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Abstract-Transonic interfacial crack growth in bimaterial systems is analysed, and the asymptotic 
field around the moving crack tip is obtained by the straightforward approach of analytic continu- 
ation. The power of singularity is less than l/2 for anti-plane shear deformation. For in-plane 
deformation, the power of singularity can be real or complex, depending on the speed of the crack 
tip. Across the Rayleigh wave speed, the real part of the power has a jump of -l/2, and the 
imaginary part approaches infinity. The stresses are singular, not only around the crack tip, but 
also on an entire ray moving with the crack tip. These observations are illustrated by examples 
using PMMA/steel and Al/A&O, bimaterial systems. Copyright 6 1996 Published by Elsevier 
Science Ltd. 

1. INTRODUCTION 

Numerous studies have been made of the dynamic interfacial fracture in the sub-Rayleigh 
speed regime, i.e. crack-tip speed lower than the Rayleigh wave speeds of each constituent 
in the bimaterial system [for example Gol’dstein (1967), Willis (1971, 1973), Brock and 
Achenbach (1973), Atkinson (1977), Yang et al. (1991), Wu (1991), Deng (1992) and Liu 
et al. (1993)]. It has been argued that the lower Rayleigh wave speed of the two constituents 
should be the terminal speed for interfacial crack propagation. Yang et al. (1991) con- 
vincingly showed, using an energy consideration, that dynamic debonding beyond the lower 
Rayleigh wave speed is admissible. The experimental studies on PMMA/steel bimaterial 
systems by Liu et al. (1993) and Lambros and Rosakis (1995) demonstrate that the crack- 
tip speed can be greater than, not only the lower Rayleigh wave speed, but also the lower 
shear wave speed. 

Motivated by these experimental observations for PMMA/steel bimaterial systems, 
Liu et al. (1995) studied the asymptotic field near the transonically moving interfacial crack 
tip for an elastic solid bonded to a rigid substrate. This simplification of representing a 
stiffer constituent in the bimaterial system as a rigid substrate originated from the high 
elastic mismatch for the PMMA/steel system, $fee’//lPMMA = 66.7, where p is the shear 
modulus. 

Very recently, it has come to our attention that Yu and Yang (1994) have obtained 
the near-tip asymptotic field for an out-of-plane shear (mode III) propagating crack running 
at a speed between the shear speeds of the constituents of the bimaterial interface. This 
study, which follows an entirely different methodology than the one presented in Section 2 
of the current work, was conducted in parallel to our own investigation. 
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Since our work was motivated purely by experiments performed at Caltech over the 
past 5 years, our analytical emphasis is mainly directed toward investigating features of the 
near-crack-tip field that are easily identifiable by experimental measurements. As will 
become apparent, our work seeks to identify crack growth regimes where phenomena such 
as large-scale contact or the existence of lines of singularity emanating from the crack tip 
exist. These are features that seem to depend on crack-tip speed and were first observed in 
the experiments of Lambros and Rosakis (1995). In addition, the aim of the present 
study also includes the mathematical investigation of asymptotic fields surrounding a 
transonically moving interfacial crack tip for a general bimaterial system. In order to 
illustrate the properties of the near-tip fields, we choose to present results for the powers of 
singularity and oscillation and the angular stress distributions for bimaterials of some 
practical significance. These include a PMMA/steel system, which allows direct comparison 
with the dynamic experiments (Lambros and Rosakis, 1995), and an Al/A&O, system, 
which is a classical system often used in quasistatic investigations. 

For the in-plane cases, the velocity regime studied is limited to the range 
ci’) < v < min [c, (2), ci’)]. Our choice is again motivated by experimentation, which does not 
show any evidence of transonic crack growth with velocities outside this range. 

2. ANTI-PLANE SHEAR DEFORMATION 

In the absence of body force density, the elastodynamic displacement field in a fixed 
orthogonal Cartesian coordinate system, z&, , x2, x3, t) (i = 1,2,3), is called anti-plane 
shear if the components of the displacement field are such that 

Ua(X,,X2,Xj,t) = 0, c! = 1,2 

%(-%,%,X3,0 = w(x,,x*,0. (1) 

For the anti-plane shear deformation, the non-zero components of strain and stress are 
related to the function w(x,, x2, t) by 

4x1, x2,4 = $y,(XI 9 x*, 0 

~&,,%,O = pw,u(xl,X2,0, @I = 192 (2) 

where p is the shear modulus of the elastic solid. The equation of motion becomes 

where c, is the shear wave speed of the solid and c, = Jp/p (p is the mass density). 
Consider a bimaterial system composed of two homogeneous, isotropic, and linearly 

elastic solids. Also, these two different materials are bonded along a straight interface and 
undergo anti-plane shear deformation. Without a loss of generality, it is assumed that 
CA” < ci2), where the superscripts 1 and 2 indicate the materials above or below the interface, 
respectively (Fig. 1). An interfacial crack propagates along the interface with speed V, such 
that 

cj’) < v < ci2). (4) 

As a result, the interfacial crack growth is transonic. 
Both w(‘)(x~, x2, t) and w(‘)(x~, x2, t) satisfy the equation of motion (3) in the cor- 

responding half-planes. By introducing the moving coordinate system (vi, q2) = (x, -d, x2) 
and assuming that the crack growth is steady state, the equation of motion becomes 
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Fig. 1. Transonic crack growth along a bimaterial interf8ce; 
bimaterial systems. 
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$,, = [(-$*]1s2. @,1;=: [1-(g)‘]“‘_ 

cy for 

(6) 

(7) 

It is clear that eqn (5) is hyperbolic and that eqn (6) is elliptical. 
The most general solution to eqn (5) can be expressed as 

where g(y~~ -t&q,) and $(rl -L&q,) are real functions of their respective arguments. Similar 
to supersonic flow in aerodynamics, a material point ahead of the crack tip does not feel 
the disturbance from the transonically moving crack. and one finds 

Hence. 

(9) 

On the other hand, the most general solution to eqn (6) can be expressed as 

where zsz = q, fief, Re stands for the real part of the argument, and F(z,J is an analytic 
function in the lower zs2 plane, i.e. c.c,~~~ d 0. 
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Now in terms of the functionsg(q, + oi,,~,) and ls(z,,), the continuity of the displacement 
and traction across the interface can be written as 

2g(y,)-[P~(y,)+~+(~1)1 = 0, for ‘I~ > 0 (114 

2oi,,~(‘)g’(~,)-iicr,z~“‘[~~(v],)-~’+(q,)] = 0, for ye, > 0 (1 lb) 

where the overbar denotes a complex conjugate and the following notation has been used : 

Eliminating the function g(q,), one gets 

(l-$)P’+(q,)-(1 +iB)F’--(U],) = 0, for ye, > 0 (12) 

where /II = &,,#‘/a,,~ (2) By analytic continuation, eqn (12) leads to a new function, 0(z), . 
which is analytic in the entire plane, except on the crack surface, 

0(z) = 
i 

(1 -ip)P’(z), Im(z) > 0 

(1 +ip)F(z), Im(z) < 0. 
(13) 

The traction-free boundary conditions on the crack surface take the form 

g’(yl,) = 0, for yll < 0 (14a) 

F’P(v,)-P+(~,) = 0, for y, < 0. (14b) 

Using the new function, 0(z), eqn (14b) becomes 

1 -ip 
‘+(r’)- * +ig PO-(q,) = 0, for y, < 0 (15) 

which represents a Riemann-Hilbert equation. The solution to this equation, which also 
complies with the requirement of bounded displacement, or ]O(z)l = O(lz]“), as ]z] + 0 for 
somea> -1,is 

O(z) =$$ 
^ (1) 

q(v) = $ tan-’ % 
42P 

(16) 

where A(z) is an arbitrary entire function. The power q is the order of singularity for 
stresses around the crack tip subjected to anti-plane shear deformation, and it increases 

?), increases from monotonically from q = 0 to q = l/2 as the crack propagating speed, 
c!” to c!“. From eqn (13), one has \ \ 

1 A (z) F’(z) = P*P 
1 -iB z4(~) ’ 

Im(z) > 0 

1 A(z) F’(z) III ~ - ~ 
l+i/3 z~(l) ’ 

Im(z) < 0. 

(174 

(17b) 

Thus, A(z) = d(z). 
Returning to eqn (1 la), one finds 
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S’(Sl> = __ forq,>O 

and, together with eqn (14a), one has 
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(18) 

(19) 

where H(w) is the Heaviside step function. If one is only concerned with the leading term in 
the steady-state solution and rigid-body motion is neglected, one can get the expressions 
for w”‘(q,, y2) and w(*)(rl,, y2) : 

----~-rk4”){~~~ [l -q(v)]&,+flsin [l -q(u)]Os2} (20b) 

where the scaled polar coordinate system (Y,*, Q,,) is defined by z,* = Y,* e$ and is related to 
Cartesian coordinate (r,, n2) by 

(21) 

and A0 is an arbitrary real number. 
For the limit #‘)/,u(*) = 1 and p(‘)/p(*) = 1, the bimaterial system degenerates to a 

homogeneous solid. For the other limit, #)/#*) = 0, th e substrate becomes a rigid solid. It 
is interesting to observe that these two limiting cases have the same equation of motion, 
eqn (5), and exactly the same boundary conditions : 

W 
92-o+ 

= 0. (22b) 
7, ‘0 

The only displacement field in eqn (9) satisfying these boundary conditions is w = 0 since 
the entire system is hyperbolic. This means a crack cannot propagate transonically in 
homogeneous or elastic/rigid solids under anti-plane shear conditions. 

The stresses are singular at the crack tip, as expected. Moreover, from eqn (20a) for 
the upper half-plane, the left wedge (q, -t oi,,y, < 0) is stress free, while the stresses to the 
right of the wedge are singular on the entire ray q, + oi,,~/~ = 0 instead of on a single point- 
the crack tip. This distinct feature of a line of singularity propagating with the crack tip is 
unique for transonic crack growth. 

The power of singularity, q, as given in eqn (16) is shown vs the normalized crack 
speed, V/C:” , in Fig. 2 for two bimaterial systems, PMMA/steel and Al/A1203. Crack growth 
in the PMMA/steel system was studied by Liu et al. (1993) and by Lambros and Rosakis 
(1995) and Al/Al,O, is an example of a ceramic matrix composite (Evans and Marshall, 
1989). The mechanical properties and shear wave speeds for these materials are given in 
Table 1. The crack speed, V, can vary between the two shear wave speeds for the bimaterial. 
For the PMMA/steel system, the singularity is rather weak for a wide range of crack speeds 
due to large elastic mismatch, and the singularity increases sharply as v approaches the 
shear wave speed of steel. 
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Fig. 2. Power of singularity, y, vs the normalized interfacial crack speed, u/c~“. for PMMA/steel 
(solid line) and Al/Al,O, (dashed line) bimaterial systems with anti-plane deformation ; crack speed 

in the range [cPMMA, czfee’] and [c:‘, c$z”q], respectively. 

Table 1. Properties and wave speeds of selected materials 

Longitudinal wave speeds 
Shear wave -- 

Shear modulus Poisson’s ratio Density speeds Plane stress Plane strain 
p (GPa) v P (kg m-7 c, (m SK’) c/ (m s ‘) cI (m SK’) 

PMMA 1.2 0.35 1190 1004 1761 2090 
AISI 4340 Steel 80.0 0.30 7833 3196 5402 5979 
Al 26.3 0.33 2700 3122 5394 6198 
Al,@ 151.0 0.26 4200 5992 9851 10521 

It is noted that the scaled polar coordinate (rSz, fI,,) in eqn (21) can be written in terms 
of polar coordinates (r, 0) as 

Y S2 = r(cos’ B+c& sin2 0)“2, es2 = tan~‘(a,, tan 6). 

Hence, the dependence of the shear stresses on polar radius r and polar angle 8 are separated, 
i.e. 

(23) 

where the non-dimensional functions FE satisfy pr(0 = 0) = 1. Functions yN(0) (a = 1, 2) 
represent the angular distributions of shear strains and depend on the polar angle 8 in 
addition to crack speed and bimaterial properties. The remote loading distributions only 
influence the near-tip stress field through the constant &. Functions y”,(0) and j2(8) are 
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Fig. 3. The angular distribution of normalized strains, yG (a = 1,2), for PMMA/steel (solid line = 8, ; 
long dashed line = p2) and Al/AI,O, (dashed line = y, ; dotted line = h) bimaterial systems with 

anti-plane deformation, v = 1.5cj”. 
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shown vs all ranges of the polar angle (- 180” < 8 < 180’) in Fig. 3 for PMMA/steel and 
Al/A&O, systems for U/C:‘) = 1 S. A discontinuity of&(B) exists across the interface (0 = 0) 
because of the elastic mismatch. It is clearly seen that the variations of 7% are relatively 
small (except for the jump) until the wedge boundary, 8 = 90” + tan-’ oiS,, is approached. 

3. IN-PLANE DEFORMATION 

The in-plane elastodynamic field is considered in this section. The displacements are 
independent of x3 in any fixed coordinate system (xl, x2). The in-plane displacements can 
be expressed using two displacement potentials, 4 and t,+, as 

W(XlrX2r0 = 
W(x,,x2,0 + hwl,.~2,0 

8x 
8x2 

(24a) 
1 

%(X1,X2,0 = 
W(Xl,X2,Q W(x,,x2,0 

- 3X ax . 
2 1 

Pb) 

The strains and stresses can be given as 

E,, = +,,,+11/,,*, E22 = @,22-$,,2, El2 = h2+5W.*2+fw (2W 

Ic+1 
alI =p -&ll+s~22), lc-1 a22=p(~&22+~&ll). al2 =2w2 (2%) 

where p is the shear modulus, K = 3 -4v for plane strain, IC = (3 - v)/( 1 + v) for plane stress, 
and v is the Poisson’s ratio. The equation of motion becomes 
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4,&,,%,4 = d$%w) 

$.z,(X,,XZ,r) = $(%X*J). 

(26) 

(27) 

Besides the shear wave speed, c, = a, there is another speed in the in-plane defor- 
mation-the longitudinal wave speed, cL = [(K+ l)/(lc- l)]“*c,. 

Consider the bimaterial system in Fig. 1. Without a loss of generality, it is assumed 
that c(‘, < ci*‘, where the superscripts 1 and 2 indicate materials above and below the 
interfdce, respectively. An interfacial crack propagates transonically with speed v such that 

c!l, < v < min [ci*,, cj”] (28) 

where min stands for the minimum of ~6’) and c$‘). By introducing the moving coordinate 
(a,, q2) = (xl -ut, x2) and assuming that crack growth is steady-state, the equations of 
motion become 

and 

where oi,, and CI,* are the same as in eqn (7) and cl!, and a,, are given as 

ur, = [l-($~l’:*> N/2 = [l-($1]“*. 

(29) 

(30) 

(31) 

(32) 

(33) 

It is clear that eqn (30) is hyperbolic and that eqns (29), (31), and (32) are elliptical. 
Similar to the discussion in the previous section, the general solutions to these equations 
are 

@‘)(vI,,YI~) = Re[F,(zdl (34) 

4(*)(yll,r2) = Re[F2(zdl (36) 

Ic/(*)(~l~,y/~) = Im[G2(zs2)l (37) 

where zpl = 11, +icr,,q, ; zf2 = ql +by12; z,2 = v1 +ias2y12, Re and Im stand for the real and 
imaginary parts of the argument, respectively ; F, (z[,) is an analytic function in the upper 
zel plane (ae,q2 3 0) ; and F,(z,,) and GZ(zsJ are analytic functions of zp2 and zs2 in the 
corresponding lower half-plane (c+~Q d 0, c~,~Q < 0), respectively. 

The displacements can be derived from eqn (24), 



Transonic crack growth along a bimaterial interface 2633 

~5’) = Re [F’, kdl +&g’(rl, +k,v2) (384 

4’) = -ucl Im F,h>l-g’b, +&y/2) (38b) 

and 

~(1~) = Re [F; (zf2) + &G i (z,,)] 

u12, = - Im [ag2F; (z,J + G; (zJ]. 

The stresses are given by eqn (25b) as 

and 

a\‘) = ~~1~{(1+2~~,+~~l>Re[Pl(z,l)]+2~,,g”(~, +&r2)) 

CJ$:’ = -#‘,{(l -oi$) Re[F;(z,,>]+20i,,gn(yl, +oi,1~2)} 

a\:’ = -#“{2Cre, Im[F;(z,,)1+(1-~~l)g”(~, +&rl2)1 

or:’ = pC2, Re [(l + 2~:~ - c(f2)F; (ze2) + 2aS2GI; (z,~)] 

a$?;) = -pC2, Re [(l +cx,‘,)~~(z,,)+~~,~G~(z,~)] 

a\? = - pC2) Im [2c~,~F’; (zp2) + (1 + c&)GI; (z,J] . 

(394 

Wb) 

(404 

(4Ob) 

(4Oc) 

(414 

(4lb) 

(4lc) 

Now, from eqns (38) and (39), the continuity of displacements across the interface, 
[[u,]] = 0 and [[u2]] = 0, can be written as 

F;+(?,)+E;-(?,)+2oi,,g’(?,) = ~~~(111)+~~‘(~l)+~,2[G~~(~l)+~~+(~l)l for ql > 0 

(424 

a,,[F;+(?,)-~;-(~,)l+2ig’(vl,) = crez[F;-(ul,)-P;+(rl,)l+G;~(r,)-G;+(r,) 

for q, > 0. (42b) 

From eqns (40) and (41), the continuity of stresses across the interface, [[o,J] = 0 and 
[[az2]] = 0, can be written as 

2y~p,[F;I+(r,)-E;I-(~1)1+2iy(l-~,21)g”(~,) = ~cI~~[F;-(YI~)-~~;+(~,)I 

+(l+as’2)[G~-(il,)-G;+(?,)] for r, > 0 (42~) 

Y(1-~,:)[~;+(r,)+~;-(rl,)l+4~~,1g”(rl,) =(l+a,Z,)CF;‘-(rl,)+E;‘+(rl,)l 

+~c(,~[G;‘~~(YI,)+G;‘+(~,)] for q, > 0 (42d) 

where y = $1,/#2,. 
Equation (42b) is used to eliminate g(q,) from eqns (42a,c,d), which can then be 

rearranged in the following matrix form : 

where 
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-i(l -G)l 2yoi,,cc~2+i(l +asi) 2yoi,, +2ia,, 

&*[2-y(l -G)l l+as’2-y(l-L$,) 
&a,,+i is, + iaSZ 

(44) 

From analytical continuation, eqn (43) leads to a vector of three new functions, 0(z), which 
is analytic in the entire plane except on the non-positive part of the real axis (i.e., the crack 
surface) : 

0(z) = M[F;(z), E’;(z), Go]’ for Im(z) > 0 (45a) 

e(z) = i$l[P;(z), F;‘(z), G’;(z)]~ for Im(z) < 0 (45b) 

where the superscript T stands for the transposition. Equation (45) can also be written as 

[F;‘(z),P’;(z), G;(z)lT = M-,8(z) for Im(z) > 0 (46a) 

[E”,‘(z), F”(z), G;(z)lT = RP ‘0(z) for Im(z) < 0. (46b) 

The traction-free condition on the upper crack surface (q, < 0, q2 + 0’) gives 

Mc,]FP+(q,)-W(r,)]+i(l--&oi,:)g”(q,) = 0 for q, < 0 (47a) 

(1-@,)[JY+(n,)+P;-(rj,)]+4oi,,g”(~,) = 0 for ye, < 0. (47b) 

Function g can be eliminated from eqn (47) giving 

[4&c+, -i(l -oi$)*]FY+(q,)-[4&c+, +i(l -oi~,)2]~‘;P(~,) = 0 for ‘I, < 0. (48) 

The traction-free condition on the lower crack surface (q, < 0, r12 + O-) gives 

2a,2[F;‘-(?,)-E;‘+(r,)]+(1+~,2,)[G;~(r,)-G;f(r,)] = 0 for V, < 0 (49a) 

(1+as’2)[F;‘~(~,)+E;f(~,)]+2a,2[G;-(~,)+G;f(~,)] = 0 for r, < 0. (49b) 

Equations (48) and (49) can be rearranged in the following matrix form : 

(50) 

where 

4&c+, -i(l -I?:,)’ 0 0 

P= 0 -i(l +MS~) -2icr,, (51) 

0 2%2 1 +a,‘, 

Equation (50) can be rewritten in terms of the analytical function e(z) in eqn (46) as 

PM-,e+(q,)-PPRPe-(n,) = 0 for n, < 0 (52) 

where 8*(~,) are the limits lim 
‘I, <o,rlz-o* 

8(~, + iq2), respectively. 
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An auxiliary problem needs to be solved for eqn (52). Let ill, &, and I, be the 
eigenvalues and x,, x2, and x3 be the corresponding eigenvectors for the following eigenvalue 
problem : 

PM-‘~-,liji%-‘~ = 0. (53) 

The eigenvalues are determined by 

det {PM-’ -iPR-‘} = 0 (54) 

which is a third-order algebraic equation for 1. The details of solutions for A and the 
eigenvectors x,, x2, and x3 are provided in the Appendix. It is found that one eigenvalue, 
say lj, is identically one (l), and the other two, A, and &, are the solutions of the following 
quadratic equation : 

AA2+Bi.+A=0 (55) 

where A and B are non-dimensional complex and real parameters, respectively, depending 
on bimaterial shear moduli ratio y [ = p1”‘/,d2’] and on the crack speed v through the MS (&,, 
417 Es*, and acz) as given in the Appendix. The two eigenvalues are given by 

(56) 

which satisfies 11,l1121 = 1. Moreover, since parameter B is real, eqn (55) can be rewritten 
as 

A ; *+B;+A=O. (1 
Therefore, l/x is also an eigenvalue. The conjugate of eigenequation (53) can also be 
rearranged as 

which indicates that, if x is the eigenvector for eigenvalue 1, 2 is the corresponding eig- 
envector for eigenvalue l/x. There are only two possibilities that need to be considered : 

(i) lJti,l = 1, hence 11,l = 1, ;1, = l/x,, and A2 = l/x,, i.e. 1 and l/x are identical. From the 
discussion above, jia and xol are eigenvectors for the same eigenvalue 2, (a = 1, 2). The 
eigenvectors x, and x2 can be taken as real. 

(ii) l&l # 1, hence 1, = l/x,, or A2 = l/x,. For the eigenvector x1 corresponding to i,, its 
conjugate jil corresponds to l/x, = Jb2, i.e. the eigenvectors x, and x2 are complex 
conjugates. 

The eigenvector corresponding to the third eigenvalue, & = 1, can always be taken as real. 
The analytic functions e(z) can be expanded in terms of the eigenvectors : 

(57) 

where the scalar functions d,(z) (i = 1, 2, 3) are analytic except on the crack surface. The 
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substitution of eqn (57) into the jump condition for 0, eqn (52), and the utilization of eqn 
(53) yield 

i,0:(~],)-0;(~,) = 0 for ye, < 0 (5ga) 

MQ(r,)-K(Y,) = 0 for ~1, < 0 (5gb) 

K(rI)-K(rl) = 0 for YIP < 0 (58~) 

where A., = 1 has been used and 1,,* are given in eqn (56). This constitutes three Riemann- 
Hilbert problems. From the requirement of bounded displacement at the crack tip, or 
l&z)1 = O(lzl”) for some c( > - 1, their solutions are 

e,(z) = F, e,(z) = fq 
zqz 

O,(z) = A?(Z) 

where Ai are entire functions, i.e. analytic in the entire plane, and 

(60) 

where Re(q,) < 1 and Re(q,) < 1 from the requirement of bounded displacements at the 
crack tip. The third eigenvalue, A3 = 1, gives an entire function, A3(z), which leads to no 
singularity around the crack tip. Its asymptotic behavior corresponds to the T-stress parallel 
to the interface. 

Functions F,, F2, and G2 can be obtained by substituting eqns (57) and (59) into eqn 
(46) : 

A,(z) A,(z) 
1 

T 

F";(z>~~(z),~';(~)l~ = M-‘(xI,x~,x~ 7, zyz, A,(z) for Im(z) > 0 (61a) 

Al (4 ‘42(z) 
1 

T 
[P;(Z),F’;(Z),G(Z>lT = ~-‘(x,,x~,x~) zy~> zy2, A,(Z) for Im(z) < 0. (61b) 

Its comparison leads to 

A,(z) 
-x1 + 

24’ 
(62) 

For the first possibility of A, Ii,1 = 1 and IA21 = 1, q, and q2 are real, and all three 
eigenvectors are also real. Hence, from eqns (57) and (59), function 0(z) involves real power 
such that there is no oscillation in displacement and stress fields near the crack tip. Equation 
(62) gives 

A,(z) = A,(z), A,(z) = A2(z), Aj(z) = A,(z). (63) 

For q, > q2 and q, > 0, the most singular term is l/zyl, and the leading term in the 
asymptotic solution for O(z) is A,,,x~/z 91, where Alo and x1 are real, and Alo represents the 
magnitude of the asymptotic field and depends on external loading and geometry. From 
eqn (46), one finds 
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Al0 
= (1-4,)(2-q,) 

z~-~~M-'x,. (64) 

In order to obtain displacement potentials 4(‘), 4(*), and II/ (2) the argument z of functions , 
F,, F2, and G2 needs to be changed to zg,, z/~, and zS2, respectively, as given in eqns (34), 
(36), and (37). The potential $,‘I = g(~,+&,,~2) can be found in terms of F,, Fz, and GZ 
from eqn (42b) for ‘I, + oi,,q2 > 0 and in terms of F, from eqn (47b) for y, + oi,,y, < 0. 

For the other possibility, I,?,1 # 1 and A2 = l/x,, q, and q2 are complex conjugates and, 
consequently, there is oscillation in the near-tip fields. The eigenvectors have the relations 
x1 = x2, xX = ji3, hence eqn (62) gives 

A,(z) = A,(z), A,(z) = A,(z). (65) 

The leading term in the asymptotic solution for 0(z) is A’,,x, /zyl + ,?‘,,x, /z”l and the 
complex constant, A’, o, characterizes the magnitude of the asymptotic field. From eqn (46), 
one finds 

= M-‘(A’,,,zZpy~~, +,?,,~‘~“l~,) 
1 

(1-4,)(2-q,)’ 
(66) 

The conditions governing real or complex q, and q2 are discussed in the following. It 
is recalled that the parameter B in eqn (55) is real, so that B* -4AA in eqn (56) is also real. 

If B2 - 4AA is non-positive, A,,* = (-B+ idm)/2A, and the module of the numer- 

ator is 2m, the same as the denominator, so that lA,,2l = 1 and q, and q2 are real. For 

positive B2-4AA, 11,/,121 = IB--JmI/IB+JmI # 1 so that /,?,I # ],?,I 
and q, and q2 are complex conjugates. In summary, both q, and q2 are real if 

B2 -4Aii < 0. (67a) 

Otherwise, they are complex conjugates if 

B* -4AA > 0. (67b) 

The displacements and stresses can be found in terms of potentials 4 and $ as in eqns 
(24) and (25). For real q, and q2, the stresses have the following form in the asymptotic 
field : 

for q, > q2 and q, > 0, where (r, 0) are the polar coordinates ; k is a real constant depending 
on the bimaterial properties ; and &Up are non-dimensional functions of the polar angle and 
satisfy c?,,(O) = 1. For complex conjugate q, and q2, the stresses have the form 

(69) 

where k’ is a complex constant depending on the bimaterial properties and 8:; and CY$ are 
non-dimensional functions of polar angle and satisfy ez;(fI = 0) = 1. It is observed, again, 
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that the remote load distributions only influence the near-tip stress field through the 
constant A,,, or A’,,,. 

For the limiting case of elastic/rigid bimaterial systems, [,u’*’ = co], which has been 
studied by Liu et al. (1995), the powers q, and q2 are always real and are given by 

q, 2tanp’ 
cr,oi,[4-(1 -&;)‘I 

71 4c$oi,2+(1 -ii)* ’ 
q2 = 0 (70) 

where cl/ = a(1 and 8, = 3i,,. It is noted that q, becomes zero as the crack speed approaches 
the shear wave speed or the longitudinal wave speed, hence there is no singularity at these 
two limits. 

For the other limiting case of homogeneous material [$” = $I’, v(*) = v(‘), p’*’ = p”)], 
the powers q, and q2 are also real and are given by 

q, = Ltan.-l 4w4 
7L 

-3 q* =q,-;. 
(1 -oi,‘)’ 

(71) 

It can be shown that q, corresponds to the asymmetric deformation (mode II) and q2 
corresponds to the symmetric deformation (mode I). Interestingly, one can see that the 
orders of singularity for modes I and II are different for transonic crack growth in homo- 
geneous solids. Due to its close relationship with geophysics, the transonic crack growth in 
homogeneous solids under shear mode has been studied extensively [for example, Freund 
(1979) and Broberg (1989)]. 

Liu et al. (1993) and Lambros and Rosakis (1995) studied the dynamic interfacial 
crack growth in a PMMA/steel bimaterial system. The material properties are given in 
Table 1. The wave speeds for the system have crMMA < cpPMMA < c?’ < c?‘. For interfacial 
crack speed, V, increasing from the shear wave speed, cfMMA, to the longitudinal speed, 
c/PMMA, of PMMA, the power of singularity exhibits the following interesting features: 
powers q, and q2 are real for relatively low interfacial speeds (close to cPMMA) and for 
relatively high speeds (close to c/PMMA ). However, the powers become complex conjugates 
for speeds in between these two ranges. This suggests that there are three sub-intervals in 
the range ceMMA to cFMMA. The middle interval gives complex powers and the others lead 
to real powers. This trend is shown in Fig. 4 for a plane-stress PMMA/steel system, where 
the solid line represents the real q, and the dotted and dashed lines represent the real and 
imaginary parts Re(q,) and Im(q,) for complex powers, respectively. Since the interval for 
complex powers and the next interval for real powers are extremely small in Fig. 4a, the 
curves over these two intervals are replotted in Fig. 4b. It is evident that the imaginary part 
of the complex powers starts and ends at zero and the real part intercepts the solid lines. 
The power for a plane-strain PMMA/steel system is shown in Fig. 5 where the complex 
powers are clearly seen. 

The angular stress distribution, d,,(0) in eqn (68), is shown in Fig. 6 for )I = 1.5 

C, PMMA, with the regularity condition d2*(0 = 0) = 1. There is a stress discontinuity at the 
PMMA/steel interface (H = 0). All stresses are singular at the characteristic angle 
0 = 90’ ftan-‘oi,,. For each stress component, the approach to infinity is exactly opposite 
on two sides of the characteristic angle, i.e. one to + co and the other to - cx,. Figure 6 
shows, again, that there is another singularity along the entire ray 8 = 90”+ tan-‘&,, for 
transonic crack growth, besides the singularity at the crack tip. 

For the other bimaterial system in Table 1, Al/A1203, the wave speeds have 
Cp’ < $1 < C;‘?ol < @zo 3 under plane stress conditions. The powers are shown in Fig. 7 for 
crack speeds between the shear and longitudinal wave speeds of aluminum. It is observed 
that the interval for complex powers, as marked by the dotted and dashed lines, is much 
larger than that for the PMMA/steel bimaterial system. This is because the elastic mismatch 
in the Al/A1201 system is not as severe as in the PMMA/steel system. 

The powers of singularity are shown in Fig. 8 for a plane-strain Al/Al,O, system. It is 
noted that the plane-strain longitudinal speed of aluminum is now larger than the shear 



Transonic crack growth along a bimaterial interface 2639 

(a) 
0.35 

0.30 

0.25 

0.20 

4 

0.15 

0.10 

0.05 

0.00 
1.0 1.2 1.4 

PMMA 
dcs 

1.6 1.8 

0.05 

0.04 

0.03 

Q 

0.02 

0.01 

0.00 

“. ,.,I 
__.- ____-----____ 

__-- -. 
,.*- ‘\ 

,* 
,’ 

,’ 
,’ 

/’ , 
,’ 

8’ 
1 I / / I I 1 

1.7510 1.7515 1.7520 1.7525 1.7530 1.7535 1.7540 1.7545 
PMMA 

4s 

Fig. 4. Power of singularity, q, vs the normalized interfacial crack speed, v/cFMMA, for a plane-stress 
PMMA/steel bimaterial system (solid line = real power q; dotted line = real part of complex q; 
dashed line = imaginary part of complex q). (a) Crack speed in the range [czMMA, cyMMA]. (b) Crack 

speed close to c/PMMA. 
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Fig. 5. Power of singularity, q, vs the normalized interfacial crack speed, u/c~“““, for a plane-strain 
PMMA/steel bimaterial system (solid line = real power q; dotted line = real part of complex q; 

dashed line = imaginary part of complex q) ; crack speed in the range [zMMA, c/PMMA]. 
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Fig. 6. The angular distribution of normalized stresses, d., (LX, /3 = 1, 2) for a plane-stress PMMA/ 
steel bimaterial system with v = 1 .5crMA (solid line = 8,, ; dashed line = a*2 ; dotted line = a”, 2). 
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1.0 1.2 1.4 1.6 1.8 
Al 
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Fig. 7. Power of singularity, q, vs the normalized interfacial crack speed, V/C:‘, for a plane-stress 
Al/A&O, bimaterial system (solid line = real q; dotted line = real part of complex q ; dashed 

line = imaginary part of complex q) ; crack speed in the range [cl, &‘I. 

wave speed of alumina, such that the wave speeds have c$ < c$‘,O, < cc”’ < c$‘J’~ (Table 
1). The corresponding crack speed, IU, is now limited between two shear wave speeds, ck’ 
and c$‘z’~. It is also observed that the Rayleigh wave speed for alumina, 
$2’3 = 5519 m SC’, is also within the same range. 

As shown in Fig. 8a, the interval of complex powers for the plane-strain Al/A&O3 
system contains some features that are very different from those in Figs 4, 5, and 7. First 
of all, the imaginary part of the complex power, which characterizes the oscillation of the 
asymptotic field, approaches infinity at the Rayleigh wave speed of alumina. This means 
the oscillation around the transonically moving crack tip is very severe at the Rayleigh 
wave speed &z”3( > ck’). Moreover, the real part of the complex power has a jump of - l/2 
across the Rayleigh wave speed, c$’ 2 ’ 3. These features are better shown in Fig. 8b for crack 
speed ZJ near c$‘3. Similar conclusions have also been established for the lower Rayleigh 
wave speed cc’ in the bimaterial system (Liu et al. 1993). For power q with a negative real 
part in Fig. 8a, b, the stress field near the crack tip is dominated by the T-stress, i.e. 
o\:’ = a$:’ = a(,21 = o& = 0 and o$:’ = (E21E,)a(l’l), where a\‘,) is a constant stress that cannot 
be determined from the asymptotic analysis. 

The angular stress distributions, c?$(e) and $(0) in eqn (69), are shown in Figs 9, 
respectively, for crack speed v = 1.5 6’ corresponding to complex powers. Similar to the 
PMMA/steel system, the stresses for an Al/A&O3 system are singular along the entire ray 
0 = 90”+ tan-*&. Moreover, the stresses are not only oscillatory with respect to polar 
radius Y, but are also oscillatory with respect to this characteristic angle, which can be seen 
from the sharp turning of the solid line in Fig. 9a. This oscillation can also be confirmed 
from the near-tip stress field since the stresses have terms 
(q, +C?,,Y&~~ = r-ql(c~~O+oi,, sin6)- ql, where q, is complex. This oscillation with polar 
angle is a unique feature for transonic interfacial crack growth. 
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4. DISCUSSION AND CONCLUSIONS 

The transonic crack growth along a bimaterial interface is studied for two systems, 
PMMA/steel and Al/A&O,. It is found that the angular distribution of the near-tip stress 
field is independent of remote loading, i.e. the remote load distribution only influences the 
magnitude of the near-tip stress field. In the following, the superscripts 1 and 2 in the 
bimaterial system are chosen such that ci’) < cg2), and the subscripts s and e denote the 
shear wave and longitudinal wave speeds, respectively. 

The following conclusions are established for the near-tip asymptotic field. 

(1) The power of singularity is real and less than l/2 for anti-plane shear deformation. 
(2) For crack speeds between c!” and min [c$“, (2) c, ] (m-plane deformation), there are 

three sub-intervals. The powers of singularity are complex conjugates for the middle sub- 
interval and real for the other two. Hence, for crack speeds close to the shear wave or 
longitudinal wave speeds of the system, the powers of singularity are always real. Across 
the Rayleigh wave speed, there is a discontinuity of - l/2 in the real part of the complex 
power, and the imaginary part approaches infinity. For the limiting cases of elastic/rigid 
bimaterial systems and the homogeneous solid, the sub-interval for complex powers 
disappears. 

(3) The stress field is singular, not only around the crack tip, but also on the entire ray 
ye, + B,,q, = 0, which has a characteristic angle 8 = 90” + tan’ 6,, Moreover, for complex 
powers of singularity, the stress field also oscillates around this characteristic angle. 

For stationary and subsonically growing cracks, the power of the stress singularity is 
l/2 (real part). However, it is observed that the power of singularity in transonic crack 
growth is always less than l/2. As a result, the energy flux into the crack tip as given by 
Freund (1972,199O) is always zero. This seems to be contradictory to the energy requirement 
for crack growth. However, similar to Broberg’s (1989) study for homogeneous solids, a 
process zone model for the transonically moving crack tip will lead to a non-vanishing 
energy flux. 
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APPENDIX 

The eigenvalue problems in eqn (53) are solved in the following. Let 

x = IMP-‘{ 

where [ is a new vector. Equation (53) can be transformed to a new eigenvalue problem 

R[ = nH[ 

where H = MP- ’ and its components, H,,, are given by 

H 
33 

= [w&, -iad -4d 
? 

where 

y_JC! 6 = 4oislal, -i(l -hf,)‘, 4 = (1 +Cr$)* -4aSZc+,, w = 1 +c&22G(,2a/2. 
fi (2) ’ 

The equation for I. is then, from eqn (A2), 

det {AH-R} = 0 

which is equivalent to the eigenequation (54). It gives the following third-order algebraic equation : 

where 

(I.- 1&41L* +sn+2) = 0 

A = 8Z, 

Z0 = -3i,,c+, +i+ ~{?“[Z,,r,, -iU -ai,)l-6~(l-r~~a/~)-(l +a:,)(l-a,‘,)(oi,,a,,+ia,,cc,,)) 

Z, = -2, -2i(l +ciz,)(l -r:;)[oi,la,,-ias2all]. 
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(Al) 

(A2) 

Wa) 

(A3b) 

(A3c) 

(A3d) 

We) 

(A3f) 

(A3g) 

(A3h) 

(A3i) 

(A4) 

(A5) 

(A6) 

(A7a) 

(A7b) 

(A7c) 

(A7d) 

It is clear that A is complex and B is real. Thus, the first two eigenvalues, I, and Irz, are the roots of the quadratic 
equation in eqn (A6), and I, = 1 is the third eigenvalue. 

The corresponding eigenvectors, x,, for eqn (53) can be found from 

{PM-‘-I,P&!-‘}x, = 0 i= 1,2,3, (Ag) 

It is recalled that x, and xz can be taken as real if q, and q2 are real. For complex conjugate q, and q2, x, and xz 
are also complex conjugates. 


