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Abstract. The feasibility of using Coherent Gradient Sensing (CGS) interferometry for studying the fracture
behavior of unidirectional fiber-reinforced composites is investigated in this paper. First, the solution for the
deformation field surrounding the tip of a crack in an orthotropic material is summarized. Specifically, the most
singular term in the asymptotic expansion is explicitly presented. Then, the quantities that relate to the CGS
measurements are derived in terms of the spatial position, stress intensity factors, and material constants. Based
on these results, synthetic CGS fringe patterns are plotted numerically, and the effects of material anisotropy and
crack-tip mixity on the shape of CGS fringe pattern are investigated. In addition, a finite difference interpretation

of CGS fringes caused by the finite spacing of the CGS diffraction gratings is taken into account in the simulation.
Finally, the initiation fracture toughness and the subsequent resistance curve behavior of a particular unidirectional
graphite/epoxy composite are measured using the CGS method. The optically measured stress intensity factors
compare successfully to values obtained from the load measurements and the available analytical solutions.
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1. Introduction

In recent years, fiber-reinforced composite materials have been widely used in aeronautic,
automotive, and other industries. It has been observed that damage develops easily in these
materials under normal service loading conditions or during low-velocity impact events. Be-
cause most of the failure processes in these materials often start from crack-like defects,
application of fracture mechanics to determine the toughness of fiber-reinforced composites
is necessary. To develop valid theoretical models for characterizing and describing the failure
process in composite materials, we first have to recognize and understand the differences
of fracture processes between composites and isotropic solids. This task depends heavily on
experimental observations and measurements.

To date, most of the experimental studies of composite fracture are based on mechanical
techniques, where far field loads and overall deformations are measured. The near-tip pa-
rameters that really control the fracture event are inferred through numerical calibration or
other indirect methods (Davis and Benzeggah, 1989; Chai, 1990; Yoon and Hong, 1990; Liu
et al., 1996). On the other hand, optical techniques can be used to directly measure near-tip
guantities, such as the stress intensity factors. It is now standard to use optical techniques
for fracture mechanics studies of isotropic materials, where stationary cracks, statically or
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Figure 1. A semi-infinite crack in an unbounded orthotropic solid.

dynamically loaded, or even dynamically propagating cracks are considered. Nevertheless,
there are few investigations of composite fracture using optical techniques. This is because
the optical technique, when used in a reflection mode, requires a very high quality surface

preparation—a much more difficult task for composites than homogeneous metals. Also, some
optical methods, for example the method of photoelasticity, require coatings to be used on

opaque solids. However, the coatings must be thick enough to generate sufficient fringes for
the measurement. Meanwhile, the elastic properties of composites and the coatings can be
very similar, so the deformation in the composites might be affected by the coatings.

Recently, a procedure of preparing optically reflective surfaces on composites has been
developed at California Institute of Technology (Rosakis, 1994) and at Los Alamos National
Laboratory. The thickness of the reflective coating is on the order of microns. As a result, it
became possible to use optical techniques like the optical caustics and the Coherent Gradi-
ent Sensor (CGS) (Tippur et al., 1991; Rosakis, 1993) to study the fracture phenomenon in
composite materials.

We have undertaken this study to determine the feasibility of using the CGS technique
for studying the fracture of unidirectional fiber-reinforced composites. Our analysis concen-
trates on isolated cracks subjected to quasi-static loading, since correlations between analysis
and experiments are much more accurate in this loading rate regime. We have calculated
the CGS fringes that are expected for an orthotropic material, based on measured material
constants, and have compared these to experimental measurements. The second validation of
the CGS technique that we performed was a comparison of values of stress intensity factor
at the crack tip based on the CGS fringe pattern with those derived from an analytic analysis
of the specimen geometry and the measured applied load. The results of these comparisons
were excellent, proving the validity of the CGS technique for orthotropic composite materials.
Finally, the proposed measurement was used to obtain the quasistatic fracture toughness of the
material together with its resistance curve behavior.

2. Near-tip deformation field in orthotropic solids

Consider a semi-infinite stationary crack in an unbounded homogeneous elastic orthotropic
material, as shown in Figure 1. Here we focus on the situation where the direction of the crack
coincides with one of the principal axes of the orthotropic solid, i.e., for a unidirectional fiber-
reinforced composite, the crack is either parallel or normal to the fiber direction. A Cartesian
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coordinate system is chosen such that the origin of the system is located at the crack tip and
the semi-infinite crack occupies the entire negative portion oktkexis. Finally, we assume

that the solid undergoes planar deformation. The deformation field can be characterized by
two in-plane displacement componenis(xy, x2), (¢ = 1, 2). The in-plane components of
strain are related to, (x1, x2) by

€ap(X1, X2) = 3{ug p(x1, X2) + Uupo(x1, x2)}, o, B € {12} 1)

2.1. CONSTITUTIVE RELATIONS

For a homogeneous elastic orthotropic material undergoing planar deformation, the general-
ized Hooke's law takes the following form

1
€11 = b11011 + b12022, €22 = b21011 + b220722, €12 = 5bs012, (2

whereb;; are material constants amgh = b,;. For planar deformation we may define three
nondimensional material parameters in terms;phs follows

_ bn b= 2b1 + bes . — 3Vb11bao + b1z
by’ 2Jb11by v/b11b22 — b1

Notice that for isotropic materials, and p equal 1, whilex = (3 — v)/(1 + v) for plane-
stress deformations and= 3 — 4v for plane-strain deformations. In the degenerate case of
an isotropic materialy denotes Poisson’s ratio. The positive definiteness of the strain energy
density requires that

A ®3)

b11 >0,  bpbyp—b?,>0,  bgs> 0.

In terms ofA, p, andx, above requirement becomes
A >0, o> -1,

and

k>1, for p>1,
3
1<K<1+—p, for —1<p<1l

2.2. DEFORMATION FIELD SURROUNDING THE CRACK TIP
In the absence of body force density, the equation of equilibrium is given by

Oup p(x1, X2) =0, Y (x1,x2) € jOQ, a € {l, 2}, 4
where®R = R — ¢, and

c‘72={(-x:|.a-xZ)| —OO<Xa<O0,0{=1,2}

C={(1,x2)] —00 <x1<0,x2 =0}
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or R is the region of the entire two-dimensional plane except the semi-infinite line occupied
by the crack.
The Airy stress functiot/ (x1, x2) can be defined through the following relations

92U 92U 92U
= —, O = —F, O =
ox2 22 ox2 12

o011 V(x1,x2) € ;Qa (5)

B axlaxz’

and the equilibrium Equations (4) are satisfied identically. In terms of the Airy stress function
U (x1, x) and by using the constitutive relation (2), the requirement of compatibility becomes

U U U o
— 4+ 20212 + A =0, V(x,x) €R. 6
axf P axfaxg axg (x1, x2) ©)

Suppose that the solution to (6) has the formUaf; + wx2), whereuw is an undetermined
constant. Direct substitution of this form into (6) produces an equation forterms ofa and
p as follows

w4207 Y2 2 L= 0. @)

Equation (7) has no real solutions and it can be shown that £rl< oo,

o p+1 p—1 _
M1 =1IAr 1/4(\/ > +\/ > )vﬂb’:ﬂl

: (8)
o p+1 p—1 _
M2 =1\ 1/4(\/ > —\/ > ),M4=M2
while for -1 < p < 1,
_ [1=p . [1+p _
Mlzkl/"'( T—I—t T),MSZMl
©)

_ 1-p . [1+p _
U2 = —A 1/4<\/ 5 —z\/ 5 ),M4=M2

wherei = +/—1 and the bar over a symbol stands for its complex conjugate. Now, the Airy
stress function can be expressed by (Lekhnitskii, 1968)

U(x1, x2) = 2Re{¢1(z1) + ¢2(z2)}. (10)

In (10), zo = x1 + uex2 (@ = 1, 2), andgpy(z1) andg,(z2) are two analytic functions. Re
denotes the real part of any complex expression. It should be pointed out that expression (10)
is only valid for situation where; # .. Whenp = 1, or uy = up = iA~Y4, expression

(10) should be replaced by

U (x1, x2) = 2Re¢1(z1) + Z1¢2(21)}. (11)



Composite fracture toughness measurement using G6%

If, in addition, A is also equal to 1, i.e., if the solid is isotropic, relation (11) reduces to
U(x1, x2) = 2R€{¢1(2) +7¢2(2)}, z=x1+ix2. (12)

Expression (12) has the same form as that given by Muskhelishvili (1953) for isotropic mate-
rials.
For all cases such that# 1 (or uy # u»), define

cbot(zot) = d)(;(za)’ a=12,

where the prime represents differentiation with respect to the complex argument. According
to Lekhnitskii (1968), the stress and displacement fields inside the orthotropic solid, can be
expressed in terms @, (z,) as follows

011(x1, x2) = 2 ReuU2P(21) + u3P,(22)}
022(x1, x2) = 2R P (z1) + PH(22)} , Y(x1,x2) €R, (13)
012(x1, x2) = —2 Re{p1 P} (z1) + n2P%(22)}

and
u1(x1, x2) = 2REp1®1(21) + p2®2(22)} — wxo+ Uiy o
. , Y(x1,x) €R. (14)
uz(x1, x2) = 2Req1P1(z1) + q2P2(22)} + wx1+ uy
In (14),
—b 2_3_K =b )L__l_3__K a=12
Pa = D11\ Ky, T+el’ do = D11 1 1+Kﬂa, =1, 4

The parameter is defined in (3). Note that the terms associated witndz,, (¢ =12)in
(14) correspond to infinitesimal rigid body translations and rotations.
We now define the following quantities,

f(Z)=|:CDl(Z):|, M:|:P1 P2i|’ N=|:l 1:|’ (15)

@2 (2) g1 g2 M1 2

wherez = x1 + ix, and we introduce two new functiomsz) andy(z) through
0)=Mf()-Mf), n@=Nf&@-NF@, (16)

where the bar over a symbol stands for its complex conjugate. Funéiehsnd 5(z) are

analytic in the entire-plane except along the cut occupied by the crack. If there is no traction
applied along the crack faces, then we have the following relations,

0=(x)) — MN pE(x) +0F(x)) — MN 2T (x) =0, V3 <O. 17)
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In (17), we used the notation

im Q@) =Q%(x), z=x1+ixo,
x2—>0i
for any analytic functiorf2(z). From (17) and by posing the requirement that the displacement
is bounded in the entire-plane, one can show thatz) is an entire function. As a result, the
traction free condition along crack faces, (17), becomes

0"t (x1) +0 (x1) = (MN ' + Mﬁ_l)ﬂ(xl), Vx1 <0, (18)

wheren(x1) = 57 (x1) = 5~ (x1). Equation (18) constitutes a Riemann-Hilbert problem. By
solving (18) and by considering the requirement that the stress should be bounded at infinity
but can be singular at the crack tip, the general solution for the fungtian, defined in (15),

can be expressed by

f' (@ =NYz"%) + b)), (19)

wherea(z) andb(z) are two entire functions and satisfy
a(z) =a(z),  b(x)=—b(2). (20)

As we expres(z) andb(z) into their Taylor series, respectively, equation (19) provides
the complete asymptotic solutions for the two functidngz,) and®,(z,). As in the isotropic
case, the coefficients of the asymptotic expansion can only be determined through the far field
loading conditions. If attention is focused on the region close to the crack tip then we may only
consider the most singular solutions fbt(z1) and®,(z,). Their derivatives can be expressed
as follows
paAy — Az 1 pAL— Az 1

Dh(z2) = —

qD?L(Zl) = /2 /2
M2 — M1 zi/z M2 — M1 z%/z

(21)

whereA; and A, are two arbitrary real constants. By definition, the stress intensity factors at
the crack tip are given by

K, = lim 21 x1 022(x1, 0), K, = |||T(])+ v 2 x1 012(x1, 0). (22)
xX1—>

x1—0*t

As a result, the two undetermined real constattsand A, can be related to the two stress
intensity factors K, and K, through

K, Ky

Al = ——, Ay = — . 23
P> PV (@3)
Now, the expressions fab,(z;) and®,(z2) become
K +K K+ K
Dy (zy) = —2 TR e Dy(z2) = ——e R (24)

— 2 , —_—— .
21y — pa) V21 (p — pa)

With Equation (24) in hand, the in-plane components of stress and displacement fields can be
obtained by using (13) and (14).
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Whenp = 1, or g = up, we haveu; = u, = ix~%4. The Airy stress functio/ (x1, x»)
is provided by (11) withy; = x1 + iA~Y4x,. The stress components are then given by

o11(x1, x2) = —20"Y2 Re{¢p] (z1) — 2¢5(z1) + 71y (1)}
022(x1, x2) = 2RE@](21) + 205(z1) + 2105 (21)} . V(r.x) €R, (25)
012(x1, x2) = 227V Im{@] (z1) + Z1py (z1)}

and the displacement field can be expressed as

8b11)u_1/2 , —
ui(xy, x2) = Toe Re{kpo(z1) — ¢1(21) — 7195(z1)} .

R . Y(x) er.  (26)
a(x1, X2) = ﬂ—x Im{ica(z1) + ¢1(z1) + Z1)(z0)}

By using the similar procedure discussed above, the most singular terms in the solution of
$1(z1) andg(z1) can be shown to be

K, + 31')\‘1/4K|| 3/2 K — i)hl/4Kll 3/2
il — "
6v2r 2v2r Tt

Where, once agairk| andK,, are the mode-I and mode-I| stress intensity factors at the crack
tip. The complete explicit expressions for the components of the stress and displacement fields
surrounding the crack tip, are given in Appendix A.

¢1(z1) = $2(z1) = (27)

3. Application of the CGS technique to composite fracture

The Coherent Gradient Sensor (CGS) is a full field, lateral-shearing interferometric technique
with an on-line filter. The physical principles governing the method of CGS were first analyzed
by Tippur et al. (1991) and the technique is described in detail by Tippur (1992) and Rosakis
(1993). This method, when used in a reflective mode, measures the in-plane gradients of out-
of-plane surface displacements. The basic relations of the method for a reflective setup are
(Rosakis, 1993),

duz(x1, x2) _ mp

T 2A

01 . mon=041 42, ..., (28)
duz(x1, x2) _ np
3)62 o 2A

whereus(x1, x2) is the out-of-plane displacement on the reflective surface of a specimen. In
the above equatio; and A are the pitch and separation of the two high-density gratings, and
m andn are the fringe orders for the andx, gradient contours, respectively. According to
(28), each CGS fringe is a locus of points with the same slope in eithesr x,-direction,
depending on the orientation of the two high-density gratings.
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3.1. GOVERNING EQUATIONS OF USING CGS TECHNIQUE IN COMPOSITE FRACTURE

For an isotropic solid subjected to plane-stress deformation, the out-of-plane displacement
uz(x1, x2) is directly proportional to the first stress invariant. However, for an orthotropic solid,

the same displacement is a more complicated function of individual normal stress components
and of some of the elastic moduli. Indeed, according to the generalized Hooke’s law, we have

€33 = b31011 + b3p022 + b3z033, (29)

wherebss, bsp, andbsz are elastic constants that relate the normal stress components to the
strain component normal to the, x,)-plane. For a thin-plate specimen, plane-stress de-
formation condition prevails andsz = 0. Also, according to the generalized plane-stress
assumptiongzz is uniform through the specimen thickness and the out-of-plane surface dis-
placemeni«z(x1, xo) can be related to the in-plane stress components through

uz(xy, x2) = =

hy2
> / ezatxs = 3h{b31011(x1, X2) + baz022(x1, X2)}, (30)

h/2

whereh is the thickness of the specimen. Near the crack tip, the most singular term dominates
the deformation field. By using the result derived in the previous section for the in-plane stress
components, which are listed in Appendix A, one can show that

duz(x1, x2) _ h— KiF11(0) 4 K F12(6)

dx1 4/ 2 rd/2 (31)
duz(xy, x2) _ h  KiF2u(0) + KnFae(0) |-
Ixa 42w r3/2

whereFuz(0) (o, B = 1, 2) are angular functions that also depend on the material constants.
Their forms are given in Appendix B. In (31), we have used the notation

X1 =r COSO, X2 =r Sin 9.

Note that if the material becomes isotropic, thea: 1 andbs; = b3, = —v/E, v andE are
the Poisson’s ratio and Young’s modulus respectively. As a result, we have

2v 3 2v . 4
F11(0) = F(0) = 7 ©0S 50, Fi12(0) = —F21(0) = — sin 56,

and (31) becomes

duz(xy, x2)  vh 1 3 —

v 2pvn  rar K1 cosz0 — K sin 30) )
8u3(x1,x2) vh 1 .3 3

o = TN . M{Kl sin 36 + Ky cos 36}

Equation (32) has the same form as that obtained by Rosakis (1993) for isotropic materials.
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Figure 2. The CGS fringe pattern for a crack in a unidirectional fiber-reinforced composite loaded in mode-I.

Combining (28) and (31), the stress intensity factors at a stationary cradk, tgmd K,
can be related to the CGS fringe orders by

427 r3/2 mp
ho2A
427 r3/2 np
ho2A

If we know the CGS fringe orders; or n, and the coordinates of the poiat 6) on the
fringes, the stress intensity factors can be calculated using either of the equations in (33).
Figure 2 shows the CGS fringe pattern of a mode-I crack along the fiber direction in
a unidirectional fiber-reinforced composite. The direction of the two high-density gratings
is normal to thex;-axis. Visual inspection of the fringe pattern reveals that there are two
apparent crack tips separated by a distancé. dfhis is due to the shearing effect of the
two high-density gratings. It has been shown that (28) is valid under either of two conditions
(Rosakis, 1993; Bruck and Rosakis, 1992; Bruck and Rosakis, 1993): the separation of the
two high-density gratingsA, tends to zero, or the pitch of the grating, tends to infinity.
In reality, bothA and p are finite. To increase the sensitivity of the method, as required for
brittle materials where out-of-plane displacement gradients are ‘small’, the sepavafitn,
intentionally increased. Therefore, CGS fringes should now be interpreted as finite differences
of displacements. Under these circumstances, to include the effect of finite shearing, a more
appropriate interpretation of the CGS fringes shown in Figure 2, is found to be (Bruck and
Rosakis, 1992; Bruck and Rosakis, 1993; Lee et al., 1996)
toi ¥9,X2) “usConXa) _Mmp g a4 (34)
b) 2A
The above relation is the accurate, ‘finite’ difference interpretation of CGS. The resulting
CGS pattern is the superposition of the original wave front and the one which is shifted by an

K F11(0) + K\ F12(0) =
, mn=0,+£1 42 .... (33)

K F21(0) + K F22(0) =
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amounts (see Section 3.2). Note that as the shift> 0, (34) reduces to the relation of (28).

A similar relation can be obtained when shifting occurs alongithdirection. For a complete
discussion of the errors introduced by using (28) instead of (34), see Bruck and Rosakis (1992)
and Bruck and Rosakis (1993).

3.2. NUMERICALLY SIMULATED CGS FRINGE PATTERNS SURROUNDING THE CRACK TIP
IN A UNIDIRECTIONAL FIBER-REINFORCED COMPOSITE

Based on the governing Equations, (33) or (34), the CGS fringe patterns around the tip
of a crack in a unidirectional fiber-reinforced composite can be simulated allowing us to

visualize the features due to the material’s orthotropy and crack-tip mixity. The material para-
meters used in this simulation are those for the graphite/epoxy unidirectional fiber-reinforced
composite, IM7/8551-7 (see Table 1).

In the first simulation, using (33), we selected the orientation of the two high-density
gratings to be normal to the crack. Therefore, the CGS fringes are loci of constant slope,
dus/0x1, according to Figure 1. In Figure 3 the simulated CGS fringes are presented for the
situation of the crack parallel to the fibers. For this simulation, the magnitude of the complex
intensity factor was held constant, i.€k? + K2)¥2 = 2.0 MPam¥2, and the crack-tip
phase angle was stepped irf 30crements from mode-I (tai(K, /K;) = 0°) to mode-lII
(tam (K, /K,) = 90°). Essentially, Figures 3a, 3b and 3c have similar features except that
Figures 3b and 3c are slightly asymmetric. However, Figure 3d is substantially different from
the other three fringe patterns. Here, the crack-tip mixity i5 @0 the crack undergoes pure
mode-II loading; while the loading component is parallel to the fibers. In Figure 3d the size
of the fringes is very small compared to the purely mode-I case of the same stress intensity
factor magnitude. In addition, there seems to be a sudden, almost discontinuous, change from
mixed-mode loading to pure mode-Il loading for the case of a crack parallel to the fibers.

In Figure 4 the simulated CGS fringes for a crack normal to the fibers are presented. All
other conditions are the same as for the previous case whose results were presented in Figure 3.
In Figure 4a, the crack is subjected to mode-I loading parallel to the fiber direction. The fringe
loops are very small and kinks in the fringes can be seen. Surprisingly, the fringe patterns
shown in Figures 4b, 4c, and 4d, have similar orientations and features. Only the size of the
fringes increases as the magnitude of the mode-Il loading component becomes larger. We
conclude, combining observations from the simulations shown in Figures 3 and 4, that for a
crack in an orthotropic material, the shape of the CGS fringes is controlled by the loading
component parallel to the ‘soft’ direction. In Figure 3, this is the mode-I component and in
Figure 4, this is the mode-Il component. Whenever the loading component parallel to the
‘soft’ direction is nonzero, the shapes of the CGS fringes look similar. However, the size of
the fringes are proportional to the magnitude of the loading component in the ‘soft’ direction.
The loading component that is parallel to the ‘stiff’ direction (the fibers) does not contribute
much to the CGS fringe patterns.

The characteristics of the CGS fringe patterns in isotropic materials, under mixed-mode
loading conditions, have been discussed by Mason et al. (1992). For isotropic solids, the fringe
loops, corresponding to the same stress intensity factor magnitude, have identical shapes and
sizes, irrespective of mode mixity. The only difference between patterns is a rotation depend-
ing on mode mixity. Also, each set of loops has its own axis of symmetry emanating from the
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Figure 3. Simulated CGS fringe patterns of a crack parallel to the fibers in a unidirectional fiber-reinforced com-
posite. For the conditions ¢k 2+ K 3)1/? = 2.0 MPam/2; (a) tarr L (K  /K) = 0°; (b) tarr 1 (K} /K)) = 30F;
() tarm (K1 /K1) = 60°; (d) tarr (K /K)) = 90°.

crack tip. These axes are T28part. When the crack-tip mixity changes, the three fringe loops
simply rotate with respect to the crack tip. Due to the material's orthotropy, these features no
longer exist for the crack in the unidirectional fiber-reinforced composite.

In the CGS optical setup, two line diffraction gratings of fine pijctare used. They are
spaced a distancé apart to perform a shearing of the incident wave front. If only-ttieor
—1 diffraction order is considered, the diffraction angleis

R4
o =sin!— =~ —, (35)
p p
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Figure 4. Simulated CGS fringe patterns of a crack normal to the fibers in a unidirectional fiber-reinforced com-
posite. For the conditions ¢k 2+ K 2)1/? = 2.0 MPam/2; (a) tarr L (K  / K)) = 0°; (b) tarr 1(K) /K)) = 30F;
() tarm (K1 /K1) = 60°; (d) tarr (K /K)) = 90°.

where? is the wavelength of the light. The resulting CGS image is the superposition of the
original wavefront and the one which has been shifted by an andoliien the quantity is
related toA, the separation of the two gratings, through

8:Atan9%A<£). (36)
p

Thus, the amount of shifs, is proportional to the grating separation distarceln Figure

5, simulations based on (34) are shown. They illustrate the effect of the finite$ shifthe

CGS fringe patterns. Consider the case of a crack parallel to the fibers and subjected to a
mode-I loading condition. Figure 5 presents the simulated CGS fringes for different amounts
of relative shifts/ h whereh is the specimen thickness. The two virtual crack tips are obvious

in these simulations, especially when the relative shifting am&Unapproaches unity. From
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X5l h
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X4/ h

Figure 5. Simulated CGS fringe patterns of a crack parallel to the fibers in a unidirectional fiber-reinforced
composite. For the conditions d&f; = 2.0 MPam2 and k), = 0, and (a)s/h = 0.0; (b) §/h = 0.25;
(c)8/h = 0.50; (d)s/h = 0.75; whereh is the thickness of the specimen.

these observations, and by comparing the simulations shown in Figure 5 with the photograph
in Figure 2, we recognized the necessity to consédas an extra parameter to be extracted
from the image, just like the two stress intensity factéfsand K. The numerical scheme to
obtain the stress intensity factors and the finite sBijftyill be discussed in the next section.

4. Stress intensity factor measurement from the IM7/8551-7 graphite/epoxy composite

Based on the analysis presented in the previous sections, the stress intensity factor and associ-
ated fracture toughness at the tip of a crack in a graphite/epoxy unidirectional fiber-reinforced
composite are measured using the CGS technique. Issues related to the experimental measure-
ment are discussed in this section and the experimental results are compared with available
analytical solutions.
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Figure 6. Micrographs of the graphite/epoxy unidirectional fiber-reinforced composite, IM7/8551-7.
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Figure 7. Four-point-bend specimen with a single edge crack.

4.1. COMPOSITE MATERIAL AND SPECIMEN PREPARATION

A unidirectional graphite/epoxy composite, IM7/8551-7, was used in this experimental study.
This composite material was obtained from Hercules Advanced Materials and Systems Com-
pany. The microstructure of the unidirectional composite is shown in Figure 6, a collection
of optical micrographs showing the three orthogonal material orientations. The diameter of
the continuous fibers is approximately/n and the thickness of a lamina is on the order of
100 um. The fiber volume fraction is approximately 60 percent; it might be noted that the
matrix is a rubber-toughened (mean particle size 107 epoxy.

A Cartesian coordinate system has been chosen such that-thés is along the fiber
direction, thex,-axis lies in the laminate plane and normal to the fibers, andckexis is
normal to the laminate plane. Since the material, shown in Figure 6, is symmetric with respect
to the three coordinate planes it can be modeled as an orthotropic solidy;angl, x3) are
the principal axes of the material. The elastic constants of the unidirectional graphite/epoxy
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Table 1. Material elastic constants

Eq1 Eyp  E33
148.60 8.40 8.28

Young'’s moduli (GPa)

H12 H23  H13
5.45 3.03 4.34

Shear moduli (GPa)

V12 V23 V13
0.32 0.37 0.35

Poisson’s ratios

composite have been measured with respect to the principalexes, x3), and the results
are listed in Table 1.

The specimen geometry we chose for this experimental study was the four-point-bend
specimen with a single-edge precrack, as shown in Figure 7. The specimens used in the
experiment were cut from a 6.5 mm thick IM7/8551-7 graphite/epoxy unidirectional com-
posite plate. The nominal dimensions of the specimen, shown in Figure 7/ate75 mm,

2, =125 mm,b = 75 mm,h = 6.5 mm, anda = 25 mm. A diamond saw, with thickness

of 0.254 mm, was used to cut the precrack in the specimen. A cut was made from each side
of the specimen, which left a chevron at the end of the slot. A hand saw was then used to
cut out the chevron, and finally, a surgical blade was used to sharpen the tip of the precrack.
An Instron load frame was used to load the sample with a total applied for¢e bf this
experimental study, we concentrate on the situation where the crack is parallel to the fibers
and the specimen plane is parallel to the laminates. A Cartesian coordinate system is chosen
with the origin located at the crack tip. The axes of this system are aligned with the principal
axes of the orthotropic material. In this coordinate system, the two nondimensional material
parameters aré = 0.0565 andp = 3.1676. The third nondimensional parametedoes

not appear in the process of CGS fringe analysis. The two elastic congtarasd b3, that
appeared in (29) and (30), are givenly = —v13/E11 andbs, = —v,3/ Eoo, respectively.

As we have mentioned earlier, a very high quality surface preparation is required in order
to apply the CGS technique to composite materials. However, because of the microstructure of
the composite material, we cannot polish the specimen surface to make it optically flat, neither
can we directly deposit a reflective aluminum film on the specimen by vacuum deposition.
We have recently developed a procedure of preparing an optically flat and reflective surface
on composites. An optically flat glass is coated with a thin aluminum film having a thick-
ness of only several angstroms. A layer of segregation material is intentionally maintained
between the coating and the glass, to prevent bonding between the aluminum film and the
glass. This material was the residue of liquid soap used to clean the glass. The coated glass
is then combined with the sample using an epoxy adhesive to glue the coated surface of the
optically flat glass to the sample. The epoxy adhesive was PC-1 Bipax of epoxy resin and
diethylenetriamine hardener obtained from the Photoelastic Division, Measurements Group,
Inc., Raleigh, NC. After the epoxy has cured, the glass is peeled off. Because the bond between
the aluminum film and the glass is very weak, the aluminum coating is transferred onto the
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Figure 8. CGS fringe pattern surrounding the crack tip in the IM7/8551-7 unidirectional fiber-reinforced
composite.

sample surface. The total thickness of the epoxy layer and the coating is just a couple of
microns. Compared with the sample thickness, this layer is very thin and will not affect the
deformation state inside the specimen.

4.2. EXPERIMENTAL OBSERVATIONS

The four-point-bend specimen was loaded using an Instron screw-driven load frame by dis-
placement control to enhance crack-tip stability. A 50 mm-diameter collimated He-Ne laser
beam (wave length= 632 nm) was roughly centered around the crack tip reflecting from
the aluminized specimen surface. Two high-density gratings were positioned in the reflected
beam and the gratings are perpendicular to the crack. Therefore, information regarding the
guantitydus/dx; was obtained. The grating pitch was= 0.025 mm. In order to increase the
sensitivity, the distance between the two high-density gratings was getal00 mm. The
corresponding fringe sensitivity for this grating separation was approxima@y afringe.
As the load increases, the stress field near the crack tip continuously builds up and the CGS
fringes also enlarge continuously. The interference fringes surrounding the crack tip were
recorded by a motor-driven 35 mm camera and the corresponding load was also recorded at
each exposure. Figure 8 shows one of the recorded photographs. Clearly, the photographed
fringe patterns are qualitatively similar to the simulation results discussed in the previous
section. The similarity between the simulated fringe pattern and the photograph suggests that
the stress intensity factor can be considered as the controlling parameter characterizing the
fracture behavior of the fiber-reinforced composite. Recall that the simulated CGS fringe
patterns were indeed based on the assumption tkialeminant region surrounding the crack
tip exists. Well above the crack tip, one can see that the fringes are no longer symmetric about
the crack axis. This is because the composite plate, as it is received, is not completely flat.
Another feature that is observed from the photograph is that there are two apparent crack
tips. This is due to the large distance, between the two high-density gratings and the result-
ing relatively large shift§, between the two interfering beams. Therefore, (33) cannot be used
in the CGS fringes interpretation because it assumes that the image shifting is infinitesimal.
Instead we have to use (34) for data analysis. We &@atan additional unknown parameter
in the CGS fringes interpretation process, because (36) only provides an estimation for the
shift § and the measurement &fdirectly from the photograph is inaccurate. The procedure
for obtaining the stress intensity factors at the crack tip will be discussed next.



Composite fracture toughness measurement using QG5
4.3. CGSFRINGE INTERPRETATION

To obtain the stress intensity factor at the crack tip, the photograph of the CGS fringe patterns
was first digitized. According to the analyses of Rosakis and Ravi-Chandar (1986) and Kr-
ishnaswamy et al. (1992), data points must be chosen at a distance from the crack tip greater
than half of the specimen thickness, to avoid the influence of three-dimensional effects. A
least squares scheme was used to fit the experimental data to expression (34) to obtain the
parameters,, K;, ands. However, since the dependence of the out-of-plane displacement
u3 on the parametes is not linear, the least squares scheme also becomes nonlinear. We
use the over-deterministic method developed by Sanford and Dally (1979) to determine the
unknown parameters. The fitting process involves both the Newton-Raphson method and the
minimization process associated with the least squares procedure.

For each data poirtr;, x5) and the associated fringe ordef, we define

uz(xy + 8, xp) —uz(xg, x5)  m'p }2

ﬁ(K|,K||,8)={ S oA

i=12...,n, (37)

wheren is the total number of data points. Suppose m,éu K,{, andé$’ are the estimates of
the unknown parameters in thiéh iteration. Then in thé€; + 1)th iteration step, we have

) ) af; J af; J af; J
ﬁ”:ﬁ@(%) AK.+<8£> AK||+<£> AS, i=12..,n  (38)
| 1]

By introducing

" A Of
f 0K, 0K, 38
P o O Ay
=171, a=|ok oKy 3 |, k=|ak |,
. . AS
I af,  af,  of,
| 9K, 3K, 88
Equation (38) has the form
fit=fl+ Ak, j=012.... (39)
In addition, by requiring thaf /™ = 0, we have
k=—C)H7, C=@)A), b =uA)f, (40)

which gives the correction factdrfor the (j + 1)th iteration. The value of the fitting parame-
ters at thgj + Dyth iteration is given by

(KM K YT = (K KL 8T +k, j=012,.... (41)

This iterative procedure can be repeated udtil< €, wheree is the measure of prescribed
error tolerance.
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Figure 9. Comparison of the CGS experimental measurement with the results of analytic solution.

Because this iteration procedure is nonlinear, the choice of the initial value will affect the
convergence of the process. For our tests, the following approach was used to obtain the initial
value(K?, KJ, 8% T. We first used the linear least squares scheme to fit the experimental data
to expression (33), thus obtaining the two values Kt and K. The values® was next
estimated from the photograph. With the accuracy of 0.1 percent, convergence of the
iterative process was then achieved within 10 steps.

4.4. COMPARISON WITH ANALYTICAL CALCULATIONS

To assess the accuracy of using the optical CGS technique to obtain the stress intensity fac-
tor at a crack tip for the graphite/epoxy fiber-reinforced composite, the experimental CGS
measurement was compared with an available analytical solution. This is an extension of an
existing solution corresponding to isotropic materials. For the specimen geometry and loading
configuration depicted in Figure 7, the stress intensity factor at the crack tip is given by

3
Ki=oyma-F (%) Y(p). o= %(12 — 1), (42)

whereY (p) is a function of the nondimensional material parametesis defined previously.
FunctionY (p) has been approximated by Bao et al., (1992) by a polynomial form,

Y (p) = HTp{l +0.1(p — 1) — 0.016(p — 1)2 +0.002p — 1)3}, (43)

with an error of less than 2 percent. Also note thal) = 1. The dependence of the function
F(a/b) on the specimen geometry is discussed in Appendik @,/b) is the same as for an
isotropic specimen subjected to four-point-bend loading. In Figure 9, the stress intensity factor
measured using the CGS technique is compared to that obtained with the analytical solution.

The agreement between the analytical solution and the optical experimental measurement is
excellent.
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Figure 11. Measured energy-release rate as a function of crack growth during the process of stable propagation.

4.5. INITIATION TOUGHNESS UNDER QUASISTATIC LOADING

In our four-point-bend experiment, the applied load was monitored during the test. The load
was a linearly increasing function of the deflection before it reached the maximum value. The
specimen failed catatrophically at the maximum load. Once the crack initiated, it propagated
unstably. Therefore, from the load/deflection behavior, the specimen fractured in a brittle man-
ner. However, a very small amount of stable crack growth was indeed observed and captured
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using the optical CGS technique together with the motor-driven camera. We believe this small
amount of stable crack growth is due to the rubber-toughened phase in the epoxy matrix. Some
selected CGS photographs showing the stable crack growth, are presented in Figure 10. Here,
we need to point out that the photographs shown in Figure 10 were taken in a very short period
of time by the motor-driven camera. It shows that CGS can capture the phenomenon which
might be overlooked due to the overall brittleness of the process. Another advantage of using
optical methods to study the process of fracture is that the position of the crack tip can be
measured accurately. The measured energy-releasé& ra® a function of crack growth is
shown in Figure 11. Here we have used the relation between the energy-release aiatk

the mode-I stress intensity fact&f given by Hutchinson and Suo (1992),

1+p K?
G =14 —L . L 44
| > Ew (44)

where E;; is the Young’s modulus along the fiber direction listed in Table 1. Close to the
point of stable initiation of the stationary crack, the energy-release rate is higher than the
value of the growing crack. This is because the initial stationary crack tip has a finite radius
(~ 0.1 mm). However, once the crack starts to propagate, the energy-release rate value will
correspond to the sharp crack. Accordingly, the fracture initiation toughness was determined
by back extrapolating thé&, data of the stably growing crack. From Figure 11, we estimated
the initiation toughness of a sharp crack to bé40x 10° Pam which is consistent with the
measurements made by Hercules.

5. Concluding remarks

In this study we have demonstrated that the Coherent Gradient Sensor (CGS) technique can be
used to measure the fracture toughness and critical strain-energy release rates of orthotropic
low toughness materials (unidirectional graphite/epoxy composite) under the plane-stress de-
formation condition. Our measurements of stress intensity factor using the CGS approach
compared favorably with values determined using an analytic solution. In addition, the ap-
pearance of fringes calculated on the basis & -dominant crack-tip field, were in good
agreement with photographic fringe records obtained using the CGS method, thus proving
the validity of this necessary assumption. Finally, our measurement of fracture initiation
toughness using the CGS experimental fringe patterns agrees well with other independent
measurements. In summary, the CGS method is capable of quantifying the near-tip parameters
that control the fracture process for unidirectional graphite/epoxy composite materials.

The CGS technique has many advantages for studying fracture events. It is a noncontact
technique that can provide a continuous record of the fracture initiation and propagation.
Although the present work was performed at quasi-static loading rates, all of the adopted
methodologies are also applicable to dynamic loading and to fast crack growth events. In such
cases the CGS technique can also be used to measure fracture toughness parameters associated
with dynamic failure. Indeed, when the loading and subsequent crack growth take place in
very short times (hundreds of microseconds), boundary value measurements are incapable of
providing meaningful information regarding fracture behavior. In such cases optical methods,
such as CGS, are the only alternative.



Composite fracture toughness measurement using Q@S

Appendix

A. Deformation field surrounding the crack tip

In this Appendix, thek-dominant components of the stress and the displacement fields sur-
rounding a stationary crack tip in an orthotropic solid are provided in terms of the nondimen-
sional material parameters p, «, and the stress intensity factaks and K. Three different
cases for the parametgrare considered:

i) p>1,

(i) —1<p<1,and
(i) p=1.
According to the definition given in Section 2.1, we always have 0. Also we assigrir, 6)

to be the polar coordinates centered at the crack tip.
For p > 1, the most singular stress components are

o011 = Ki P {p r Y2 cos 1 0 Y2 cos 1o }
11 = —(——= o+ 291 P17 272
Vern Py — p-
Ko Y o a2 2 —1/2 i1
——— ——{p%r Sin 601 — p°r sin 365},
r e —p P11 7 2 2
K, 1 —12 ~1/2
022 = —\/? . ﬁ{p_rl / COS%Ql—,O+r2 / COS%QZ}
T P+ — P-
© 1 S (45)
I ~1/2 . ~1/2 .
+«/27r . A Ya(py —p ){rl " sin %91 o “sin %92}’
K, ATVAE s 12 .1
o120 = —— - ———{r; 7 sin 36, —r, ' sin 365}
Vern Py — p-
Ky 1 ~1/2 ~1/2
N ﬁ{p”l /2 cos 16, — p_r, 7% cos 16,)
T P+ — P-
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and the displacement field is given by

K\ 2bya7Y? { ( 2 | 33— ") 1/2 1
Uy = . p.+—— | p_ry’” COS5601
Vor pe—p- |\'T 14k ! 2

— ,02+3_K o1 cos 16,
S L 2

Ky 2by YA 3—«
n o 4b1 {(pi-i— > 1/2 gin 191

NZZ A Ty 1+«
3_
—(E K) 1/25|n19}
1+«
K 2w {( + 3« ) 2 sin 30
u = — . _ r
? Ver  py— p- g 1+« P~ 1 !
3_ K / . 1
— | ps + 1+K p+15'" Sin 56,
Ky 2byaY2 {( 3—« ) 172 1
+ : po— + p+ | /7 cos 36
V2r  ps—p- 1+£77) 1 27t

3-
<p+ + ﬁp ) 1/2 cos 19 }

where

p+1 \/,o—l
— + ,
P \/ 2 2

r1,2=r{C0S 0 4+ A"Y2p2 sir? 9}%/2, 61, = tam a4 p, tans}.

For—1 < p < 1, the most singular stress components are

K, a2 172

on = = o cos 361 — ) + ry ? cos(6, + @)}
K N ri? COS( 01 — 200) — r; 2 cog(16, + 2a)}
T /2n 2cosa't 2 2 ’
K1 .
020 = \/_ ZCOSO{{ COi 91+O{)+}"2 COi 0, —a)}
K 1 _ _
—\/% T —e Y2 coslo; — ry Y2 — cosien),
K AV _
017 = —— - =——{ry ?cosit; — r,"/? cosify)

V21 2c0osx

1
@'2com{rll/zcos(%el ) +ry *cog 16, + @)

(46)

(47)
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and the displacement field is

K\ A V2 4 1 —K 1
= .= cog 26 — cog 361 —
“ JV2r  cosa " A0 +e) 1+« A0~ )
—K
+ry/? [cos(%ez —) - T cos(36; + oz):| }
Ky bur ™4[ 4p 1 —K 1
- coS5601 + 20) — Coss6
27  CcOSu "1 X301+ 20) 1+« 271
3_
—ry/? [cos(%ez gy 2K cos%ez] } ,
1+« [ (48)
U, = £ . M r1/2 Coqlg — 20{) — — K COS;Q
2 V27 cosa |*t 271 1+« 21
1/2 1 3—« 1
- cog56, + 2a) — Coss6
ry |: qZ 2+ ) 1+« 3 2] }
Ky bur ™2 [ 4p 1 —K 1
e cog501 — o) — cog 561 +
27 COS« "1 S(Z 1= ) 1+« S(Z Lt @)
—K
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rLa2=r (cos@ 4+ AV4 Tp sm@) + Y2 (%) sif6 ¢,
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Finally, for p = 1, the most singular stress components are

K, ATV .
o1 = T 1/2 cos36,(1 — sin6; sin36,)
K|| )\4—1/4
~ 1/2 Sin61(2 4 cos36; cos36y),
K 1
022 = —2'71 1/2 cos361(1 + sin6; sin26;)
!
+ - > SiN361 COS36; COS361,
21253 2 2
N2 A4
K, A4 1 3
O1p = —— - sinz QlCOS 91COS 61
Nz 1/2
K

1 .
— C0s361(1 — sin36; sin26y),

+_ .
V2 l/

and the displacement field is

K, 4byi A~ /2

o= = ri’? cosi6; (i — 1+ 2sirf 16))
+% . 4b111i; %sin261(c + 1+ 2 cod 16y),

Up = «/Kzln_ . 4bllli_l(3/4rll/2 sin301(x + 1 —2cod 46y
_% . 4b111i; Y2 cosloy(k — 1 — 2sir? 16y),

where

r1 = r{cog 0 + 2~ Y2 sir? }%/2, 6, = tan *(L"Y*tano).

(49)

(50)

Notice that when, in addition to, ». = 1, (49) and (50) will become identical to those obtained

for isotropic materials.



Composite fracture toughness measurement using GG$

B. Angular functions used in Section 3

In Section 3.1, the in-plane gradients of the out-of-plane displaceimeént, x,) are expressed

in terms of the angular functiongz(0) («, B = 1, 2). Forp # 1, these angular functions are
given by

Fi.(6) = Re B2 b31u? + bao M baiu3 + baz
H p1— 2 (COSH + ugsing)®2 g —po  (COSH + wpsing)®2 |’
Fi(0) = Re 1 baiuf + bsp 1 baiu3 + b3z (51)
12 p1— 2 (COSH + ugsing)®2 g —po  (COSH + wpsing)32 |’
Frp(0) = Re m b31u? + b3y M2 b31t5 + b3y
2 p1— 2 (COSH + ugsing)®2 g —po  (COSH + wpsing)®2 |’
and F»1(9) = —A"Y2F1,5(0) by noting the fact thajtiu, = —A~Y2. To be more explicit,
consider the three cases for the parametseparately.
For p > 1, the angular functions can be expressed as
_ b3y — A"Y2p2h
Fu@) = —2=— . 2% P31 cog 3 tan t(A*p, tan)}
P+ — P- h.(0)
bsp — A Y2p2%b
S B p=D31 cog 3 tan 1 (L 4p_ tang)},
P+ — P— h_(0)
1 by — A Y202Dhsy
Fi2(0) = — L2 P23 i tan (A4 p, tand)}
—1/4 _ n 2
A (p+ — p-) +(0) [ (52)
1 bsp —AY2p2bgy . 14
+k_1/4(p ruE T sin{3tan (A ~"*p_tano)},
+ - — —_
ban — )\‘—1/2 Zb
Fa(9) = —25 . 2% PL73 cog2 tarrt (A —Y4p, tane))
P+ — P- h.(0)
_ by —AY%p%b
__F .22 p-Ds1 cos 2 tan ' (A V*p_tano)},
P+ — P— h_(0)
where

hi(0) = (COF 0 + A~Y2p2 sirf 6)%/4,

and . has been defined in the previous section.
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For—1 < p < 1, the angular functions are given by

1 2
Fr®) = — | ———{bscoq306 A~ Y2p3 cog 26, —
11(0) 2h1(0) 1—,0{ 32C050h + o) + 31C050h — )}

1 2 3 -1/2 3
~ Ta®) /m{b:ngOS(z@z—Ol) + A 7Y?bg; cog36, + o)},

1 | 2 3 —1/2 3
F12(0) = 2 h @)\ 1— ,O{b32 005291 + A b3100§§91 —2u)}

(53)
1 2
T V) \ 1—» {b32€0S36, + 1~ 2b3; cos(36, + 2a)},
1 2 3 -1/2 3
F(0) = 210 m{bw Cog(301 — &) + A~ 7 “b31COS 561 — 3u)}
1 _
1 2 3 —1/2 3
+2h2(9) m{bszcoigezﬂ-a)-i-k b31 09562 + 3a)},
where
2 3/4
1—p . 1 .
hi,2 () = <cos€ + 274/ Tp sm@) +A7Y2 <%) sifo ¢,
andé,,, have been defined in the previous section.
Finally, for p = 1, the angular functions are
A" Y2b3 + b
Fi1(0) = _W{m — 31) cos36; + 3n cosZoy},
Fuo()y = 2t ba in20, + 3nsinZo (54)
12(0) = m{( + 1) sin361 + 3nsin;61},
A_l/2b31 + b3o 3 3 7
FZZ(Q) = _T(Q){(4 + 577) COSEQJ_ + 3n 008591},
where

h(6) = (cog 6 + A~ Y2 sirf 6)¥/4, 6, = tan *(L"Y*tano),

A"Y2b31 — by

= )L_l/zbgl + b32'

More specifically, forh = 1, one can show that

2v 3 2v . 4
F11(0) = F22(0) = z cos30, F12(0) = —F21(0) = —— Sin 50,
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wherev and E are the Poisson’s ratio and Young’s modulus, respectively, for the degenerate
isotropic elastic material.

C. Stress intensity factor for the four-point-bend specimen

The stress intensity factor for an isotropic single-edge-notch specimen under pure bending
load is given by

K :oﬁ-F<%), (55)

whereF (a/b) is a function that only depends on the ratith. F (a/b) can be approximated
by the following expression (Tada et al., 1985)

F <%) = (% sin %1)1/2 <COS%)_S/Z {O.923+ 0.199<1 — sin %)4} .

Theo in (55) is related to the applied moment per unit thickndgsthrough

6M 0

= —, M=——(U—-1),
o= 2h(2 1)

where Q is the total force applied on the four-point-bend specimen /aigl the specimen

thickness!; andl, are the half span of the top and the bottom loading pins. Substituting into
(55), we have

=2/t (55 3) =
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