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ABSTRACT 

Motivated by experimental observations of transonic crack tip speeds (Lambros and Rosakis, 1994c, J. 
Mech. Phys. Solids 43(2), 169-188), the problem of intersonic interfacial crack growth in an elastic-rigid 
bimaterial system is analysed. Following the analytical procedure employed in Liu ef al. (1993, J. Mech. 
Phys. Solids 41, 1887-1954), the two-dimensional in-plane asymptotic deformation field surrounding the 
tip of a crack propagating intersonically along an elastic-rigid bimaterial interface, is obtained. The 
theoretical results show that the near-tip stress field does not exhibit oscillations, while a stress singularity 
weaker than 0.5 still exists and is a function of the crack tip speed. In addition, due to the intersonic nature 
of crack growth, a singular line emanating from the moving crack tip is present in the near-tip field. Across 
this line, stresses and particle velocities suffer infinite jumps. The theoretical analysis also shows that the 
near-tip deformation field is shear dominated. It is also shown that in the velocity range c, < v < J&, 
either crack face contact or negative normal tractions ahead of the crack tip exist. Visual evidence of such 
contact is reported in Part I of this study. These observations, together with additional experimental results 
of Part I, lead to the conclusion that crack growth is favorable in the velocity regimes 0 i v < c, and 

J- 2c, < u < c,. 

1. INTRODUCTION 

Recent experimental studies, reported in Part I of this work (Lambros and Rosakis, 
1994~) as well as in Liu et al. (1993), on the problem of dynamic interfacial fracture, 
have shown some surprising physical phenomena. Lambros and Rosakis (1994a, b), 
for example, observed that under certain loading conditions, the speed of a dynami- 
cally propagating interfacial crack in a bimaterial system, may exceed both the 
Rayleigh and the shear wave speeds of the more compliant of the two constituents. 
These observations are somewhat contradictory to previously speculated theoretical 
predictions. In the past, Atkinson (1977) claimed that the terminal speed of an 
interfacial crack should be the lower of the two Rayleigh wave speeds of the con- 
stituents of the bimaterial system, while Willis (1973) argued that the terminal speed 
should be slightly larger than the lower Rayleigh wave speed. Until recently, there 
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was no experimental evidence to support either point. The work of Lambros and 
Rosakis (1994a,b) has provided such evidence. Unfortunately, the experimental obser- 
vations of transonic interfacial crack growth made by Lambros and Rosakis 
(1994a,b), could not be interpreted using the existing analytical results, which are 
only limited to the subsonic crack propagation regime. 

A linearly elastic analysis of a transonically growing crack in a homogeneous solid 
(see Broberg, 1994) has shown that the energy release rate at the tip of a dynamically 
propagating mode-1 crack, is always zero, no matter what the speed of propagation 
(as long as the crack tip speed exceeds c_ the shear wave speed of the solid). In 
contrast, for a dynamically propagating mode-II crack, there is one particular 
velocity, $c~, where the energy release rate is finite. This would seem to imply that, 
if at all possible, transonic crack growth in homogeneous solids would occur at a 
velocity of $c~ and under mode-II conditions. This is of importance to geophysics 
where rupture of earthquake faults is always related to high speed propagation of 
shear cracks. For this reason, most dynamic fracture studies associated with fault 
rupture concentrate on mode-II crack propagation (Freund, 1979; Burridge et al., 

1979). In the work of Freund (1979) the asymptotic near-tip field for a shear crack 
growing transonically in a homogeneous material was obtained. Burridge et al. (1979) 
also introduced a finite cohesive zone ahead of the shear crack tip to study the stability 
of rapid crack growth. By studying a mode-II crack growing intersonically at a 
constant speed of ,,/2 es, under a remote uniform shear load and by using integral 
transforms, Broberg (1994) was able to obtain the exact solution of the shear traction 
distribution ahead of the crack tip. Similar issues have been addressed by, among 
others, Brock (1977), Simonov (1983), Broberg (1985, 1989), Bykovtsev and Kra- 
marovskii (1989) and Aleksandrov and Smetanin (1990). 

For dynamic interfacial crack growth in bimaterial systems, previous theoretical 
studies mainly focused on the sub-Rayleigh propagation regime, i.e. crack tip speed 
lower than the Rayleigh wave speed of the more compliant constituent in the bima- 
terial system. Among others, Gol’dshtein (1967), Brock and Achenbach (1973), Willis 
(1971, 1973) and Atkinson (1977) have provided crack line solutions of particular 
dynamic fracture problems in bimaterial systems. Of particular interest to the present 
study is the subsonic dynamic analysis of Brock (1979) who considered the extension 
of a dynamic shear interfacial flaw involving crack face friction. In order to investigate 
the asymptotic spatial structure of the field surrounding the moving interfacial crack 
tip, Yang et al. (1991) and Wu (1991) obtained the most singular term of the steady 
state elastodynamic bimaterial crack tip fields. In addition, Deng (1992) obtained an 
asymptotic series representation of the stress field near the tip of a running interfacial 
crack in a bimaterial system under steady state conditions. The analysis of Liu et al. 
(1993) provided the higher order transient asymptotic stress field surrounding a 
moving interfacial crack tip. Moreover, in the same work, they also obtained the 
solution for the super-Rayleigh, subsonic interfacial crack growth regime, where the 
crack tip speed is between the Rayleigh and the lower shear wave speeds. Most 
recently, Yu and Yang (1994) obtained the near tip asymptotic stress field for an anti- 
plane shear (mode-III) propagating crack running at a speed between shear wave 
speeds of the constituents of the bimaterial interface. 

Motivated by the above mentioned recent experimental studies, in this paper, the 
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problem of transonic interfacial crack growth in a bimaterial system will be analysed 
and the two-dimensional in-plane asymptotic deformation field surrounding the crack 
tip will be obtained. The method used to solve this problem follows the procedure 
employed in Liu et al. (1993). The results of the current theoretical analysis have 
been correlated with the experimental observations reported in Part I of this series 
(Lambros and Rosakis, 1994~) and results of the comparison were presented in 
Section 3.2 of Part I. 

2. SUBSONIC, SUPER-RAYLEIGH INTERFACIAL CRACK GROWTH 
IN A BIMATERIAL SYSTEM 

In homogeneous materials, an infinite amount of energy has to be transmitted to 
the crack tip to maintain crack extension at the Rayleigh wave speed if the dynamic 
stress intensity factor is to remain finite (Freund, 1990). This makes it impossible for 
a crack in a homogeneous solid to exceed the Rayleigh wave speed of that material. 
However, for a crack growing along a bimaterial interface, it has been shown that as 
the crack tip speed approaches the lower Rayleigh wave speed, cg’, only a finite 
amount of energy has to be transmitted to the crack tip if the dynamic stress intensity 
factor is to remain finite (see Yang et al., 1991). Accordingly, there is no energetic 
restriction for an interfacial crack to exceed the lower Rayleigh wave speed. The 
solution for subsonic, super-Rayleigh interfacial crack growth in a bimaterial system 
composed of two homogeneous, isotropic and linearly elastic solids, has been obtained 
by Liu et al. (1993). They observed that the governing equations for a dynamic crack 
growing along a bimaterial interface, remain elliptic for crack tip speeds in the range 
0 < v < c(‘) Therefore, their general solution for the interfacial crack tip speed in the s . 
sub-Rayleigh regime, can be directly extended to the subsonic, super-Rayleigh regime. 
The results of their work are summarized below. 

Suppose the properties of the materials constituting the interface are such that 
ci” < cg’, and the crack tip speed is in the range ck” < v < cl”. The oscillatory index 
parameter E, which depends on the interfacial crack tip speed and the properties of 
the bimaterial combination, becomes complex and is given by 

E=g+li 
1 p-1 

*, g=-ln- 
271 /?+l’ (2.1) 

where p is the second Dundur’s parameter and also depends on the interfacial crack 
tip speed and the properties of the bimaterial combination. If only the leading term 
in the asymptotic expansion is considered, under the requirement of bounded dis- 
placement, or integrable mechanical energy density (Freund, 1990), in a coordinate 
system (q,, q2) translating with the moving crack tip, the first invariant of stress for 
the material above the interface was obtained as 

CII +c22 = 4b”;v;,4;h;f {2r]cc,cosh &r-0,)] 
(2.2) 

where 
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Fig. 1. Experimentally measured variation of energy release rate at the crack tip in the PMMA/4340 steel 
bimaterial system as a function of crack tip velocity (Lambros and Rosakis, 1994c). 
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a 1,s = 1 - 1 
i I > D(v) = 4a:a,-(1 +a,2)2, 

qs 

and the scaled polar coordinates (Y,, 0,) are defined by 

YI = (v: +a,tj~)‘i2, 8, = tan-’ F. 

For material-2 below the interface, we need only change the corresponding material 
parameters in (2.2) and replace 2 by -x. In (2.2), A(t) and O(t) are two real functions 
that can only be determined by the far field loading and geometry for each specific 
problem. It can be observed from (2.2) that oscillations in the stress field still exist 
along the radial direction. However, there is no singularity at the propagating crack 
tip. Since both stress and strain are bounded, the energy release rate at the tip of an 
interfacial crack whose speed is in the subsonic, super-Rayleigh range, will always be 
zero. In the experimental investigations reported in Lambros and Rosakis (1994b), it 
was found that the energy release rate at the crack tip decreases to zero as the speed 
of the interfacial crack approaches the lower Rayleigh wave speed of the bimaterial 
system. The variation of the normalized energy release rate as a function of crack tip 
speed is shown in Fig. 1. 

3. TRANSONIC CRACK GROWTH ALONG THE INTERFACE BETWEEN 
AN ELASTIC SOLID AND A RIGID SUBSTRATE 

In this section, we will study a special bimaterial system, namely one composed of 
a linearly elastic solid bonded to a rigid substrate. This problem approximates the 
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Fig. 2. A crack propagating intersonically along the interface of an elastic-rigid bimaterial system ; 

(a) stress wave patterns, (b) detail of the near-tip region. 

situation encountered in the PMMA/4340 steel bimaterial specimen described in Part 
I of this investigation where material mismatch is very close to the elastic-rigid model. 
The elastic-rigid approximation employed here involves a limitation that should 
be emphasized. In particular, the model cannot handle issues relating to energy 
transmission across the interface. However, the approximation made allows us to 
obtain concise analytical expressions that can be investigated to reveal some unique 
features of the near-tip stress fields. 

Consider a bimaterial system composed of a homogeneous, isotropic and linearly 
elastic solid bonded to a rigid substrate. A crack propagates along the interface with 
velocity v. Let c, and c, be the longitudinal and shear wave speeds of the elastic 
material, respectively. The speed of the crack tip, z!, is such that 

c, < z’ < c,, 

i.e. the crack propagates along the interface intersonically. Debonding beyond the 
longitudinal wave speed of the elastic material is not considered here. Figure 2(a) 
shows the propagation of wave fronts in the elastic medium as fracture initiates and 
proceeds along the interface. At some time in its propagation history, the crack tip 
was at position 0’. After a time period r, the crack tip moves to point 0. Because of 
material rupture, stress waves will radiate into the elastic solid above the interface, 
while no wave propagation is possible in the lower constituent because it is rigid. The 
dilatational and shear wave fronts are centered at point 0’ and radiate into the elastic 
material. They are denoted by P and S in Fig. 2(a). Note that since u > c,, the crack 
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tip has exceeded the shear wave emitted at point 0’. However, ahead of the moving 
crack tip and behind the dilatational wave front P, a head wave region is generated 
and is denoted by S, in Fig. 2(a). This head wave is necessary to ensure that the 
components of displacement vanish along the interface. In addition, ahead of the 
shear wave front S and behind the moving crack tip, the crack faces must remain 
traction free. Therefore, another head wave region is generated as well and is denoted 
by So. The head wave fronts SB and So move with the shear wave speed c, of the 
elastic material. Close to the moving crack tip within the area surrounded by the 
dotted circle, two different regions can be identified. These are seen in detail in Fig. 
2(b). The region on the left of So has been affected by the head wave So. The one on 
the right has not experienced the deformation associated with So yet. This feature is 
distinct from that in the subsonic crack growth case, where complete information 
about the motion of the crack tip always reaches the points on the prospective crack 
path before the tip itself does. 

For planar deformation, in a fixed coordinate system (x,, x,), the two components 
of the displacement field u,(x,, x2, t), can be expressed in terms of two displacement 
potentials 4(x,, x2, t) and It/(x,, x2, t) through 

%(X,rX*,Q = ~,z(X,,-~2,f)+e,B~.p(x,,x2,t), (3.1) 

where ~1, PE { 1, 2) and the summation convention is employed here. ezB are the 
components of the two-dimensional alternator, defined by 

e I2 = -672, = 1, e,, = ez2 = 0. 

The equation of motion that 4(x,, x2, t) satisfies is 

V’&x,,.%0 = d4X,,X2,0, (3.2) 

where V2 is the Laplace operator, and {‘} stands for a time derivative. The dis- 
placement potential +(x,, x2, t) is composed of two parts $s(x,, x2, t), PE { 1,2}. $,(x,, 
x2, t) is associated with the head wave So, generated by the transonic crack growth, 
while Ic12(x,, x2, t) is associated with the head wave S,, linked with the propagation of 
the dilatational wave P along the interface. Both I(/,(x,, x2, t) and $2(x,, x2, t) satisfy 
the equation 

V2$4dX,,X2J) =$&1,X2,0, PE{1,2}. (3.3) 

Very close to the moving crack tip, or at “long” times after crack initiation, steady 
state conditions are expected to be established. As a result, in the moving coordinate 
system (q,, y]J, the equations of motion take the form 

~,,,(s,,rl~)+~~.,,(~,,s2) = 0 

i 

7 VY2 > 0, BE{1,2}, 
1 

(3.4) 

$p,,,(1,>r2)- @8.22h92) = 0 
s 

where 
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tl,= (,_tJ2; is= (cl)? 

The above equations are the ones governing the steady state intersonic problem 
under consideration here. The first of equations (3.4), is elliptic while the second is 
hyperbolic. As a result, the most general solutions for &r,, q2) and eB(q,, q2) can be 
expressed by 

where z, = ye, +icr,q,, and F(z,) is an analytic function of z, in the upper half plane. 
ga(q, + dsq2) and G8(y11 -oi,q2) are real functions of their respective arguments. Since 
to the right of the head wave region So, material particles have not felt the disturbance 
caused by crack growth yet, we can introduce the following restrictions to g,(v, + BJ,) 

and ;I (11, -&,v/~), 

g,(~,+&~z) = 0, forvl,+B,r]2 >O 
(3.6) 

On the other hand, as vi -8,q2 * co, the disturbance of the head wave S, has not 
been felt by the material particles, see Fig. 2(a), therefore 

$2(q, -oi,&) = 0, --co < 41 < oo,q2 > 0. (3.7) 

Based on the above observations, the steady state displacement potential $(PJ,,~~) 
which is a combination of $,(r],, Q) and 1c/2(q,, q,), acquires the form 

where g(q, +&) is a real function of its argument. 
For the elastic material above the interface, we can express the components of 

displacement as 

uI = Re{F’(zJ} +W(rll f&v,) 

u2 = -dm {F’(zJ} -i/h, +GI~) ’ 

v112 > 0, (3.9) 

and the components of stress as 

cl, =~((1+2c(:+Bf)Re(P”(z,))+2oi,g”(rl,+ti,rl,)) 

g?2 = -~{(l-oi:) Re{F”(z,)} +20i,g"(q, +di,q2)) 

I 

, Vy12 > 0, (3.10) 

~~~ = -P{2aJm {F”(zJ}+(l -#)g”(9, +Q,)} 

where a prime denotes a derivative with respect to the corresponding argument and 
p is the shear modulus of the elastic material. 

Introduce now the following notation : 
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lim R(z) = Q’(~,), z = yI, +iq2 
‘1p0+ 

For ‘I, < 0 and qz -+ O+, the traction free condition on the upper crack face demands 

~**(~L,o+,f) = o,2(9,,o+,f) = 0, 

or, in terms of F(z,) and g(q, +&JJ, 

(1-8~){P”+(yI)+P”-(vl,)}+40i,g”(g,) = 0 

a,{F”+(q,)--F”-(~,)}+i(l--&i)g”(q,) = 0 I ’ vfl, < 0, (3.11) 

where the notation E( .) stands for the complex conjugate of the analytic function 
F( *). Along the interface, i.e. q, > 0, Y/~ = 0, the components of displacement should 
vanish since the elastic material is bonded to a rigid substrate. As a result, we have 

F’+(~,)+~-(r,)+2oi,g’(rl,) = 0 

aI{F’+(g,)-E’P(rI,)}+2ig’(r],) = 0 I ’ v?y, >o. (3.12) 

By eliminating g(rl) from (3.11) and (3.12), we can obtain equations involving 
only the analytic function F(z), i.e. 

F”+(v,)- 
4a,&,+i(l-&,2)2 _ ~ 

4a,B,-i(1 -a,‘)’ 
F” (vll) =O, vul, CO, 

and 

^ 

F’+@f, ;t)-zE.-(q, ;t) = 0, vq, > 0. 

(3.13) 

From (3.14) and by using analytic continuation, we may introduce a new function 
0(z) as follows : 

O(z) = (a,&-i)F’(z), zES+ 

/3(z) = (a,& +i) E’(z), zES ’ 
(3.15) 

where 

sk = {(rlyiy12)l-~ <vI < a,r2 >O>-C 
i {(vlfiv2) I--co < 6 < m,r2 6 O>-C, 

C= {(vl,h2)I- cc < VI 6 o,q2 = O}. 

In terms of the new analytic function 0(z), (3.13) can be rewritten as 

&+(r,)_e-WYn e’-(V,) = 0, VlyI, < 0, 

where 

(3.16) 

p(u) = tan-’ 
a,&,{4-(1 -a,‘)‘} 
4aF8:+(1-5:)’ 
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Fig. 3. Variation of the singularity exponent q(u) as a function of the crack tip speed v for different values 
of Poisson’s ratio. 

Equation (3.16) constitutes a Riemann-Hilbert problem. Its solution 0’(z) is ana- 
lytic in the cut-plane S+ u S-. Along the cut C, e’(z) satisfies (3.16). Also, from the 
requirement of bounded displacements at the crack tip, as IzI + 0, 

l@(z)1 = WI”), (3.17) 

for some CI > - 1. The solution to (3.16) can be written as 

e’(z) = $g> (3.18) 

where ,4(z) is an arbitrary entire function. The exponent q(u) is a function that 
depends on the crack tip speed v and Poisson’s ratio v. q(u) is given by 

q(v) = Atan-’ 
cc,B,{4-(1 -al)‘} 

4a:&: + (1 -d:)2 
(3.19) 

The variation of q(v) with crack tip speed u is plotted in Fig. 3 for different values of 
Poisson’s ratio of the elastic material. It should be noted at this point that q(v) 
remains less than 0.5 for the entire velocity range considered in this paper. 

Returning to (3.15), it is obvious that 

(3.20) 

which reveals that the undetermined entire function A (z) has the property 
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A(z) = A(z), 

or in other words, if A (z) is expanded into Taylor series, 

A(z) = f A&Y, 
?7=0 

then all coefficients A,(n = 1,2,. . .) are real. 
From (3.11) and (3.12), the real functiong(q,) can be determined for either q, > 0, 

or q, < 0. Finally, the leading terms of the two steady state displacement potentials 

4(~r, R) and $(v~, ylq) are given by 

4(vIl,yIJ = La Ao 1 

1 +c$af (2-q(v))(l -q(v)) q(+2 

x {a,oi,cos(2-q(v))@,- sin(2-q(u))B,I 

1 Ao 
+(V1,r2) = - 1 +$a,’ (2-q(u))(l -q(v)) 

i 

4 

x (r]l+6,t#+2 
wrll+f%~Z) 

1 -oil 

+2oi,* 

aloiS cos nq(v) + sin nq(u) 

(-_rl, -oi,rjp-2 
(3.21) 

where H(s) is the Heaviside step function and the scaled polar coordinates (r,, 0,) are 
given by 

rl = Jm, 8, = tan-‘?. 

By using the above expressions for $(ql, Q) and +(q,, q2), the displacement field in 
the elastic solid can be computed as 

1 Ao .- 
” =l+cr:oi,2 1 -q(V) l 1 - 

rf(“)-’ 
cr,&, cos (1 - q(u))B, - sin (1 - q (v))d,] 

^ 
ws 

- (q1 + oi,q,p- ’ 
~(?l+~srl,) 

+ 1 - oi,2 aloiS cos nq (u) + sin nq (0) 

2 . (-vll _~,~2)4wI ~(-rl-4rz) 
I 

1 
U2C--~ . Ao 

AL. 
1 +a:@ 1 -q(u) rf(“)-’ 

[cos(l -q(u))B,+a,di, sin(1 -q(v))O,] 

- (q, + &q,)q’“‘- ’ ~(?1+072) 
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l-6, cr,oi,cosxq(u)+sin~q(~) 

+x’ (-q, _Q.pw H(-r, -4%) . 
I 

The stress field in the elastic solid is 

I& 
C,, =----- 

1 +a:a; i 

1+2c$+oif 

y;l(“) 
[a,oi, cos q(v)fh + sin q(v)O,] 

2c$i, 

- (q, + oi,F#(c) 
ff(?I +Qh) 

(1 - @)(a,& cos 7cq (u) + sin 7cq (u)) - 
(-yl, -6,)1*y”) 

-H(-r, -4%) 
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(3.22) 

PAlI 
i 

1-C?* 
0 22=-p * 

l+a:oi,2 r, 
[a,& cos q (UN4 + sin q (v)41 

2a,f& 

- (? I + 4r/2)q’“’ 

H(rl, +4?2) 

(l-oi,2)(a,oi,cosxq(~)+sinxq(v)) - 
(-VI -oi,rf*)q(L’) 

ff(-rl, -o/2) 

I 

a,(1 --ii:) 

- h I + ~sv12)q’“’ 

H@h +4?2) 

(l-6,2)* a,oi,cosxq(u)+sinnq(u) ____.. 
26, (-s, -oi,r/,)~““ 

ff--rl, -4v2) 3 (3.23) 

while the field of particle velocity is given by 

ala, 

- (VI, +oi,~*)4”” 
H(vl, + 4v2) 

1 - oi,2 a,& cos xq (u) + sin nq (u) _-. 
2 (-q, -oiJJ+) 

H(-v, -f%k) 
I 

UAfl 
u2 = l+a:oi,2 

i 

~[cosq(~)el-al~,sinq(o)H,l 

aI 

- (rl, +&?2)4’“’ 
HeI, +&r/2) 
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l-c?: . c(,oi, cos nq(v) + sin nq(v) 

2Li, (-Vl -ohF”’ 
(3.24) 

4. DISCUSSION 

In the previous section, we obtained the leading term of the asymptotic expansion 
governing the deformation field surrounding the tip of an interfacial crack propagating 
intersonically in an elastic-rigid bimaterial system. The key features of this field will 
be discussed in this section. 

Across the head wave front So, see Fig. 2(b), the components of stress and particle 
velocity are discontinuous. The jump in these quantities can be derived as follows. 

Let point (G1, G2) be on the head wave front So, or equivalently, 

$l+a,$, =o, ;F/* >o. 

Also let points P’ be to the right and left of So, respectively. These points will have 
coordinates (i, f 6, G,), where 6 is an infinitesimal positive number. Define now the 
S-jump of any field quantity o across S, by 

MS = c& +~~;*)-c& -&G*). 

Then, the respective S-jumps of the particle velocity and stress components across So, 
are 

(4.1) 

where 

6, = +4,L(v), i;, = - $&L(v), 
s 

and 

The function L(v) which depends on the crack tip speed, is given by 

L(u) = 
2~~~6, - (1 - c?,2) (a,& cos nq(v) + sin nq(v)) 

1 +a:a: 

As 6 + 0, the jumps in stress and particle velocity become unbounded. Therefore, 
unlike subsonic crack growth where only one singular point is present at the crack 
tip, for intersonic crack growth, an entire line of infinite jumps in stress and particle 
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velocity appears in the body. This line starts from the crack tip and radiates into the 
elastic solid. Each point on this line has the same singularity as the crack tip. 

The expression for the energy flux F(I) into the crack tip through a contour I has 
been provided by Freund (1972, 1990) and is given by 

F(I-) = 
s 

{ a,gn,u,j + (U+ T) WI I} ds, (4.2) 
I- 

where I is a small contour which begins from the lower crack surface, surrounds the 
crack tip, and ends on the upper crack surface. n, are the Cartesian components of 
the outward unit normal of I. U and T are the densities of the strain energy and 
kinetic energy, respectively. In the definition of F(I) given in (4.2), it has been 
assumed that the displacement field is smooth enough so that it has continuous 
second derivatives. However, in the present case, the smoothness requirement for 
displacement field is lost. 

Following the definition given in Abeyaratne and Knowles (1990), the scalar driving 
tractionf($, , G2) on the singular line So, G, +a, G2 = 0, can be expressed as 

where U is the elastic energy density and [*I6 is the &jump defined at the beginning of 
this section. By using the results obtained in the previous section, one can show that 
the driving traction on the singular line So vanishes. This implies that there is no 
energy dissipation when the singular line So moves through the material. As a result, 
the energy flux into the crack tip through a contour I in the presence of a dis- 
continuous line radiating from the moving crack tip, is still given by (4.2). 

By recalling that the parameter q (0) given in (3.19) which characterizes the strength 
of the singularity, is always less than 0.5, see Fig. 3, the energy flux into the moving 
crack tip is always zero irrespective of crack tip velocity. It is believed that when a 
finite process zone is introduced at the transonically moving crack tip, the energy flux 
into the crack will not vanish. This has been shown for homogeneous materials by 
Broberg (1994), where he considered mode-II transonic crack growth in a homo- 
geneous solid. 

By using the results obtained in the previous section, the normal traction along the 
interface and at a distance c1 ahead of the moving crack tip, assumes the form, 

cJ22 (a, o+ ) t) = 
a,&(1 +oif) PA, . .~ 

1 +a:# a9w . (4.4) 

While the crack opening displacement at a distance a behind the moving crack tip is 
given by 

(1 -&(l +oif) cos7rq(v) 

u2(-a30+9t) = -4ccf~,2+(1_g)2 
._~&a’~4(2~), 

1 -q(u) 
(4.5) 

As a result, one can show that 
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a22(40+, t)u*(-a,Of,t) = - lV(v)/&7-24”“, (4.6) 

where 

we) = (1 + 
a:&(1 +Q)’ cos 7cq (u) 

a:af){4a:@f +(l -ois’>‘} . 1 -q(v) . 

Since W(v) is always positive, (4.6) implies that if the crack tip speed is in the range 
c, < v < ,/?c~, ~*~(a, O+, t) and u2( --a, O+, t) have opposite signs. This means that 
when the normal traction ahead of the crack tip is positive, crack face penetration 
into the rigid substrate is predicted. Since penetration is physically impossible, this 
would imply that the crack faces will come into contact, a situation which has been 
experimentally observed in Part I of this investigation, see Fig. 7 of Part I. When this 
situation arises, the solution is no longer valid and the problem should be revisited 
under different crack face boundary conditions. Conversely, (4.6) also implies that if 
the crack opening displacement is positive, the traction ahead of the crack tip remains 
negative, a condition which does not facilitate rupture of the bond. However, when 
the crack tip speed is in the range $c~ < II < cl, both ~~(a, Of, t) and u2( ---a, O+, t) 
have the same signs, i.e. a positive normal traction ahead of the crack tip induces 
crack opening behind the tip. 

The above discussion suggests that the velocity range from c, to $cs is not 
favorable for stable intersonic interfacial crack propagation. This is consistent with 
experimental observations of Part I in which crack tip velocities seem to remain 
around c, for some time and then quickly accelerate to values higher than ,/‘?c~. A 
similar phenomenon has been observed by Andrews (1976) who numerically studied 
transonic shear crack propagation in a homogeneous solid. He found that as soon as 
the crack tip speed reaches the Rayleigh wave speed cR of the material, it quickly 
increases to values lar er than ,,/&. He concluded that crack growth is unstable in 
the range cR < v < v’p 2c, and preferable speeds for a shear crack growing in a homo- 
geneous material are either those lower than the Rayleigh wave speed, or those in the 
range Jzcs < v < c,. 

The experimental observations reported in the first part of this study (Lambros and 
Rosakis, 1994~) have found that transonic crack growth in a PMMA/4340 steel 
bimaterial system is shear dominated. For the elastic-rigid combination considered 
here, the ratio of crack opening displacements 8,/S, is given by 

(4.7) 

Figure 4 shows the variation of the ratio 6,/& as a function of crack tip speed. In this 
figure, there are two branches for 8,/S,. Along the first, dashed line, branch 6, is 
negative (contact) if positive opening tractions are to be sustained ahead of the crack 
tip. This corresponds to the regime where stable crack growth is unfavorable, as 
discussed above. The second, solid line, branch corresponds to the favorable regime. 
In this regime, the magnitude of S,/S, is always greater than 1 which implies that the 
deformation is shear dominated. Therefore, our theoretical analysis also predicts that 
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Fig. 4. Variation of the ratio of crack face displacements 6,/& as a function of the interfacial crack tip 
speed. 

the deformation field surrounding a transonically moving crack tip in a bimaterial 
system, will be predominantly shear. Transonic crack growth in a predominantly 
opening deformation field cannot be sustained. This is consistent with the exper- 
imental observations reported in Part I of this study and the previous results of 
Andrews (1976). 

Finally, by using the results given in the previous section, the x,-gradient of the 
first stress invariant can be expressed by 

w4o SW4 +a 
@I I +~22),1 = - rf(L’)+1 

1 +cY:oi,z 
{ol&cos(q(u)+1)8,+sin(q(v)+l)8,}. (4.8) 

The optical interferometer CGS provides contours of this quantity. We can therefore, 
synthetically produce a CGS fringe pattern using (4.8). For a bimaterial system 
composed of PMMA bonded to a rigid substrate, a simulated CGS fringe pattern is 
shown in Fig. 5. Here, a Poisson’s ratio of v = 0.35 has been used, and the crack tip 
speed is chosen as v = lSOc,. We can see that the fringe pattern shown in Fig. 5, 
resembles the qualitative features of the patterns obtained in experiments (see Fig. 4 
of Part I), i.e. the fringes are squeezed in the crack propagation direction and are 
elongated in the direction normal to the crack. 

5. CONCLUDING REMARKS 

In the present study, we obtained the asymptotic deformation field surrounding the 
tip of a crack propagating transonically along the interface of an elastic-rigid bi- 
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Fig. 5. Simulated CGS fringe pattern. 

material system. We found that in contrast to subsonic crack growth in bimaterial 
systems, the near-tip stress field does not exhibit oscillations. However, a stress 
singularity still exists and is a function of the crack tip speed. In addition, we found 
that an entire singular line is present in the near-tip field. This singular line radiates 
from the crack tip and moves with it. Across the line, components of stress and 
particle velocity suffer infinite jumps. The energy release rate at the moving crack tip 
is found to be zero because the singularity is always less than l/2. The theoretical 
analysis has shown that in the velocity range c, < v < ,/2c,, either crack face contact 
or negative normal tractions ahead of the crack tip is predicted. This intuitively 
implies that this velocity regime is unfavorable for stable crack growth. For 
J2cS < v -=z c,, this situation does not arise. This is consistent with experimental 
observations in PMMA/4340 steel bimaterial specimens where the interfacial crack 
tip speed quickly accelerates from the shear wave speed of PMMA to values larger 
than J2cFMMA. The theoretical analysis predicts that the near-tip deformation field 
for transonic crack growth is predominantly of a shear nature. This has also been 
confirmed by experimental investigations reported in the first part of this study 
(Lambros and Rosakis, 1994~). 
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