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Abstract. The feasibility of using Coherent Gradient Sensing (CGS) interferometry for studying the fracture
behavior of unidirectional fiber-reinforced composites is investigated in this paper. First, the solution for the
deformation field surrounding the tip of a crack in an orthotropic material is summarized. Specifically, the most
singular term in the asymptotic expansion is explicitly presented. Then, the quantities that relate to the CGS
measurements are derived in terms of the spatial position, stress intensity factors, and material constants. Based
on these results, synthetic CGS fringe patterns are plotted numerically, and the effects of material anisotropy and
crack-tip mixity on the shape of CGS fringe pattern are investigated. In addition, a finite difference interpretation
of CGS fringes caused by the finite spacing of the CGS diffraction gratings is taken into account in the simulation.
Finally, the initiation fracture toughness and the subsequent resistance curve behavior of a particular unidirectional
graphite/epoxy composite are measured using the CGS method. The optically measured stress intensity factors
compare successfully to values obtained from the load measurements and the available analytical solutions.
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1. Introduction

In recent years, fiber-reinforced composite materials have been widely used in aeronautic,
automotive, and other industries. It has been observed that damage develops easily in these
materials under normal service loading conditions or during low-velocity impact events. Be-
cause most of the failure processes in these materials often start from crack-like defects,
application of fracture mechanics to determine the toughness of fiber-reinforced composites
is necessary. To develop valid theoretical models for characterizing and describing the failure
process in composite materials, we first have to recognize and understand the differences
of fracture processes between composites and isotropic solids. This task depends heavily on
experimental observations and measurements.

To date, most of the experimental studies of composite fracture are based on mechanical
techniques, where far field loads and overall deformations are measured. The near-tip pa-
rameters that really control the fracture event are inferred through numerical calibration or
other indirect methods (Davis and Benzeggah, 1989; Chai, 1990; Yoon and Hong, 1990; Liu
et al., 1996). On the other hand, optical techniques can be used to directly measure near-tip
quantities, such as the stress intensity factors. It is now standard to use optical techniques
for fracture mechanics studies of isotropic materials, where stationary cracks, statically or
∗ Author for correspondence
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Figure 1. A semi-infinite crack in an unbounded orthotropic solid.

dynamically loaded, or even dynamically propagating cracks are considered. Nevertheless,
there are few investigations of composite fracture using optical techniques. This is because
the optical technique, when used in a reflection mode, requires a very high quality surface
preparation–a much more difficult task for composites than homogeneous metals. Also, some
optical methods, for example the method of photoelasticity, require coatings to be used on
opaque solids. However, the coatings must be thick enough to generate sufficient fringes for
the measurement. Meanwhile, the elastic properties of composites and the coatings can be
very similar, so the deformation in the composites might be affected by the coatings.

Recently, a procedure of preparing optically reflective surfaces on composites has been
developed at California Institute of Technology (Rosakis, 1994) and at Los Alamos National
Laboratory. The thickness of the reflective coating is on the order of microns. As a result, it
became possible to use optical techniques like the optical caustics and the Coherent Gradi-
ent Sensor (CGS) (Tippur et al., 1991; Rosakis, 1993) to study the fracture phenomenon in
composite materials.

We have undertaken this study to determine the feasibility of using the CGS technique
for studying the fracture of unidirectional fiber-reinforced composites. Our analysis concen-
trates on isolated cracks subjected to quasi-static loading, since correlations between analysis
and experiments are much more accurate in this loading rate regime. We have calculated
the CGS fringes that are expected for an orthotropic material, based on measured material
constants, and have compared these to experimental measurements. The second validation of
the CGS technique that we performed was a comparison of values of stress intensity factor
at the crack tip based on the CGS fringe pattern with those derived from an analytic analysis
of the specimen geometry and the measured applied load. The results of these comparisons
were excellent, proving the validity of the CGS technique for orthotropic composite materials.
Finally, the proposed measurement was used to obtain the quasistatic fracture toughness of the
material together with its resistance curve behavior.

2. Near-tip deformation field in orthotropic solids

Consider a semi-infinite stationary crack in an unbounded homogeneous elastic orthotropic
material, as shown in Figure 1. Here we focus on the situation where the direction of the crack
coincides with one of the principal axes of the orthotropic solid, i.e., for a unidirectional fiber-
reinforced composite, the crack is either parallel or normal to the fiber direction. A Cartesian
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coordinate system is chosen such that the origin of the system is located at the crack tip and
the semi-infinite crack occupies the entire negative portion of thex1-axis. Finally, we assume
that the solid undergoes planar deformation. The deformation field can be characterized by
two in-plane displacement components,uα(x1, x2), (α = 1,2). The in-plane components of
strain are related touα(x1, x2) by

εαβ(x1, x2) = 1
2{uα,β(x1, x2)+ uβ,α(x1, x2)}, α, β ∈ {1,2}. (1)

2.1. CONSTITUTIVE RELATIONS

For a homogeneous elastic orthotropic material undergoing planar deformation, the general-
ized Hooke’s law takes the following form

ε11= b11σ11+ b12σ22, ε22= b21σ11+ b22σ22, ε12 = 1
2b66σ12, (2)

wherebij are material constants andb12 = b21. For planar deformation we may define three
nondimensional material parameters in terms ofbij as follows

λ = b11

b22
, ρ = 2b12+ b66

2
√
b11b22

, κ = 3
√
b11b22+ b12√
b11b22− b12

. (3)

Notice that for isotropic materials,λ andρ equal 1, whileκ = (3− ν)/(1+ ν) for plane-
stress deformations andκ = 3− 4ν for plane-strain deformations. In the degenerate case of
an isotropic material,ν denotes Poisson’s ratio. The positive definiteness of the strain energy
density requires that

b11 > 0, b11b22− b2
12 > 0, b66 > 0.

In terms ofλ, ρ, andκ, above requirement becomes

λ > 0, ρ > −1,

and
κ > 1, for ρ > 1,

1< κ <
3+ ρ
1− ρ , for − 1< ρ < 1.

2.2. DEFORMATION FIELD SURROUNDING THE CRACK TIP

In the absence of body force density, the equation of equilibrium is given by

σαβ,β(x1, x2) = 0, ∀ (x1, x2) ∈
◦
R, α ∈ {1,2}, (4)

where
◦
R= R − C, and

R = {(x1, x2) | −∞ < xα <∞, α = 1,2}
C = {(x1, x2) | −∞ < x1 6 0, x2 = 0}

}
,



358 C. Liu et al.

or
◦
R is the region of the entire two-dimensional plane except the semi-infinite line occupied

by the crack.
The Airy stress functionU(x1, x2) can be defined through the following relations

σ11= ∂2U

∂x2
2

, σ22= ∂2U

∂x2
1

, σ12= − ∂2U

∂x1∂x2
, ∀ (x1, x2) ∈

◦
R, (5)

and the equilibrium Equations (4) are satisfied identically. In terms of the Airy stress function
U(x1, x2) and by using the constitutive relation (2), the requirement of compatibility becomes

∂4U

∂x4
1

+ 2ρλ1/2 ∂4U

∂x2
1∂x

2
2

+ λ∂
4U

∂x4
2

= 0, ∀ (x1, x2) ∈
◦
R . (6)

Suppose that the solution to (6) has the form ofU(x1 + µx2), whereµ is an undetermined
constant. Direct substitution of this form into (6) produces an equation forµ in terms ofλ and
ρ as follows

µ4+ 2ρλ−1/2µ2+ λ−1 = 0. (7)

Equation (7) has no real solutions and it can be shown that for 16 ρ <∞,

µ1 = iλ−1/4

(√
ρ + 1

2
+
√
ρ − 1

2

)
, µ3 = µ1

µ2 = iλ−1/4

(√
ρ + 1

2
−
√
ρ − 1

2

)
, µ4 = µ2


, (8)

while for−1< ρ < 1,

µ1 = λ−1/4

(√
1− ρ

2
+ i
√

1+ ρ
2

)
, µ3 = µ1

µ2 = −λ−1/4

(√
1− ρ

2
− i
√

1+ ρ
2

)
, µ4 = µ2


, (9)

wherei = √−1 and the bar over a symbol stands for its complex conjugate. Now, the Airy
stress function can be expressed by (Lekhnitskii, 1968)

U(x1, x2) = 2 Re{φ1(z1)+ φ2(z2)}. (10)

In (10), zα = x1 + µαx2 (α = 1,2), andφ1(z1) andφ2(z2) are two analytic functions. Re{·}
denotes the real part of any complex expression. It should be pointed out that expression (10)
is only valid for situation whereµ1 6= µ2. Whenρ = 1, orµ1 = µ2 = iλ−1/4, expression
(10) should be replaced by

U(x1, x2) = 2 Re{φ1(z1)+ z1φ2(z1)}. (11)
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If, in addition,λ is also equal to 1, i.e., if the solid is isotropic, relation (11) reduces to

U(x1, x2) = 2 Re{φ1(z)+ zφ2(z)}, z = x1 + ix2. (12)

Expression (12) has the same form as that given by Muskhelishvili (1953) for isotropic mate-
rials.

For all cases such thatρ 6= 1 (orµ1 6= µ2), define

8α(zα) = φ′α(zα), α = 1,2,

where the prime represents differentiation with respect to the complex argument. According
to Lekhnitskii (1968), the stress and displacement fields inside the orthotropic solid, can be
expressed in terms of8α(zα) as follows

σ11(x1, x2) = 2 Re{µ2
18
′
1(z1)+ µ2

28
′
2(z2)}

σ22(x1, x2) = 2 Re{8′1(z1)+8′2(z2)}
σ12(x1, x2) = −2 Re{µ18

′
1(z1)+ µ28

′
2(z2)}

 , ∀ (x1, x2) ∈
◦
R, (13)

and

u1(x1, x2) = 2 Re{p181(z1)+ p282(z2)} − ωx2+ ◦u1

u2(x1, x2) = 2 Re{q181(z1)+ q282(z2)} + ωx1+ ◦u2

 , ∀ (x1, x2) ∈
◦
R . (14)

In (14),

pα = b11

{
µ2
α −

3− κ
1+ κ

}
, qα = b11

{
λ−1

µα
− 3− κ

1+ κ µα
}
, α = 1,2.

The parameterκ is defined in (3). Note that the terms associated withω and
◦
uα (α = 1,2) in

(14) correspond to infinitesimal rigid body translations and rotations.
We now define the following quantities,

f (z) =
[
81(z)

82(z)

]
, M =

[
p1 p2

q1 q2

]
, N =

[
1 1

µ1 µ2

]
, (15)

wherez = x1 + ix2 and we introduce two new functionsθ(z) andη(z) through

θ(z) =Mf (z)−M f (z), η(z) = Nf ′(z)−N f ′(z), (16)

where the bar over a symbol stands for its complex conjugate. Functionsθ(z) andη(z) are
analytic in the entirez-plane except along the cut occupied by the crack. If there is no traction
applied along the crack faces, then we have the following relations,

θ ′±(x1)−MN
−1
η±(x1)+ θ ′∓(x1)−MN−1η∓(x1) = 0, ∀ x1 < 0. (17)
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In (17), we used the notation

lim
x2→0±

�(z) = �±(x1), z = x1 + ix2,

for any analytic function�(z). From (17) and by posing the requirement that the displacement
is bounded in the entirez-plane, one can show thatη(z) is an entire function. As a result, the
traction free condition along crack faces, (17), becomes

θ ′+(x1)+ θ ′−(x1) = (MN−1+MN
−1
)η(x1), ∀ x1 < 0, (18)

whereη(x1) = η+(x1) = η−(x1). Equation (18) constitutes a Riemann-Hilbert problem. By
solving (18) and by considering the requirement that the stress should be bounded at infinity
but can be singular at the crack tip, the general solution for the functionf ′(z), defined in (15),
can be expressed by

f ′(z) = N−1{z−1/2a(z)+ b(z)}, (19)

wherea(z) andb(z) are two entire functions and satisfy

a(z) = a(z), b(z) = −b(z). (20)

As we expressa(z) andb(z) into their Taylor series, respectively, equation (19) provides
the complete asymptotic solutions for the two functions81(z1) and82(z2). As in the isotropic
case, the coefficients of the asymptotic expansion can only be determined through the far field
loading conditions. If attention is focused on the region close to the crack tip then we may only
consider the most singular solutions for81(z1) and82(z2). Their derivatives can be expressed
as follows

8′1(z1) = µ2A1 −A2

µ2 − µ1
· 1

z
1/2
1

, 8′2(z2) = −µ1A1− A2

µ2− µ1
· 1

z
1/2
2

, (21)

whereA1 andA2 are two arbitrary real constants. By definition, the stress intensity factors at
the crack tip are given by

KI = lim
x1→0+

√
2πx1 σ22(x1,0), KII = lim

x1→0+

√
2πx1 σ12(x1,0). (22)

As a result, the two undetermined real constantsA1 andA2 can be related to the two stress
intensity factors,KI andKII , through

A1 = KI

2
√

2π
, A2 = − KII

2
√

2π
. (23)

Now, the expressions for81(z1) and82(z2) become

81(z1) = µ2KI +KII√
2π(µ2 − µ1)

z
1/2
1 , 82(z2) = − µ1KI +KII√

2π(µ2− µ1)
z

1/2
2 . (24)

With Equation (24) in hand, the in-plane components of stress and displacement fields can be
obtained by using (13) and (14).
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Whenρ = 1, orµ1 = µ2, we haveµ1 = µ2 = iλ−1/4. The Airy stress functionU(x1, x2)

is provided by (11) withz1 = x1+ iλ−1/4x2. The stress components are then given by

σ11(x1, x2) = −2λ−1/2 Re{φ′′1(z1)− 2φ′2(z1)+ z1φ
′′
2(z1)}

σ22(x1, x2) = 2 Re{φ′′1(z1)+ 2φ′2(z1)+ z1φ
′′
2(z1)}

σ12(x1, x2) = 2λ−1/4 Im{φ′′1(z1)+ z1φ
′′
2(z1)}

 , ∀ (x1, x2) ∈
◦
R, (25)

and the displacement field can be expressed as

u1(x1, x2) = 8b11λ
−1/2

1+ κ Re{κφ2(z1)− φ′1(z1)− z1φ
′
2(z1)}

u2(x1, x2) = 8b11λ
−3/4

1+ κ Im{κφ2(z1)+ φ′1(z1)+ z1φ
′
2(z1)}

 , ∀ (x1, x2) ∈
◦
R . (26)

By using the similar procedure discussed above, the most singular terms in the solution of
φ1(z1) andφ2(z1) can be shown to be

φ1(z1) = KI + 3iλ1/4KII

6
√

2π
z

3/2
1 , φ2(z1) = KI − iλ1/4KII

2
√

2π
z

3/2
1 . (27)

Where, once again,KI andKII are the mode-I and mode-II stress intensity factors at the crack
tip. The complete explicit expressions for the components of the stress and displacement fields
surrounding the crack tip, are given in Appendix A.

3. Application of the CGS technique to composite fracture

The Coherent Gradient Sensor (CGS) is a full field, lateral-shearing interferometric technique
with an on-line filter. The physical principles governing the method of CGS were first analyzed
by Tippur et al. (1991) and the technique is described in detail by Tippur (1992) and Rosakis
(1993). This method, when used in a reflective mode, measures the in-plane gradients of out-
of-plane surface displacements. The basic relations of the method for a reflective setup are
(Rosakis, 1993),

∂u3(x1, x2)

∂x1
= mp

21
∂u3(x1, x2)

∂x2
= np

21

 , m, n = 0,±1,±2, . . . , (28)

whereu3(x1, x2) is the out-of-plane displacement on the reflective surface of a specimen. In
the above equation,p and1 are the pitch and separation of the two high-density gratings, and
m andn are the fringe orders for thex1 andx2 gradient contours, respectively. According to
(28), each CGS fringe is a locus of points with the same slope in eitherx1- or x2-direction,
depending on the orientation of the two high-density gratings.
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3.1. GOVERNING EQUATIONS OF USING CGS TECHNIQUE IN COMPOSITE FRACTURE

For an isotropic solid subjected to plane-stress deformation, the out-of-plane displacement
u3(x1, x2) is directly proportional to the first stress invariant. However, for an orthotropic solid,
the same displacement is a more complicated function of individual normal stress components
and of some of the elastic moduli. Indeed, according to the generalized Hooke’s law, we have

ε33= b31σ11+ b32σ22+ b33σ33, (29)

whereb31, b32, andb33 are elastic constants that relate the normal stress components to the
strain component normal to the(x1, x2)-plane. For a thin-plate specimen, plane-stress de-
formation condition prevails andσ33 = 0. Also, according to the generalized plane-stress
assumption,ε33 is uniform through the specimen thickness and the out-of-plane surface dis-
placementu3(x1, x2) can be related to the in-plane stress components through

u3(x1, x2) = 1

2

∫ h/2

−h/2
ε33 dx3 = 1

2h{b31σ11(x1, x2)+ b32σ22(x1, x2)}, (30)

whereh is the thickness of the specimen. Near the crack tip, the most singular term dominates
the deformation field. By using the result derived in the previous section for the in-plane stress
components, which are listed in Appendix A, one can show that

∂u3(x1, x2)

∂x1
= h

4
√

2π
· KIF11(θ)+KIIF12(θ)

r3/2

∂u3(x1, x2)

∂x2
= h

4
√

2π
· KIF21(θ)+KIIF22(θ)

r3/2

 , (31)

whereFαβ(θ) (α, β = 1,2) are angular functions that also depend on the material constants.
Their forms are given in Appendix B. In (31), we have used the notation

x1 = r cosθ, x2 = r sin θ.

Note that if the material becomes isotropic, thenλ = 1 andb31 = b32 = −ν/E, ν andE are
the Poisson’s ratio and Young’s modulus respectively. As a result, we have

F11(θ) = F22(θ) = 2ν

E
cos 3

2θ, F12(θ) = −F21(θ) = −2ν

E
sin 3

2θ,

and (31) becomes

∂u3(x1, x2)

∂x1
= νh

2E
√

2π
· 1

r3/2
{KI cos 3

2θ −KII sin 3
2θ}

∂u3(x1, x2)

∂x2
= νh

2E
√

2π
· 1

r3/2
{KI sin 3

2θ +KII cos 3
2θ}

 . (32)

Equation (32) has the same form as that obtained by Rosakis (1993) for isotropic materials.
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Figure 2. The CGS fringe pattern for a crack in a unidirectional fiber-reinforced composite loaded in mode-I.

Combining (28) and (31), the stress intensity factors at a stationary crack tip,KI andKII ,
can be related to the CGS fringe orders by

KIF11(θ)+KIIF12(θ) = 4
√

2π r3/2

h
· mp

21

KIF21(θ)+KIIF22(θ) = 4
√

2π r3/2

h
· np

21

 , m, n = 0,±1,±2, . . . . (33)

If we know the CGS fringe orders,m or n, and the coordinates of the point(r, θ) on the
fringes, the stress intensity factors can be calculated using either of the equations in (33).

Figure 2 shows the CGS fringe pattern of a mode-I crack along the fiber direction in
a unidirectional fiber-reinforced composite. The direction of the two high-density gratings
is normal to thex1-axis. Visual inspection of the fringe pattern reveals that there are two
apparent crack tips separated by a distance ofδ. This is due to the shearing effect of the
two high-density gratings. It has been shown that (28) is valid under either of two conditions
(Rosakis, 1993; Bruck and Rosakis, 1992; Bruck and Rosakis, 1993): the separation of the
two high-density gratings,1, tends to zero, or the pitch of the grating,p, tends to infinity.
In reality, both1 andp are finite. To increase the sensitivity of the method, as required for
brittle materials where out-of-plane displacement gradients are ‘small’, the separation,1, is
intentionally increased. Therefore, CGS fringes should now be interpreted as finite differences
of displacements. Under these circumstances, to include the effect of finite shearing, a more
appropriate interpretation of the CGS fringes shown in Figure 2, is found to be (Bruck and
Rosakis, 1992; Bruck and Rosakis, 1993; Lee et al., 1996)

u3(x1+ δ, x2)− u3(x1, x2)

δ
= mp

21
, m = 0,±1,±2, . . . . (34)

The above relation is the accurate, ‘finite’ difference interpretation of CGS. The resulting
CGS pattern is the superposition of the original wave front and the one which is shifted by an
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amountδ (see Section 3.2). Note that as the shiftδ → 0, (34) reduces to the relation of (28).
A similar relation can be obtained when shifting occurs along thex2-direction. For a complete
discussion of the errors introduced by using (28) instead of (34), see Bruck and Rosakis (1992)
and Bruck and Rosakis (1993).

3.2. NUMERICALLY SIMULATED CGS FRINGE PATTERNS SURROUNDING THE CRACK TIP

IN A UNIDIRECTIONAL FIBER-REINFORCED COMPOSITE

Based on the governing Equations, (33) or (34), the CGS fringe patterns around the tip
of a crack in a unidirectional fiber-reinforced composite can be simulated allowing us to
visualize the features due to the material’s orthotropy and crack-tip mixity. The material para-
meters used in this simulation are those for the graphite/epoxy unidirectional fiber-reinforced
composite, IM7/8551-7 (see Table 1).

In the first simulation, using (33), we selected the orientation of the two high-density
gratings to be normal to the crack. Therefore, the CGS fringes are loci of constant slope,
∂u3/∂x1, according to Figure 1. In Figure 3 the simulated CGS fringes are presented for the
situation of the crack parallel to the fibers. For this simulation, the magnitude of the complex
intensity factor was held constant, i.e.,(K2

I + K2
II )

1/2 = 2.0 MPa·m1/2, and the crack-tip
phase angle was stepped in 30◦ increments from mode-I (tan−1(KII/KI) = 0◦) to mode-II
(tan−1(KII/KI) = 90◦). Essentially, Figures 3a, 3b and 3c have similar features except that
Figures 3b and 3c are slightly asymmetric. However, Figure 3d is substantially different from
the other three fringe patterns. Here, the crack-tip mixity is 90◦, or the crack undergoes pure
mode-II loading; while the loading component is parallel to the fibers. In Figure 3d the size
of the fringes is very small compared to the purely mode-I case of the same stress intensity
factor magnitude. In addition, there seems to be a sudden, almost discontinuous, change from
mixed-mode loading to pure mode-II loading for the case of a crack parallel to the fibers.

In Figure 4 the simulated CGS fringes for a crack normal to the fibers are presented. All
other conditions are the same as for the previous case whose results were presented in Figure 3.
In Figure 4a, the crack is subjected to mode-I loading parallel to the fiber direction. The fringe
loops are very small and kinks in the fringes can be seen. Surprisingly, the fringe patterns
shown in Figures 4b, 4c, and 4d, have similar orientations and features. Only the size of the
fringes increases as the magnitude of the mode-II loading component becomes larger. We
conclude, combining observations from the simulations shown in Figures 3 and 4, that for a
crack in an orthotropic material, the shape of the CGS fringes is controlled by the loading
component parallel to the ‘soft’ direction. In Figure 3, this is the mode-I component and in
Figure 4, this is the mode-II component. Whenever the loading component parallel to the
‘soft’ direction is nonzero, the shapes of the CGS fringes look similar. However, the size of
the fringes are proportional to the magnitude of the loading component in the ‘soft’ direction.
The loading component that is parallel to the ‘stiff’ direction (the fibers) does not contribute
much to the CGS fringe patterns.

The characteristics of the CGS fringe patterns in isotropic materials, under mixed-mode
loading conditions, have been discussed by Mason et al. (1992). For isotropic solids, the fringe
loops, corresponding to the same stress intensity factor magnitude, have identical shapes and
sizes, irrespective of mode mixity. The only difference between patterns is a rotation depend-
ing on mode mixity. Also, each set of loops has its own axis of symmetry emanating from the
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Figure 3. Simulated CGS fringe patterns of a crack parallel to the fibers in a unidirectional fiber-reinforced com-
posite. For the conditions of(K2

I +K2
II )

1/2 = 2.0 MPa·m1/2; (a) tan−1(KII/KI) = 0◦; (b) tan−1(KII/KI) = 30◦;
(c) tan−1(KII/KI) = 60◦; (d) tan−1(KII/KI) = 90◦.

crack tip. These axes are 120◦ apart. When the crack-tip mixity changes, the three fringe loops
simply rotate with respect to the crack tip. Due to the material’s orthotropy, these features no
longer exist for the crack in the unidirectional fiber-reinforced composite.

In the CGS optical setup, two line diffraction gratings of fine pitchp are used. They are
spaced a distance1 apart to perform a shearing of the incident wave front. If only the+1 or
−1 diffraction order is considered, the diffraction angle,θ , is

θ = sin−1 `

p
≈ `

p
, (35)
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Figure 4. Simulated CGS fringe patterns of a crack normal to the fibers in a unidirectional fiber-reinforced com-
posite. For the conditions of(K2

I +K2
II )

1/2 = 2.0 MPa·m1/2; (a) tan−1(KII/KI) = 0◦; (b) tan−1(KII/KI) = 30◦;
(c) tan−1(KII/KI) = 60◦; (d) tan−1(KII/KI) = 90◦.

where` is the wavelength of the light. The resulting CGS image is the superposition of the
original wavefront and the one which has been shifted by an amountδ. Then the quantityδ is
related to1, the separation of the two gratings, through

δ = 1 tan θ ≈ 1
(
`

p

)
. (36)

Thus, the amount of shift,δ, is proportional to the grating separation distance1. In Figure
5, simulations based on (34) are shown. They illustrate the effect of the finite shiftδ on the
CGS fringe patterns. Consider the case of a crack parallel to the fibers and subjected to a
mode-I loading condition. Figure 5 presents the simulated CGS fringes for different amounts
of relative shiftδ/h whereh is the specimen thickness. The two virtual crack tips are obvious
in these simulations, especially when the relative shifting amountδ/h approaches unity. From
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Figure 5. Simulated CGS fringe patterns of a crack parallel to the fibers in a unidirectional fiber-reinforced
composite. For the conditions ofKI = 2.0 MPa·m1/2 andKII = 0, and (a)δ/h = 0.0; (b) δ/h = 0.25;
(c) δ/h = 0.50; (d)δ/h = 0.75; whereh is the thickness of the specimen.

these observations, and by comparing the simulations shown in Figure 5 with the photograph
in Figure 2, we recognized the necessity to considerδ as an extra parameter to be extracted
from the image, just like the two stress intensity factors,KI andKII . The numerical scheme to
obtain the stress intensity factors and the finite shift,δ, will be discussed in the next section.

4. Stress intensity factor measurement from the IM7/8551-7 graphite/epoxy composite

Based on the analysis presented in the previous sections, the stress intensity factor and associ-
ated fracture toughness at the tip of a crack in a graphite/epoxy unidirectional fiber-reinforced
composite are measured using the CGS technique. Issues related to the experimental measure-
ment are discussed in this section and the experimental results are compared with available
analytical solutions.
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50„m

x1

x2

x3

Figure 6. Micrographs of the graphite/epoxy unidirectional fiber-reinforced composite, IM7/8551-7.

Figure 7. Four-point-bend specimen with a single edge crack.

4.1. COMPOSITE MATERIAL AND SPECIMEN PREPARATION

A unidirectional graphite/epoxy composite, IM7/8551-7, was used in this experimental study.
This composite material was obtained from Hercules Advanced Materials and Systems Com-
pany. The microstructure of the unidirectional composite is shown in Figure 6, a collection
of optical micrographs showing the three orthogonal material orientations. The diameter of
the continuous fibers is approximately 5µm and the thickness of a lamina is on the order of
100µm. The fiber volume fraction is approximately 60 percent; it might be noted that the
matrix is a rubber-toughened (mean particle size 10–75µm) epoxy.

A Cartesian coordinate system has been chosen such that thex1-axis is along the fiber
direction, thex2-axis lies in the laminate plane and normal to the fibers, and thex3-axis is
normal to the laminate plane. Since the material, shown in Figure 6, is symmetric with respect
to the three coordinate planes it can be modeled as an orthotropic solid, and(x1, x2, x3) are
the principal axes of the material. The elastic constants of the unidirectional graphite/epoxy
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Table 1. Material elastic constants

E11 E22 E33
Young’s moduli (GPa)

148.60 8.40 8.28

µ12 µ23 µ13
Shear moduli (GPa)

5.45 3.03 4.34

ν12 ν23 ν13
Poisson’s ratios

0.32 0.37 0.35

composite have been measured with respect to the principal axes(x1, x2, x3), and the results
are listed in Table 1.

The specimen geometry we chose for this experimental study was the four-point-bend
specimen with a single-edge precrack, as shown in Figure 7. The specimens used in the
experiment were cut from a 6.5 mm thick IM7/8551-7 graphite/epoxy unidirectional com-
posite plate. The nominal dimensions of the specimen, shown in Figure 7, are: 2l1 = 75 mm,
2l2 = 125 mm,b = 75 mm,h = 6.5 mm, anda = 25 mm. A diamond saw, with thickness
of 0.254 mm, was used to cut the precrack in the specimen. A cut was made from each side
of the specimen, which left a chevron at the end of the slot. A hand saw was then used to
cut out the chevron, and finally, a surgical blade was used to sharpen the tip of the precrack.
An Instron load frame was used to load the sample with a total applied force ofQ. In this
experimental study, we concentrate on the situation where the crack is parallel to the fibers
and the specimen plane is parallel to the laminates. A Cartesian coordinate system is chosen
with the origin located at the crack tip. The axes of this system are aligned with the principal
axes of the orthotropic material. In this coordinate system, the two nondimensional material
parameters areλ = 0.0565 andρ = 3.1676. The third nondimensional parameterκ does
not appear in the process of CGS fringe analysis. The two elastic constants,b31 andb32 that
appeared in (29) and (30), are given byb31= −ν13/E11 andb32 = −ν23/E22, respectively.

As we have mentioned earlier, a very high quality surface preparation is required in order
to apply the CGS technique to composite materials. However, because of the microstructure of
the composite material, we cannot polish the specimen surface to make it optically flat, neither
can we directly deposit a reflective aluminum film on the specimen by vacuum deposition.
We have recently developed a procedure of preparing an optically flat and reflective surface
on composites. An optically flat glass is coated with a thin aluminum film having a thick-
ness of only several angstroms. A layer of segregation material is intentionally maintained
between the coating and the glass, to prevent bonding between the aluminum film and the
glass. This material was the residue of liquid soap used to clean the glass. The coated glass
is then combined with the sample using an epoxy adhesive to glue the coated surface of the
optically flat glass to the sample. The epoxy adhesive was PC-1 Bipax of epoxy resin and
diethylenetriamine hardener obtained from the Photoelastic Division, Measurements Group,
Inc., Raleigh, NC. After the epoxy has cured, the glass is peeled off. Because the bond between
the aluminum film and the glass is very weak, the aluminum coating is transferred onto the
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Figure 8. CGS fringe pattern surrounding the crack tip in the IM7/8551-7 unidirectional fiber-reinforced
composite.

sample surface. The total thickness of the epoxy layer and the coating is just a couple of
microns. Compared with the sample thickness, this layer is very thin and will not affect the
deformation state inside the specimen.

4.2. EXPERIMENTAL OBSERVATIONS

The four-point-bend specimen was loaded using an Instron screw-driven load frame by dis-
placement control to enhance crack-tip stability. A 50 mm-diameter collimated He-Ne laser
beam (wave length= 632 nm) was roughly centered around the crack tip reflecting from
the aluminized specimen surface. Two high-density gratings were positioned in the reflected
beam and the gratings are perpendicular to the crack. Therefore, information regarding the
quantity∂u3/∂x1 was obtained. The grating pitch wasp = 0.025 mm. In order to increase the
sensitivity, the distance between the two high-density gratings was set at1 = 100 mm. The
corresponding fringe sensitivity for this grating separation was approximately 0.007◦/fringe.
As the load increases, the stress field near the crack tip continuously builds up and the CGS
fringes also enlarge continuously. The interference fringes surrounding the crack tip were
recorded by a motor-driven 35 mm camera and the corresponding load was also recorded at
each exposure. Figure 8 shows one of the recorded photographs. Clearly, the photographed
fringe patterns are qualitatively similar to the simulation results discussed in the previous
section. The similarity between the simulated fringe pattern and the photograph suggests that
the stress intensity factor can be considered as the controlling parameter characterizing the
fracture behavior of the fiber-reinforced composite. Recall that the simulated CGS fringe
patterns were indeed based on the assumption that aK-dominant region surrounding the crack
tip exists. Well above the crack tip, one can see that the fringes are no longer symmetric about
the crack axis. This is because the composite plate, as it is received, is not completely flat.

Another feature that is observed from the photograph is that there are two apparent crack
tips. This is due to the large distance,1, between the two high-density gratings and the result-
ing relatively large shift,δ, between the two interfering beams. Therefore, (33) cannot be used
in the CGS fringes interpretation because it assumes that the image shifting is infinitesimal.
Instead we have to use (34) for data analysis. We treatδ as an additional unknown parameter
in the CGS fringes interpretation process, because (36) only provides an estimation for the
shift δ and the measurement ofδ directly from the photograph is inaccurate. The procedure
for obtaining the stress intensity factors at the crack tip will be discussed next.
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4.3. CGSFRINGE INTERPRETATION

To obtain the stress intensity factor at the crack tip, the photograph of the CGS fringe patterns
was first digitized. According to the analyses of Rosakis and Ravi-Chandar (1986) and Kr-
ishnaswamy et al. (1992), data points must be chosen at a distance from the crack tip greater
than half of the specimen thickness, to avoid the influence of three-dimensional effects. A
least squares scheme was used to fit the experimental data to expression (34) to obtain the
parametersKI , KII , andδ. However, since the dependence of the out-of-plane displacement
u3 on the parameterδ is not linear, the least squares scheme also becomes nonlinear. We
use the over-deterministic method developed by Sanford and Dally (1979) to determine the
unknown parameters. The fitting process involves both the Newton-Raphson method and the
minimization process associated with the least squares procedure.

For each data point(xi1, x
i
2) and the associated fringe ordermi , we define

fi(KI,KII , δ) =
{
u3(x

i
1+ δ, xi2)− u3(x

i
1, x

i
2)

δ
− m

ip

21

}2

, i = 1,2, . . . , n, (37)

wheren is the total number of data points. Suppose thatK
j

I , Kj

II , andδj are the estimates of
the unknown parameters in thej th iteration. Then in the(j + 1)th iteration step, we have

f
j+1
i = f ji +

(
∂fi

∂KI

)j
1KI +

(
∂fi

∂KII

)j
1KII +

(
∂fi

∂δ

)j
1δ, i = 1,2, . . . , n. (38)

By introducing

f =


f1

f2

· · ·
fn

 , A =



∂f1

∂KI

∂f1

∂KII

∂f1

∂δ

∂f2

∂KI

∂f2

∂KII

∂f2

∂δ

· · · · · · · · ·
∂fn

∂KI

∂fn

∂KII

∂fn

∂δ


, k =


1KI

1KII

1δ

 ,

Equation (38) has the form

f j+1 = f j +Ajk, j = 0,1,2, . . . . (39)

In addition, by requiring thatf j+1 = 0, we have

k = −(Cj )−1bj , Cj = (Aj )>(Aj ), bj = (Aj )>f j , (40)

which gives the correction factork for the(j +1)th iteration. The value of the fitting parame-
ters at the(j + 1)th iteration is given by

(K
j+1
I ,K

j+1
II , δj+1)> = (Kj

I ,K
j
II , δ

j )> + k, j = 0,1,2, . . . . (41)

This iterative procedure can be repeated until|k| 6 ε, whereε is the measure of prescribed
error tolerance.
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Figure 9. Comparison of the CGS experimental measurement with the results of analytic solution.

Because this iteration procedure is nonlinear, the choice of the initial value will affect the
convergence of the process. For our tests, the following approach was used to obtain the initial
value(K0

I ,K
0
II , δ

0)>. We first used the linear least squares scheme to fit the experimental data
to expression (33), thus obtaining the two values forK0

I andK0
II . The valueδ0 was next

estimated from the photograph. With the accuracy ofε = 0.1 percent, convergence of the
iterative process was then achieved within 10 steps.

4.4. COMPARISON WITH ANALYTICAL CALCULATIONS

To assess the accuracy of using the optical CGS technique to obtain the stress intensity fac-
tor at a crack tip for the graphite/epoxy fiber-reinforced composite, the experimental CGS
measurement was compared with an available analytical solution. This is an extension of an
existing solution corresponding to isotropic materials. For the specimen geometry and loading
configuration depicted in Figure 7, the stress intensity factor at the crack tip is given by

KI = σ√πa · F
(a
b

)
Y (ρ), σ = 3Q

b2h
(l2− l1), (42)

whereY (ρ) is a function of the nondimensional material parameterρ, as defined previously.
FunctionY (ρ) has been approximated by Bao et al., (1992) by a polynomial form,

Y (ρ) =
√

1+ ρ
2
{1+ 0.1(ρ − 1)− 0.016(ρ − 1)2+ 0.002(ρ − 1)3}, (43)

with an error of less than 2 percent. Also note thatY (1) = 1. The dependence of the function
F(a/b) on the specimen geometry is discussed in Appendix C.F(a/b) is the same as for an
isotropic specimen subjected to four-point-bend loading. In Figure 9, the stress intensity factor
measured using the CGS technique is compared to that obtained with the analytical solution.
The agreement between the analytical solution and the optical experimental measurement is
excellent.
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Figure 10. CGS fringe patterns showing stable crack growth under quasi-static loading.

Figure 11. Measured energy-release rate as a function of crack growth during the process of stable propagation.

4.5. INITIATION TOUGHNESS UNDER QUASI-STATIC LOADING

In our four-point-bend experiment, the applied load was monitored during the test. The load
was a linearly increasing function of the deflection before it reached the maximum value. The
specimen failed catatrophically at the maximum load. Once the crack initiated, it propagated
unstably. Therefore, from the load/deflection behavior, the specimen fractured in a brittle man-
ner. However, a very small amount of stable crack growth was indeed observed and captured
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using the optical CGS technique together with the motor-driven camera. We believe this small
amount of stable crack growth is due to the rubber-toughened phase in the epoxy matrix. Some
selected CGS photographs showing the stable crack growth, are presented in Figure 10. Here,
we need to point out that the photographs shown in Figure 10 were taken in a very short period
of time by the motor-driven camera. It shows that CGS can capture the phenomenon which
might be overlooked due to the overall brittleness of the process. Another advantage of using
optical methods to study the process of fracture is that the position of the crack tip can be
measured accurately. The measured energy-release rateGI as a function of crack growth is
shown in Figure 11. Here we have used the relation between the energy-release rateGI and
the mode-I stress intensity factorKI given by Hutchinson and Suo (1992),

GI = λ−3/4

√
1+ ρ

2
· K

2
I

E11
, (44)

whereE11 is the Young’s modulus along the fiber direction listed in Table 1. Close to the
point of stable initiation of the stationary crack, the energy-release rate is higher than the
value of the growing crack. This is because the initial stationary crack tip has a finite radius
(∼ 0.1 mm). However, once the crack starts to propagate, the energy-release rate value will
correspond to the sharp crack. Accordingly, the fracture initiation toughness was determined
by back extrapolating theGI data of the stably growing crack. From Figure 11, we estimated
the initiation toughness of a sharp crack to be 0.44× 103 Pa·m which is consistent with the
measurements made by Hercules.

5. Concluding remarks

In this study we have demonstrated that the Coherent Gradient Sensor (CGS) technique can be
used to measure the fracture toughness and critical strain-energy release rates of orthotropic
low toughness materials (unidirectional graphite/epoxy composite) under the plane-stress de-
formation condition. Our measurements of stress intensity factor using the CGS approach
compared favorably with values determined using an analytic solution. In addition, the ap-
pearance of fringes calculated on the basis of aK-dominant crack-tip field, were in good
agreement with photographic fringe records obtained using the CGS method, thus proving
the validity of this necessary assumption. Finally, our measurement of fracture initiation
toughness using the CGS experimental fringe patterns agrees well with other independent
measurements. In summary, the CGS method is capable of quantifying the near-tip parameters
that control the fracture process for unidirectional graphite/epoxy composite materials.

The CGS technique has many advantages for studying fracture events. It is a noncontact
technique that can provide a continuous record of the fracture initiation and propagation.
Although the present work was performed at quasi-static loading rates, all of the adopted
methodologies are also applicable to dynamic loading and to fast crack growth events. In such
cases the CGS technique can also be used to measure fracture toughness parameters associated
with dynamic failure. Indeed, when the loading and subsequent crack growth take place in
very short times (hundreds of microseconds), boundary value measurements are incapable of
providing meaningful information regarding fracture behavior. In such cases optical methods,
such as CGS, are the only alternative.
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Appendix

A. Deformation field surrounding the crack tip

In this Appendix, theK-dominant components of the stress and the displacement fields sur-
rounding a stationary crack tip in an orthotropic solid are provided in terms of the nondimen-
sional material parametersλ, ρ, κ, and the stress intensity factorsKI andKII . Three different
cases for the parameterρ are considered:

(i) ρ > 1,

(ii) −1< ρ < 1, and

(iii) ρ = 1.

According to the definition given in Section 2.1, we always haveλ > 0. Also we assign(r, θ)
to be the polar coordinates centered at the crack tip.

Forρ > 1, the most singular stress components are

σ11 = KI√
2π
· λ−1/2

ρ+ − ρ− {ρ+r
−1/2
1 cos 1

2θ1− ρ−r−1/2
2 cos 1

2θ2}

− KII√
2π
· λ−1/4

ρ+ − ρ− {ρ
2
+r
−1/2
1 sin 1

2θ1− ρ2
−r
−1/2
2 sin 1

2θ2},

σ22 = − KI√
2π
· 1

ρ+ − ρ− {ρ−r
−1/2
1 cos1

2θ1− ρ+r−1/2
2 cos 1

2θ2}

+ KII√
2π
· 1

λ−1/4(ρ+ − ρ−){r
−1/2
1 sin 1

2θ1− r−1/2
2 sin 1

2θ2},

σ12 = KI√
2π
· λ−1/4

ρ+ − ρ− {r
−1/2
1 sin 1

2θ1− r−1/2
2 sin 1

2θ2}

+ KII√
2π
· 1

ρ+ − ρ− {ρ+r
−1/2
1 cos 1

2θ1− ρ−r−1/2
2 cos 1

2θ2}



(45)
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and the displacement field is given by

u1 = KI√
2π
· 2b11λ

−1/2

ρ+ − ρ−
{(
ρ2
+ +

3− κ
1+ κ

)
ρ−r

1/2
1 cos 1

2θ1

−
(
ρ2− +
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1/2
2 cos 1

2θ2

}
+ KII√

2π
· 2b11λ

−1/4
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ρ2
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3− κ
1+ κ

)
r

1/2
1 sin 1
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

(46)

where

ρ± =
√
ρ + 1

2
±
√
ρ − 1

2
,

r1,2= r{cos2 θ + λ−1/2ρ2± sin2 θ}1/2, θ1,2= tan−1{λ−1/4ρ± tanθ}.


For−1< ρ < 1, the most singular stress components are

σ11 = KI√
2π
· λ
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2 cosα
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2 cos(1
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

(47)
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and the displacement field is

u1 = KI√
2π
· b11λ

−1/2
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[
cos(1

2θ2− α)− 3− κ
1+ κ cos(1

2θ2+ α)
]}

− KII√
2π
· b11λ

−1/4

cosα

{
r

1/2
1

[
cos(1

2θ1+ 2α)− 3− κ
1+ κ cos1

2θ1

]
−r1/2

2

[
cos(1

2θ2− 2α)− 3− κ
1+ κ cos1

2θ2

]}
,

u2 = KI√
2π
· b11λ

−3/4

cosα

{
r

1/2
1

[
cos(1

2θ1− 2α)− 3− κ
1+ κ cos1

2θ1

]
−r1/2

2

[
cos(1

2θ2+ 2α)− 3− κ
1+ κ cos1

2θ2

]}
− KII√

2π
· b11λ

−1/2

cosα

{
r

1/2
1

[
cos(1

2θ1− α)− 3− κ
1+ κ cos(1

2θ1+ α)
]

+r1/2
2

[
cos(1

2θ2+ α)− 3− κ
1+ κ cos(1

2θ2− α)
]}
,



(48)

where

r1,2= r

(

cosθ ± λ−1/4

√
1− ρ

2
sinθ

)2

+ λ−1/2

(
1+ ρ

2

)
sin2 θ


1/2

,

θ1,2= tan−1

λ−1/4

√
1+ ρ

2

(
1± λ−1/4

√
1− ρ

2
tanθ

)−1

tanθ

 ,
α = tan−1

√
1+ ρ
1− ρ .


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Finally, for ρ = 1, the most singular stress components are

σ11 = KI√
2π
· λ
−1/2

r
1/2
1

cos1
2θ1(1− sin 1

2θ1 sin 3
2θ1)

− KII√
2π
· λ
−1/4

r
1/2
1

sin 1
2θ1(2+ cos1

2θ1 cos3
2θ1),

σ22 = KI√
2π
· 1

r
1/2
1

cos1
2θ1(1+ sin 1

2θ1 sin 3
2θ1)

+ KII√
2π
· 1

λ−1/4r
1/2
1

sin 1
2θ1 cos1

2θ1 cos3
2θ1,

σ12 = KI√
2π
· λ
−1/4

r
1/2
1

sin 1
2θ1 cos1

2θ1 cos3
2θ1

+ KII√
2π
· 1

r
1/2
1

cos1
2θ1(1− sin 1

2θ1 sin 3
2θ1),



(49)

and the displacement field is

u1 = KI√
2π
· 4b11λ

−1/2

1+ κ r
1/2
1 cos1

2θ1(κ − 1+ 2 sin2 1
2θ1)

+ KII√
2π
· 4b11λ

−1/4

1+ κ r
1/2
1 sin 1

2θ1(κ + 1+ 2 cos2 1
2θ1),

u2 = KI√
2π
· 4b11λ

−3/4

1+ κ r
1/2
1 sin 1

2θ1(κ + 1− 2 cos2 1
2θ1)

− KII√
2π
· 4b11λ

−1/2

1+ κ r
1/2
1 cos1

2θ1(κ − 1− 2 sin2 1
2θ1),


(50)

where

r1 = r{cos2 θ + λ−1/2 sin2 θ}1/2, θ1 = tan−1(λ−1/4 tanθ).

Notice that when, in addition toρ,λ = 1, (49) and (50) will become identical to those obtained
for isotropic materials.
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B. Angular functions used in Section 3

In Section 3.1, the in-plane gradients of the out-of-plane displacementu3(x1, x2) are expressed
in terms of the angular functionsFαβ(θ) (α, β = 1,2). Forρ 6= 1, these angular functions are
given by

F11(θ) = Re
{

µ2

µ1− µ2
· b31µ

2
1+ b32

(cosθ + µ1 sinθ)3/2
− µ1

µ1− µ2
· b31µ

2
2+ b32

(cosθ + µ2 sinθ)3/2

}
,

F12(θ) = Re
{

1

µ1− µ2
· b31µ

2
1+ b32

(cosθ + µ1 sinθ)3/2
− 1

µ1− µ2
· b31µ

2
2+ b32

(cosθ + µ2 sinθ)3/2

}
,

F22(θ) = Re
{

µ1

µ1− µ2
· b31µ

2
1+ b32

(cosθ + µ1 sinθ)3/2
− µ2

µ1− µ2
· b31µ

2
2+ b32

(cosθ + µ2 sinθ)3/2

}
,


(51)

andF21(θ) = −λ−1/2F12(θ) by noting the fact thatµ1µ2 = −λ−1/2. To be more explicit,
consider the three cases for the parameterρ separately.

Forρ > 1, the angular functions can be expressed as

F11(θ) = ρ−
ρ+ − ρ− ·

b32− λ−1/2ρ2+b31

h+(θ)
cos{32 tan−1(λ−1/4ρ+ tanθ)}

− ρ+
ρ+ − ρ− ·

b32− λ−1/2ρ2−b31

h−(θ)
cos{32 tan−1(λ−1/4ρ− tanθ)},

F12(θ) = − 1

λ−1/4(ρ+ − ρ−) ·
b32− λ−1/2ρ2+b31

h+(θ)
sin{32 tan−1(λ−1/4ρ+ tanθ)}

+ 1

λ−1/4(ρ+ − ρ−) ·
b32− λ−1/2ρ2−b31

h−(θ)
sin{32 tan−1(λ−1/4ρ− tanθ)},

F22(θ) = ρ+
ρ+ − ρ− ·

b32− λ−1/2ρ2+b31

h+(θ)
cos{32 tan−1(λ−1/4ρ+ tanθ)}

− ρ−
ρ+ − ρ− ·

b32− λ−1/2ρ2−b31

h−(θ)
cos{32 tan−1(λ−1/4ρ− tanθ)},



(52)

where

h±(θ) = (cos2 θ + λ−1/2ρ2
± sin2 θ)3/4,

andρ± has been defined in the previous section.
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For−1< ρ < 1, the angular functions are given by

F11(θ) = − 1

2h1(θ)

√
2

1− ρ {b32 cos(3
2θ1+ α)+ λ−1/2b31 cos(3

2θ1− α)}

− 1

2h2(θ)

√
2

1− ρ {b32 cos(3
2θ2− α)+ λ−1/2b31 cos(3

2θ2+ α)},

F12(θ) = 1

2λ−1/4h1(θ)

√
2

1− ρ {b32 cos3
2θ1+ λ−1/2b31 cos(3

2θ1− 2α)}

− 1

2λ−1/4h2(θ)

√
2

1− ρ {b32 cos3
2θ2+ λ−1/2b31 cos(3

2θ2+ 2α)},

F22(θ) = 1

2h1(θ)

√
2

1− ρ {b32 cos(3
2θ1− α)+ λ−1/2b31 cos(3

2θ1− 3α)}

+ 1

2h2(θ)

√
2

1− ρ {b32 cos(3
2θ2+ α)+ λ−1/2b31 cos(3

2θ2+ 3α)},



(53)

where

h1,2 (θ) =

(

cosθ ± λ−1/4

√
1− ρ

2
sinθ

)2

+ λ−1/2

(
1+ ρ

2

)
sin2 θ


3/4

,

andθ1,2 have been defined in the previous section.
Finally, for ρ = 1, the angular functions are

F11(θ) = −λ
−1/2b31+ b32

4h(θ)
{(4− 3η) cos3

2θ1+ 3η cos7
2θ1},

F12(θ) = λ−1/2b31+ b32

4λ−1/4h(θ)
{(4+ η) sin 3

2θ1+ 3η sin 7
2θ1},

F22(θ) = −λ
−1/2b31+ b32

4h(θ)
{(4+ 5η) cos3

2θ1+ 3η cos7
2θ1},


(54)

where

h(θ) = (cos2 θ + λ−1/2 sin2 θ)3/4, θ1 = tan−1(λ−1/4 tanθ),

η = λ−1/2b31− b32

λ−1/2b31+ b32
.

More specifically, forλ = 1, one can show that

F11(θ) = F22(θ) = 2ν

E
cos3

2θ, F12(θ) = −F21(θ) = −2ν

E
sin 3

2θ,
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whereν andE are the Poisson’s ratio and Young’s modulus, respectively, for the degenerate
isotropic elastic material.

C. Stress intensity factor for the four-point-bend specimen

The stress intensity factor for an isotropic single-edge-notch specimen under pure bending
load is given by

KI = σ
√
πa · F

(a
b

)
, (55)

whereF(a/b) is a function that only depends on the ratioa/b. F(a/b) can be approximated
by the following expression (Tada et al., 1985)

F
(a
b

)
=
(

2b

πa
sin

πa

2b

)1/2(
cos

πa

2b

)−3/2
{

0.923+ 0.199
(

1− sin
πa

2b

)4
}
.

Theσ in (55) is related to the applied moment per unit thickness,M, through

σ = 6M

b2
, M = Q

2h
(l2− l1),

whereQ is the total force applied on the four-point-bend specimen andh is the specimen
thickness.l1 andl2 are the half span of the top and the bottom loading pins. Substituting into
(55), we have

KI = 3
√
π
Q(l2− l1)
b3/2h

(a
b

)1/2
F
(a
b

)
. (56)
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