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ABSTRACT

A coherent laser beam reflected or transmitted from a deforming plate
specimen acquires an optical path difference (phase change) which is
related to the deformation and stress field. The optical method of
Coherent Gradient Sensing (CGS) uses two parallel grating plates to
displace (shear) and recombine the distorted light beam emerging from
the specimen. Fringes are produced on the image plane by the
interference of the shifted and unshifted beams. The fringe pattern is
related to the spatial difference of the phase in the shearing direction. If
the shearing distance is small enough, the spatial difference of the phase
approximates to its gradient. Each fringe in the image represents a locus
of equal gradient component of the phase in the shearing direction. The
technique is interpreted by means of wave optics, using the Fraunhofer
approximation and the paraxial theory of lenses. The assumptions made
in earlier analyses have been removed here. A more precise analysis
based on Fourier optics is presented. The simplicity of the optical setup
and variable resolution of the technique have led to its frequent use in
the area of solid mechanics, including fracture mechanics. Some
examples are discussed in the second half of this paper.

1 INTRODUCTION

Coherent Gradient Sensing (CGS) is an optical technique based on
lateral shearing and interference of a coherent laser beam. Image
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shearing and interference have been frequently used in various optical
techniques in the past. Bates,' for instance, modified the arrangement
of the Mach-Zehnder interferometer’ by rotating one of the beam
splitters in the optical setup. The purpose was to measure the
asphericity of convergent wave fronts without the need for a substan-
tially error-free reference wave front, such as is required for the
Twyman-Green interferometer.” Lateral shearing interferometry has
been accomplished in the past by using several different optical tools to
perform the beam shearing action. These could be beam splitters,’
Wallestone prisms® or two diffraction gratings.>® Double grating inter-
ferometry, the later of the above methods, has been used by Hariharan
et al’> and Hariharan and Hegedus® to measure lens aberrations. The
proposed CGS setup is a modification of the above setup that uses two
very fine gratings,. in conjunction with spatial filtering, to produce
lateral shearing that leads to interference fringes.

In particular in fracture mechanics experiments, the methods of
photoelasticity,”  caustics,*®  geometric moiré and  moiré
interferometry,’™"! and the stress intensity factor tracer,”” have been
frequently used to measure crack tip deformations and fracture
parameters. However, each method has certain disadvantages. The
method of caustics and the stress intensity factor tracer, for example, do
not perform full field measurements, while photoelasticity requires an
optically birefringent object (specimen). Moiré interferometry, on the
other hand, which produces massive amounts of data, is sensitive to
rigid body rotations (unlike the CGS interferometer in question). Some
of these limitations are overcome in the CGS method. It is a full-field
optical technique applicable to both transparent and opaque materials,
and does not require optical birefringence. In addition it provides an
easily variable sensitivity (angular resolution of rays). The method’s
ability to produce fringes in real time, in conjunction with its relatively
small light intensity loss, makes it a suitable candidate for mapping
dynamic crack tip fields, where exposure times of the order of
nanoseconds are required. Such a full field method is necessary in
dynamic expertments in order to accurately measure dynamic stress
intensity factors and establish regions of K-dominance. (A K-dominant
region is defined as one in which the in-plane stresses are well
approximated by the first (and singular) term of a Williams type
expansion, see Tippur et al.'®)

The method of CGS for use in mechanics was first proposed by
Tippur et al.'* The setup of the method in a transmission configuration
i1s shown 1n Figure 1. A coherent, monochromatic, collimated laser
beam is incident on a deformed specimen. After transmission through
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Fig. 1. Schematic of the setup for CGS in transmission.

the specimen it acquires an optical path difference and loses collima-
tion. The resulting, now non-collimated, beam passes through two line
diffraction gratings of fine pitch p. They are situated a distance A apart
and perform a shearing of the incident wave front. The gratings’ output
intensity is transmitted through a filtering lens to obtain a diffraction
spot pattern on the filtering plane, which is located at the focal plane of
the lens. All but the first diffraction orders are blocked at this plane.
The one remaining diffraction spot is imaged to produce an interference
pattern,

In the analysis of Ref. 14 the technique was investigated using
geometrical optics. In the present paper we provide a thorough analysis
of the CGS technique, based on Fourier wave optics. The Fraunhofer
far-field approximation is used to linearize the integrand in the
Kirchhoff integral representation of the electromagnetic field resulting
from the diffraction gratings. In addition, the paraxial approximation is
used to obtain the light intensity distribution from the filtering lens. The
current approach provides accurate far-field results that can be confi-
dently used under far-field conditions that are valid for our experiment.
Note that the final conditions for interference are the same as those
obtained in Refs 13 and 14 even though the approach is different. Note
also that Tippur® has recently produced a Fourier optics analysis of the
CGS method using the Fresnel approximation. This analysis is rather
complicated and uses near-field approximations. In the present paper
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we show that the much simpler Fraunhofer far-field approximation can
be used for all components in the optical setup by employing the
simple device described in Section 2 that circumvents the need for
direct calculation of the electromagnetic field at each station. In
addition, in the present paper, unlike in the work of Ref. 15, the effects
of large beam shearing are investigated.

At this point it should be noted that much of the first part of Section
2 (immediately following) deals with very basic issues of the theory of
Fourier optics. Researchers with a significant amount of experience in
this field will find most of it well known. It is suggested that such
readers proceed to Section 3. However, for the benefit of researchers in
the mechanics community who are not as familiar with these concepts,
we have presented them here so that sufficient background material for
complete understanding of our analysis procedure is presented. Readers
unfamiliar with the details of Fourier optics theory need not refer to
more specific publications.

2 FOURIER ANALYSIS OF CGS

An analysis of the optical method can be performed using either
geometric or Fourier optics, depending upon the situation of interest.
However, many occasions necessitate the use of wave optics. Com-
ponents such as diffraction gratings cannot be adequately treated using
geometrical optics. Such cases warrant the use of a more sophisticated
treatment. Indeed, the most crucial role in the CGS system is played by
the two diffraction gratings (see Fig. 1). These introduce double
diffraction in the distorted light beam, which is what actually carries the
information that we wish to extract about the deformation.

The far-field diffraction of a light wave at a grating can be modeled
by adopting the Fraunhofer diffraction theory. Consider such a wave
incident on a fine diffraction grating of square wave transmittance. This
wave will be diffracted into an infinite number of wavefronts. Each
diffracted beam (normal to a wavefront) can be labeled by an integer of
order n, as shown in Fig. 2. The magnitude of the electromagnetic field
of each diffracted beam is the corresponding Fourier coefficient of the
transmission function of the grating. In the subsequent discussion we
will look into the details of the Fourier analysis for the gratings and the
filtering lens. In step 1 we consider the effect of diffraction of a
distorted beam by one diffraction grating. The second step uses the
results of step 1 to obtain the combined effects of both gratings. In step
3 the lens and spatial filtering at the aperture plane is analyzed. Finally
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Fig. 2. Diffracted wavefronts at a square transmittance diffraction grating.

in step 4 the light intensity distribution on the image is determined and
the condition for constructive interference (bright fringes) is extracted.

In this paper we have chosen to present some details of the
diffraction analysis that may be considered fundamental to researchers
in the field of optics. However, since it is our intention to also expose
researchers in mechanics to this new optical method, we feel that we
should present enough background material so that all the details and
assumptions of the analysis can be comprehended.

Step 1: Diffraction and gratings

Consider a transparent specimen, situated at the object plane, and
assumed to be initially stress free and of uniform thickness. A
collimated and coherent beam is transmitted through the specimen. As
the specimen deforms, because of externally applied loads, the electro-
magnetic light field exiting the specimen is disturbed. The resulting
beam is no longer collimated. The electromagnetic field E, formed just
after the deformed specimen can be written as

Eo(x;, X5) = Age*S e (1)

where x; and x, are coordinates on the specimen, A, is the complex
amplitude coefficient of the incident light wave, k is the wave number of
the incident light wave and S is an optical path difference introduced in
the beam by the deformation of the specimen (see Section 3.1). The
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Fig. 3. Mapping of a point source from object to image planes from a generalized
aperture.

optical path change § introduced implies that rays emerging from the
specimen now deviate from parallelism. Note that eqn (1) can also be
the result of the wavefront reflected from an opaque specimen (see
Section 3.2).

Consider now such an electromagnetic field E, incident onto an
aperture device, as shown schematically in two dimensions in Fig. 3.
The aperture can be anything that causes diffraction (e.g. grating or
aperture hole). A point source P(x,, x,) on the object plane is imaged
onto a point P'(xy, x;) on the image plane. With reference to Fig. 3 it
can be seen that x,, x, and x;, x, are the spatial coordinates in the
object and image planes, respectively. We can define a transfer function
h' between points P and P’. The resultant electromagnetic field, E’, on
the image plane can then be obtained by integrating the transfer
function &' and the field, E,, on the object plane. This is given by:

E'(xi, x3) = | h'(x;, x5 %, X2)Eo(x:, x2) dA, )
Ao
where A, is the area of the incident wavefront. Note that eqn (2) is a
general result. In our particular case E, will be given by eqn (1).
A general form of the transfer function A’ of an aperture operator is
given by Ref. 16.

—ik(R+R')
h'(x;,xﬁ;x,,x2)=Af (X, %) ————dA; (3)
A RR
In this expression 7 is the transmission function for the aperture plane,
A is the region on the aperture plane that is open, i.e. allows light to
pass through, and ¥, and &, are the spatial coordinates on the aperture
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plane. The propagation distances R and R’ are defined by
R = \/(fl -0+ (& - x,)+ D?
R'= \f(fl —x ¥+ (X —x)+ D7
where D is the distance between object and aperture planes and D’ is
that between aperture and image planes (see Fig. 3). If in eqn (4) we set

X, =0 and ¥, =0, we obtain the distance of points P and P’ from the
origin of the aperture plane, i.e.

Ro=Vxi+xi+ D’
Ry=VxT+ 7+ D"

Using the Fraunhofer approximation we can linearize the propagation
distances R and R’ in terms of ¥, and ¥,, about R, and R\, respectively.
Such a linearization is valid in cases where R, and R are much larger
than the size of the aperture. The linearization is obtained by
performing a Taylor series expansion of eqn (4) about R, and Rj in
terms of X, and %,. This approximation is provided by

e () (2
’ ‘RU B Rl) xz

X; X3
e (- ()
o (i)

In the above expressions the fact that Rj = D* + x} + x5 has been used.

One can easily see that the conditions for the Fraunhofer diffraction
theory to be a good approximation are that™'®

max (%], |%.]) <« min (VRGA, VR(A) (N
where A is the wavelength of the light used and is given by k =27/A. To

simplify the integrand in eqn (3) we can introduce another first-order

approximation on the amplification factor (RR')™" as follows:
1 1

RR’ RyR;

This approximation does not cause any problems, since it is less
sensitive to small changes. We can also make the following change of

variables in eqn (3):
(2
“ R, R}

()

(4)

)

(6)

(8)
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Variables u and v are called the spatial frequencies. Substituting the
linearizations of eqns (6) and (8) and performing the change of
variables of eqn (9) into the expression for the transfer function (3), we
obtain:

e—ik(Ro+Rt’l)

-m" T(u, v) (10)

h'(x1, x3;%, X)) = A

as the transfer function of an aperture under the Fraunhofer ap-
proximation. In the above T'(u, v) has essentially become the Fourier
transform of the aperture transmission function %(¥,, ¥,) and is given
by:

T(u, U) ___J T(flx fz)e*i?_ﬂ'(uf1+uf:,) d.Af (11)

As was mentioned earlier, the function 7(%,, £,) on the aperture
plane can be the transmission function of any diffracting instrument.
The particular gratings used in our experiments have a square profile,
as shown in Fig. 4. They consist of alternating lines of transparent and
opaque regions of the same width. For an infinite grating, the
transmission function can be written as a Fourier series, since it Is
periodic. This is:

(%, X)) = D, T,e2™r (12)

m=—c

Here p is the pitch of the grating and 7, are the related Fourier
coefficients, given by

1 ("* -
T, =—f T(E,, B)e 7 dy,  m=0, 1, £2...  (13)
P Jpn

For simplicity, diffraction gratings are usually assumed to be sinusoidal
in transmittance (as was the case in Ref. 14). The gratings in our
experiments, though, closely approximate a square transmission func-
tion. In this case the Fourier coefficients become:

T, =

1
T.=0 when m = even (14)
_&

1)(m|71)/2
o when m = odd

7 im|
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Fig. 4. Transmittance function of square transmittance diffraction grating.

We can use this Fourier series to compute the Fourier transform of the
square grating in terms of the spatial frequencies, ¥ and v, from eqn
(11). This is given by:

. m

Tw,v)= Y, Tma(u——)ﬁ(v) (15)

me— p

By substituting the above relationship into eqn (10) we can obtain the

transfer function hg(u, v) for one square transmittance diffraction

grating situated at the aperture plane. hg is the transfer function from

point source P to an image point P’ though the grating of pitch p,
~ik(Ro+R6) =

he(u, v) = T,,,a(u - ";-)S(U) (16)

ROR(') m=—x
Here m is the diffraction order. It is clear that a square transmittance
grating will cause an infinite number of diffracted wavefronts. These
wavefronts have decreasing intensity since 7, is inversely proportional
to m (as can be seen in eqn (14)).
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We now have all the necessary tools to derive the electromagnetic
field distribution £’ on the image plane, resulting from the passage of
E, through a diffraction grating. We can substitute eqn (16) into eqn (2)
and perform the relevant integration to obtain E’. Alternatively, the
resultant effects of the grating can be viewed as the image of a modified
object with an electromagnetic field E{’, which produces exactly the
same image E’', but without the grating, i.e. by translation. This means
that if the grating were removed then the electromagnetic field at the
object plane would have to become E}" in order to maintain the same
field E' at the image plane, with the Fraunhofer condition being
satisfied. We prefer this approach because i1t facilitates the easy
inclusion of the effects of the second grating as seen in step 2. It is
simple to show that the modified field £{” can be expressed as the
summation of many spatially displaced E;’s as follows:

EQ(x, x2)=A >, T,Eo(x, +mR,6,, x,) (17)
where 8, is the grating diffraction angle given by
A A
90:Sin71_z— (18)
pp

Note that the grating produces many virtual images at angles of integer
multiples of 68,. Also note that a virtual image corresponding to the
amplitude A7, has been shifted in the x, direction by an amount mR,6,
from the original position on the object.

Step 2: Virtual image of double gratings

A side view of the CGS setup is shown in Fig. 5, along with the

Spatial
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Fig. 5. Profile of the CGS setup.
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associated coordinate systems on each plane. The effect of gratings G,
and G, on E,; can be obtained from the results in step 1. If the first
grating is removed it will produce a set of virtual images having an
equivalent electromagnetic distribution given by eqn (17) in order to
maintain an electromagnetic distribution E' at the object plane. This
will act as an object distribution for the second grating G.. Note that we
can use the Fraunhofer approximation for the second grating as well,
because we have found an effective image plane distribution (caused by
the removal of the first grating), but which has been translated to the
far-field. The second grating will now also produce an infinity of virtual
images for each virtual image generated by the first - grating, by
following exactly the same operation as in (17) but acting on E{"”. Thus
the 1dea is to undergo a procedure in which each grating is sequentially
removed and the far-field object distribution on the (x,, x,) plane is
modified in a way so as to always keep the field E’ on the image plane
the same. A schematic of the equivalence of object electromagnetic
distribution, at the far field, for the removal of the two gratings is
shown in Fig. 6. We see that first G, is removed and FE; is modified to
EY’, at the far field, given by egn (17). Then the second grating is
removed to obtain an equivalent object distribution E{P. E{¥ is easily
constructed by repeating the operation of eqn (17), but with E{"
replacing the electromagnetic field inside the summation, i.e.

iy}
"
M s

Y T, TE«x, + (m+ DRy6, + mAB,, x,) (19)
o J= o

m

The whole procedure is such that E’ on the image plane remains
unchanged. From eqn (19) one can see that each virtual image
corresponding to the amplitude AT,,T, is shifted in the x, direction by
(m +1)Ry8, + mAG,, where A is the spacing between the gratings.
Diffraction orders after the second grating are given by m +1[=
constant in eqn (19).

In general it would seem that because of the double summation there
would be many combinations of m’s and I’s resulting in the sum m +/
to equal the same constant. This would mean the superposition (and
interference) of many wavefronts, making data reduction extremely
difficult. The nature of the Fourier coefficients T,, (eqn (14)), though,
produces a simple result for the orders m + /= +1. Diffraction order
m+1=1, for example, will contain a superposition of wavefronts
corresponding to the pairs m =0, /=1 and / =0, m =1 only, because
for all other combinations resulting in m +/ =1 either 7, or 7; would
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be zero by virtue of eqn (14). Therefore, for the m +1 =1 order, EY
becomes

EBZ)llst =ThE(x; + Robp, x2) + T, TE)EO(x] + Ro6, + AB,, xz) (20)

The first term is for m =0, [ =1 and the second for / =0, m = 1. At this
point it is clear from eqn (20) that the +1 (or —1) diffraction order is
the superposition of only two wavefronts sheared with respect to each
other by an amount A6, in the x, direction. Such a superposition will
create interference fringes that can be easily analyzed. Looking at any
other diffraction order m + /= constant will involve superposition of
many wavefronts,

Step 3: Lens and spatial filtering

A spatial filtering lens is necessary for the purpose of isolating a
perceivable fringe pattern from the +1 diffraction orders. It is well
known that the field distribution at the focal plane of a lens is related to
the Fourier transform of the field on the object plane. Also, the
electromagnetic field distribution on the image plane is related to the
Fourier transform of the field on the focal plane. To simplify the
analysis we assume an infinite lens. Using Abbe’s theory’ for an infinite
lens and the Fraunhofer approximation, the formula of the local
mapping from the object to the lens focal plane is given in Klein and
Furtak'® as follows:

- f —xf
/(e x = e e g ) @1)
Here x{ and x4 are Cartesian coordinates on the focal plane, #/ is the
radial coordinate, f the focal length of the lens, d the distance of the
object from the lens and d’ the distance of the image from the focal
plane. & represents the Fourier transform operation. Note that larger
spatial frequencies will appear on the focal plane further away from the
optical axis.

The field distribution at the image plane can be represented in terms
of the Fourier transform of the distribution at the focal plane as

E' = le'ik(d*z+r'2f2a") 9«*{E{,2’}(uf, vf)eiz:r[uf(xwpwufu-ém)l du’ dvf (22)
P A

where the spatial frequencies »/ and v/ are defined as

x4 x5
S =— v =— 23
" Af Af (23)
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In eqn (22) we have used E§? as the object field for the lens L. You may
recall that in our case E@ is the electromagnetic distribution containing
the effects of the two diffraction gratings given by eqn (19); ‘p’ is the
transverse magnification defined by

=-= (24)

From the expression for E§? (see eqns (19) and (1)) and from eqn (21)
it can be seen that the virtual images of the two gratings are projected
as distinct diffraction spots on the focal plane of the filtering lens. This
is because the Fourier transform of sine and cosine functions (or
complex exponentials as in egn (1)) are delta functions. Filtering can
now be performed at the lens focal plane simply by physically blocking
all undesired diffraction spots. In the CGS setup all spots are blocked
except for the +1 or —1 orders. These are the ones on either side of the
central, brightest, diffraction spot.

Although it is very simple to block all but the desired orders, we can
also obtain a mathematical representation of the filtering process. To
obtain the final, filtered, distribution E’' on the image plane, we
substitute for E{ in eqn (22) from eqn (19), but now the integration in
eqn (22) is performed over some spatial limits on the lens focal plane.

1 g
E’(x{, xi) — _e—lk(d+z+r /2d")
m

wo+ Sax x e
X f 97{ > > T.TE|x, + (m+1)R,6, + IAG,, xz)}(u, v)

wo— duwg m= - [=—x

X ei2xlutiie)+vixiie)l qy dy (25)

The filtering occurs by the limits on the integral sign. It is clear that the
filter on the focal plane is isolating wavefronts whose Fourier com-
ponents are in the range w,— dw,<u <w,+ éw,. If the deflection
angles introduced by the specimen deformation are smaller than the
diffraction angle induced by the square gratings, then all the informa-
tion about the deformation in the specimen is obtained by the light
passing through the mth order point on the focal plane of the lens. This
means that there is no crosstalk between diffraction spots formed on the
focal plane.

The only order that survives after filtering is that for m =1.
Equations (20) and (14) then give

1
E&z)’]st = 2_7r (E(](X] + R()Gg, x2) + E()(X| -+ R()B() - Ae(), x2)) (26)
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As was mentioned earlier, only this order contains two interfering
wavefronts. The image of the field of eqn (26) is E(x], x;) and is given
through eqn (25) by

Al 2y , , ,
E!hs‘(x{, x;_) — __eflk(d+z+r 12X") X (elks((X]‘Rna(])‘ﬂ,Xﬁ,‘p) + e1k5((X|+R(.anABo)/p.xﬂp))

(27)

In the above expression we have made use of eqns (26) and (1). The
information about the deformation is contained in this electromagnetic
light field distribution.

Step 4: Light intensity and fringe pattern on the image plane

The light intensity I’ on the image plane is obtained from the relation
I'(xj, x3)=E' = E’ (28)

where E' is the complex conjugate of the electromagnetic field E'.
Using eqn (27), I' can easily be calculated as

A 1)\? )
= 2(2—”;) {1+ cos [k(S((x| + Ro80)/p, x./p)

= S((x; + Ro8y — ABo)/ p, x3/p))]} 29)

The local maxima of light intensity will appear as bright interference
fringes on the image plane. The condition for constructive interference
is

k(S((x}+ Ry60)/p, x3/p) — S((x1 + R8, — ABy)/p, x3/p)) = 2nmr,
n=0, 1, £2,... (30)

i.e. the cosine has its maximum value of 1. Using k =2x/A the
interference relationship becomes

(8)s=nA (31)

Here, n is an integer fringe order, § is the image shearing distance and
(S)s denotes the optical path change between the sheared and un-
sheared images. The shearing distance, 8, is given by,
A6 A
d=—=A— (32)
p pp
In the above we have made use of eqn (18) and the image magnification
p on the image plane is still included. Note that we can derive the
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relationship of eqn (31) to the interference condition with a simple
calculation, as is shown in Mason er al.'” If the image shearing is small
enough, we can approximate the difference operation in equation (31)
by a differential form of the optical path, so that

aS(xy, x2) np
0x, A’

In eqn (33) we have expressed § as a function of (x,, x,), i.e. on the
object plane. That is why the magnification factor has been removed.
Equation (33) is the fundamental relationship for fringe creation in the
method of CGS. It relates the gradient of the optical path change
introduced in the collimated beam to the fringe order # on the image
plane. One can go through a similar process, but with the gratings’ lines
set perpendicular to the x, direction to obtain shearing in the x,
direction. Then we obtain

n=0, 1, £2,... (33)

3S(x1, x5) _mp
ax, A ’

Up to this point the analysis is equally applicable to a transmission or
reflection setup. The difference between the two methods will be in
interpreting the effects of deformation on .

Note that the approach in Ref. 14, 15 does not allow the use of the
method when a large grating separation exists, since the analysis
presented there directly results in the approximate relations (33) and
(34). The current work justifies the interpretation of CGS fringes as
differences of optical path change, as seen in eqn (30). Conditions
under which relation (30) can be reduced to (33) or (34) have been
examined in Bruck and Rosakis.'®"

m=0, £1, 2, ... (34)

3 APPLICATIONS OF CGS

The application of CGS to fracture mechanics was described in Ref. 8.
However, the technique can be used for the study of a variety of solid
mechanics problems. In this section we shall show the applicability of
the method to both transmission and reflection setups and provide some
examples of the method’s results.

3.1 Relationship between specimen deformation and optical path
change § in transmission

Consider a collimated coherent monochromatic light beam incident
normally onto an optically isotropic, transparent specimen of uniform
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nominal thickness & and refractive index n,. Deformation of the plate
specimen will introduce an optical path change S(x;,x;) in the
transmitted wavefront. This is given by the elasto-optical equation
(Rosakis and Ravi-Chandar®):

12

12
S(xy, x2) = 2h(ng — 1)f £43 dxa/h + 2h f &n dx,/h (35)
0

0

where €;; is the strain component through the thickness of the plate and
on is the change in the refractive index through the specimen. The first
integral in eqn (35) represents the net optical path difference because of
changes in plate thickness caused by strain. The second term is the
result of changes in material refractive index because of stress present
in the specimen. For an optically and mechanically isotropic linear
elastic solid this change, dn, depends upon the stress state though the
Maxwell relation (Born and Wolf?):

on(x,, x,, x3) = Di(0,, + 02+ 033) (36)

where D, is the stress-optic constant and o, are the Cartesian
components of the Cauchy stress tensor induced by the deformation.
We can use the same assumptions to relate the strain component &;; to
the stress state from the linear elastic constitutive law. Substituting this
result and eqn (36) into eqn (35) we get

T3

1/2
S(x;, x2) =2c,h J {(a,, + 0-21)(1 + Dz[m])} dxs/h (37)
0 V(g + o3;)
where ¢, =D, —v(n,—1)/E, E and v are the Young’s modulus and
Poisson’s ratio of the material, respectively, and D, is a modified optical
constant given by:

_vD+v(n,—1)/E

D
> D~ v(n,—-1/E

(38)

In eqn (37) the term in the square brackets, o1/ v(0o,;, + 05,), illustrates
the degree of plane strain. If it is +1, a plane-strain two-dimensional
approximation is appropriate. When plane stress is a good approxima-
tion to the three-dimensional situation (for example in very thin
experimental specimens) then eqn (37) reduces to

S(xy, x2) =c,h(Gy + Gx) (39)

where é&,;, and &, are the thickness averages of ¢, and o,
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respectively. Substituting eqn (39) into eqn (33), we obtain the CGS
relations for transmission under plane stress conditions:

(G + Gn) __np
ax, c,hA’

n=0, £1, +2--- (40)

3.2 Relationship between specimen deformation and optical path
change § in reflection

In this section we shall provide an analysis similar to that above, but for
the case of reflection. Consider a specimen whose reflective and initially
flat surface occupies the (xy, x,) plane. After deformation the specimen
surface will no longer be flat. The new surface will be described by a
function F(x,, x5, x3).

Fx,, x5, x3) = X3+ us(x;, x2) =0 (41)

where u; is the out-of-plane displacement component on the specimen
surface. Now the change in the optical path difference depends only
upon &,; as follows:

172

S(xl,X2)=2u3(x1, Xa, h/Z):th 833(X|,X2,X3)dx,/h (42)
0

To this point we have not assumed any constitutive behavior, but we
have used a small strain approximation. Specializing eqn (42) to a
linearly elastic and isotropic solid we get

S(xy, x3) = 2us(xy, x5, h/2)

2vh (7 { [ O3 }}
= - — o, to 2 1- dx /k 43
) (@t on|l- sk (@)
Utilizing a plane stress approximation as before,
2vh
S(xy, x2) = 2us(x,, Xx,, h/2) = H_'E(é'u + 62) (44)

Substituting the above in eqn (33) we end up with

ou _ np

ax, 24’

or (45)
_Vh(Gy +Fn) np

E ax, 2N’

n=0 1, £2---

n=0, £1, £2--- for plane stress
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These equations describe the CGS fringes in a reflection setup and are
analogous to eqn (40). Note that in this case the fringes represent
contours of constant gradient of out-of-plane displacement on the
specimen surface.

3.3 Static and dynamic experimental results

Static experiments

A typical interferogram generated by the CGS method is shown in Fig.
7(a). This is in a transmission setup on an edge-cracked PMMA plate
loaded in a three-point bend configuration. This is a typical loading
geometry used in fracture mechanics investigations, but the method can
be used in many areas of experimental solid mechanics. In Fig. 7(b) we
see the fringe pattern resulting from the application of a line load on an
uncracked PMMA plate of large in-plane dimensions, thus approximat-
ing a line load on a half space. The stress field measured by CGS agrees
well with that predicted from linear elasticity, over a large region of the
body. In all these cases, which are in transmission, we can use equation
(40) to evaluate the derivative of the in-plane stress components, under
plane stress conditions. Therefore, in attempting to analyze a fringe
pattern we must first establish the zone of two-dimensional plane stress
conditions (if one exists) on the particular test specimen.

Let us consider in more detail the data reduction for one particular
interferogram. Figure 8(a) shows an interferogram obtained from a
statically loaded three-point bend specimen of a precracked bimaterial
system, consisting of PMMA bonded to aluminum (from Lee and
Rosakis?'). Transmission CGS was used, hence we see only half the
fringe pattern: the one on the PMMA side of the bond. Establishing the
plane stress region of such a specimen can be done numerically using a
three-dimensional calculation. For homogeneous specimens such a
calculation was performed by Krishnaswamy er al.** For an interfacial
specimen a similar analysis was made by Lee and Rosakis. They show
a three-dimensional zone extending ahead of the crack tip along the
bond line. It has a width of approximately half a plate thickness. Figure
9 shows a three-dimensional contour plot of the quantity o:/v(oy, +
o) (see eqns (37) and (43)), which is a measure of three-
dimensionality. The dark region represents a value of zero, and
corresponds to a two-dimensional situation in which eqns (40) and (45)
are applicable. We can therefore collect a series of experimental points,
from outside the three-dimensional region, which will give us the
value of d(o;, + 02)/0x; at each location r;, 6; where r, 6 are polar
coordinates centered at the crack tip and i denotes the ith data point,
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Fig, 7. Interferograms showing the CGS pattern around (a) the crack tip of an
edge-notched plate under three-point bending and (b) the area of application of a line
load to a large uncracked plate.
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(b) CGS Fringe Pattern

o o a/W =0.26 h/W = 0.025

15
-3
*10

Fig. 8. (a) CGS interferogram at the crack tip of a PMMA/aluminum bimaterial
subjected to three-point bending. (b) Superposition of experimental data points (from
(a)) on solid lines generated by fitting a K-dominant stress field to the interferogram.

Asymptotic linear elasticity theory predicts the most singular in plane
stress components around the crack tip as

o, = \/2% [Re {Kr}Zi{6, €) + Im {Kr*}Z}(6, ¢)] (46)

where K =K, +iK,=|Kle"™ is the complex stress intensity factor as
defined by Rice®® for the in-plane modes, and X} and Zj} are the
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Fig. 9. Visualization of the region of three-dimensional deformation in a

PMMA /aluminum edge-cracked plate subjected to three-point bending. Contours of

constant o5,/ v(o;, + o) are shown. Only the PMMA side of the specimen is depicted.

The top surface visible in the figure is the mid-plane of the specimen and the
traction-free crack faces are on the left.

angular variations of stresses. The oscillatory index & is material-
dependent and characterizes the interface. It is given by

c 1ln[guz+u1]

= 47
2r Kopy + o “7)

where «k, =3 —4v, for plane strain and (3-v,)/(1+ v,) for plane
stress, with u,, v, being the shear modulus and Poisson’s ratio for each
material (a =1,2). This is a two-dimensional field and is applicable for
plane stress or plane strain conditions. The existence of such a field,
though, must not be taken for granted if we manage to show that
two-dimensional conditions apply. The two issues are completely
different. So the existence of a field given by egn (46), called a
K-dominant field, in the specimen of Fig. 8(a) is something to be
investigated.
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Under the existence of a K-dominant field in a plane stress region, by
combining eqns (46) and (40) we can get

a8 (x;, x;)
— =
dax;

(G + G2)
~c h———=
0x;

2| S Y (B+wre )} @)
ax, \V2xr cosh (ne,,) 32 V+ednr

where n is the fringe order. In eqn (48) we have as unknowns the
fracture parameters ¢ and |K|. To extract these values from our
experiment we can perform a least-squares fitting procedure on the
collection of data points 7, 6;,, n,. After obtaining ¢ and |K| we can
easily calculate K, and K,. At this point we can check whether a
K-dominant field does indeed exist in the particular specimen used (e.g.
Fig. 8(a) in this case). It is possible to superimpose digitized data points
from the actual fringe pattern to a set of CGS contours derived
numerically using the fitted values of K, and K, as input. Such a
composite is shown in Fig. 8(b). It is clear that the agreement is very
good in regions of plane stress. This is as expected, since points inside
the three-dimensional region cannot possible conform to a K-dominant
field that is a two-dimensional field.

=c,h

Dynamic experiments

Application of CGS to dynamic experiments is quite straightforward.
The experimental setup is exactly the same as in the static case. The
fringe pattern generated is imaged onto a high-speed camera, with a
framing rate adequate for the particular experiments (typically 2 X
107%). A typical sequence of dynamic mixed-mode interferograms in
trartsmission from a PMMA specimen impacted in a drop weight tower
is shown in Fig. 10(a) and (b) (from Mason et al.'’). The specimen and
loading geometries are shown in the inset. A visible change in the fringe
pattern in both size and rotation occurs over time. It can be easily
shown that the lobe rotation is proportional to the mode mixity present
in the field. The stress field seen in Fig. 10(a), (b) shifts from primarily
mode II to a mode I field after about 300 ws. It is possible to analyze
each one of these interferograms using a procedure like that described
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Fig. 10.

Dynamic interferograms of an asymmetrically loaded edge-cracked PMMA
plate (a) at short times after impact and (b) at long times after impact.
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above. In a K-dominant situation, the in-plane stress field for a
dynamically loaded stationary crack will be given by
_Ki(®) Ky(1)

Oop = ﬁfiﬁ(e) + ﬁfﬁﬂ(a) (49)

Here r and 6 are plane polar coordinates centered at the crack tip, ¢ is
the time variable and Greek indices « and B have the range 1, 2. Using
eqns (49) and (40) we can perform a least-squares fit for K; and K, at
each time, thus obtaining a time history of the fracture parameters.

The method of CGS has been applied in many other dynamic
experiments. A study of dynamic K-dominance in three-point bend
specimens was made in Ref. 24. Experiments and analysis of bimaterial
specimens was performed in Ref. 25 and Refs 26-28. Also CGS
imaging of dynamically deforming composite laminates has been
performed in Ref. 29. A typical sequence of CGS interferograms
resulting for the out-of-plane impact of a graphite/epoxy composite
laminate is shown in Fig. 11. Since these experiments were performed
in reflection, the observed fringe patterns represent contours of
constant out-of-plane displacement gradient. By digitizing each fringe
and performing a numerical integration of the displacement gradient, it
is possible to derive the out-of-plane displacement history of the
deforming laminate.

General applications

It 1s clear that the CGS method will produce a fringe pattern from any
object that introduces an phase shift in the incident laser beam. For
example, a fringe pattern may be obtained by passage of the beam
through a gas or liquid with density variations. Density variations cause
a change in refractive index. This means that the method may be used
in fluid mechanics applications as well. Actually, it is very similar to
Schlirien methods already used by fluid mechanicians. An example of
the diverse abilities of the method is shown in Fig. 12. This is an
interferogram produced by the passage of a laser beam through the
flame plume of a Bunsen burner. Temperatures in the burner reach
1000 °C. This causes density variations which we see as fringes.

4 CONCLUSIONS

In this paper we present a simple and accurate analysis of CGS using
Fourier wave optics. It has been demonstrated that by employing the
procedure shown in Section 2 it is possible to use the Fraunhofer
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Fig. 12. Fringe pattern obtained by the CGS method from the flame originating from
(a) an alcohol burner and (b) a Bunsen burner.

far-field approximation to analyze the entire CGS setup. This analysis is
one of the simplest of the existing analyses of CGS. In addition, it is the
only one that predicts the interpretation of CGS as contours of equal
difference of acquired optical path, for large amounts of shearing.
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In the second part of the paper we discuss examples of the
multifaceted uses of CGS in mechanics. These examples illustrate that
CGS is a versatile experimental tool which has already been used
successfully in the study of a variety of solid mechanics problems. In
particular, the fact that CGS does not suffer from large light intensity
losses allows for the use of very small exposure times in dynamic
applications, which produces very sharp images of fast-moving subjects.
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