ABBY < b

So, as # is greater than angle 85 = 7 — cos™'(a/b), the distorted integral
contour will intersect with the branch cut, and we need to consider two cases
separately.

For 0 < 6 < 6% we can an directly apply the same procedure for G((, z2, s),
and if B{() sat1sﬁes that B{C) = B({), then

(B
wonont)= > [ Im {(‘B’ s ’}d«ﬂ(t-br), (22)

where CH_ (z1,%2,7) 18 given by eqn (20), from which 8{&?/5‘7‘ can be calcu-
lated.

For 6 < ¢ < 7, from Fig.2, we have
ﬁ(ml,xg,s):: 1&0($1,$2,3)+@H($1,$2,S), (23)

where by assuming that B(¢ ( ) = B((),

oo (B)
q‘i}o(mlz $2,3) = ;}g ./br {B(C(B) BC } e dr,

and
AB)(g) -
'&)H(QI: T2, 3) = ;}; / Tm {_B"‘(-q)} e—{‘a(B)(”)m"'?Il}sdn.
a

Moreover, it can be shown that

t (B)
wa(ml,zz,t)=%fbr { (¢ 8(; }d FH(t - br), (24)

and

1 A(B){G) 5
wr(enant) =2 [ I (BH(m)} K®(n)dn, (25)

where
KBy = H (t - [B® ()22 ~ nzy]), @ <0< ADE).
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Figure 2: Distortion of the integral contour to evaluate the inversion of
W(C7x2>'5)‘

Summearize the results for above two cases, we can write

t {B)
w(zy, #2,1) = %{fhhn[ﬂ(cgi))%] dr - H(t - br)
A®B0) \ (26)
Hf T mIE ) A B~ 0

As a mafter of fact, the second part in the right-hand side of eqn {26) pro-
vides the information inside the region of head wave. By denoting (i3, as
Cz(,]:): expressions in (13) and (15) are obtained. By using the same technique,

expressions in (24) and (25) can also be obtained.
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