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This article describes coherent gradient sensi@zS as an optical, full-field, real-time,
nonintrusive, and noncontact technique for the measurement of curvatures and nonuniform
curvature changes in film—substrate systems. The technique is applied to the study of curvature
fields in thin Al films (6 xm) deposited on thin circular silicon wafefs05 wm) of “large” in-plane
dimensiong50.8 mm in diametgrsubjected to thermal loading histories. The loading and geometry

is such that the system experiences deformations that are clearly within the nonlinear range. The
discussion is focused on investigating the limits of the range of the linear relationship between the
thermally induced mismatch strain and the substrate curvature, on the degree to which the substrate
curvature becomes spatially nonuniform in the range of geometrically nonlinear deformation, and
finally, on the bifurcation of deformation mode from axial symmetry to asymmetry with increasing
mismatch strain. Results obtained on the basis of both simple models and more-detailed
finite-element simulations are compared with the full-field CGS measurements with the purpose of
validating the analytical and numerical models. 2001 American Institute of Physics.
[DOI: 10.1063/1.1364650

I. INTRODUCTION substrate, the substrate thickndss and the through-the-
thickness variation of mismatch strain only througH-or-
mula (1) follows from analysis of a film—substrate system
vhich is based on several linearity assumptibri8.Current
easurement technology is being applied to ever-thinner
ubstrates in order to extend the sensitivity range of the mea-

Fabrication of such a structure inevitably gives rise to Stres§urements particularly in research on fundamental stress is-

't?] the fl'lm due to Iatt'ﬁe rmslmatcht,_ differing tf]oeff'ﬁ'en_ts IOfTsues during deposition. For examplesitu measurements of
ermal expansion, chemical reactions, or other physical €lg; o g during epitaxial growth of a silicon—germanium alloy

fe.cts.. Expenmental techniques for stress measurement Bhto silicon crystals, substrates only a few hundred microns
thin films, which are based on the observation of substrat

. . NV alehick with lateral extent of a few centimeters, are currently
curvature induced by this stress, are gaining increasing|

d d di " q Applicati f)éeing used. The aspect ratidateral dimension/thicknessf
widespread use as diagnostic procedures. AppIcations 1l ., s pstrates fall within the range of 50—1000, so they are
metal films on semiconductor substrates are discussed k

] ) : - ¥hin structures” indeed. A consequence is that states of
Flinn" and Nix;" and recent refinements far situ measure- deformation are readily achieved for whiclonlinear geo-
ments of curvature déirgjng vapor deposition are described b%etrical effectcome into play. Thus, the purpose here is to
Floro and co-workers. . discuss aspects of curvature due to a bonded, stressed thin

Most data on substrate curvature are interpreted on th

basis of the classical St formdlan it t basic f fiim which are relevant to the interpretation of substrate cur-
asis orthe classical stoney form IS mostbasic 1o,y ature experiments. The discussion focuses first on axially
this formula provides an expression for the curvatdggof

th bstrate in t f the fi b foir symmetric, nonlinear deformations, and then on deforma-
€ substrate In terms ot the iim membrane derce per tions which may be asymmetric. To make the discussion
unit distance due to stress as

definite, attention will be restricted to a system with a circu-

A material configuration of central importance in micro-
electronics, optoelectronics, and thermal barrier coating tec
nology, among other areas of application, is a thin film of
one material deposited onto a substrate of another materi

6f lar substrate of radiuR, the only lateral dimension of con-
Kst= h2M’ (1) sequence. It will be assumed that the film material is also
S

_ _ S ~ homogeneous and the stress in the film is uniform through-
whereh is the substrate thicknesl, is its biaxial elastic  oyt, Arbitrary through the thickness variation of properties or
this way, formula(1) involves the elastic properties of the gyresh©

A polar section of the system is shown in Fig. 1. The

dElectronic mail: rosakis@atlantis.caltech.edu elastic biaxial modulus and Poisson ratio of the film are
PElectronic mail: freund@engin.brown.edu M¢,v¢ and similarly for the substrate. Cylindricat,@,z)
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thin-film/substrate structures subjected to thermal loading.
The experimental measurements provide bench-mark com-
parisons for the validation of the assumptions involved in
Freund’$® nonlinear analysis and of finite-element models
used in the current investigation.

A A

Thg | B

FIG. 1. Axial section of the film—substrate system showing the polar coor-
dinates and the physical dimensions: film thicknbegss substrate thickness
hg, and substrate raditR

II. AXIALLY SYMMETRIC DEFORMATION

For axially symmetric deformation of the substrate, the
only nonzero stress components in polar coordinates are
o (r,2) and oyy(r,z). For the case of thin plate-like con-
coordinates are adopted with the origin on the geometricdigurations (see Fig. ], the Kirchhoff hypothesis can be
midplane of the substrate. The mismatch strain, which is thedopted, which implies that material lines initially normal to
stress-free strain that would render the film compatible withthe substrate midplane remain so during deformation. The
the substrate, is denoted hy,. The associated mismatch strain components can then be written in terms of the dis-
stress iso,,= Mg, and the membrane forde=M;eh; in  placement components(r),u,(r) of the substrate midplane

this case. as
Although thin-film behavior has emerged as a research ul(r)2
area in mechanics only recently, the general issue of large ¢ (r z)=u/(r)+ ———zU\(r)+&p,
deformation of thin plates has been of interest for many 2
years. In addition to those references cited above, Friedrichs u(r)  ulr) (2
and Stoket''? studied the axially symmetric postbuckling Egp=————Z—— e,

behavior of a thin, circular plate subjected to uniform in- r r

plane compression along its edge; Wittfitkonsidered the where the prime denotes differentiation with respect.to
axially symmetric snap-through buckling of a bimetallic disk The definition of mismatch strain is extended so that
under temperature change; and Hfefescribed the warping =0 in the substrate; in this case, E®) applies for both
of layered composite materials due to residual stress. In thimaterials. Expressiong2) are the usual linear-strain-
article, we first summarize the results of a recent analysis byisplacement relations for axially symmetric deformation of
Freund’® who modeled the complex nonlinear deformationa circular plate, augmented by the teuj(r)/2 to account
behavior of thin-film/substrate structures. We then comparéor midplane stretching due to finite rotation of the substrate
the analytical predictions with real-time experimental mea-normal about an axis in th@direction. This nonlinear aspect
surements. It should be noted at this point that nonlineaof the strain-displacement relations is the essential feature of
distortions of large wafers were investigated experimentallithe von Karman elastic-plate theory.
by Finot et al,'® who used a geometrical grid projection As a first calculation, parametric forms af(r),u,(r)
method to record curvatures resulting from a variety of depoare adopted. The principle of stationary potential energy is
sition conditions and geometrical parameters. then invoked to determine optimal values of the parameters
Techniques based on optical interferometry offer muchinvolved. Consider the particular choicg=gqr +¢,r3, u,
promise as a means for real-time, remote, high-resolution= xr?/2, which preserves the constant spherical curvature
full-field measurements of curvature and curvature changeseature of the small deflection analysis as an assumption in
However, standard interferometric techniqueée.g., the nonlinear range. The total potential energy is then a func-
Twyman—Green interferomefeare sensitive to rigid-body tion of the parameters,, £,, and «. Following Freund?
rotation and displacement of the specimen surface, and thuke requirement that it be stationary with respect to these
are very vibration sensitive. Moreover, since these interferovariables leads to the relationship
metric techniques measure the surface topography, two suc-
cessive differentiations of the experimental data are required S=KI1+(1-vg)K?), @)
to obtain curvature. This often results in error levels that ardor the case wheih;<hg, whereS= 38mR2thf/2h§Ms is
unacceptable, and drastically reduces the potential of sudhe normalized mismatch strain akd=R?«/4h, is the nor-
methods for accurate stress measurement in thin-film struenalized curvature. This result is shown graphically in Fig. 2,
tures. Rosakit all’” have employed the optical technique along with the corresponding linear relationsk@ioney for-
of coherent gradient sensingGS to measure the entire mula betweenK andS. This result implies that the system
curvature tensor fields in thin-film and micromechanicalparameters for whicB>0.3 result in a response in the range
structures. The CGS technique offers significant advantagesf nonlinear geometrical effects. Quantitative conclusions re-
over other currently used curvature measurement techniquegarding the behavior within the nonlinear range cannot be
These advantages include rigid-body motion insensitivitydrawn at this point because of the uncertainty of the severe
and the associated vibration insensitivity and accurate andonstraint implied by the assumption of spatially uniform
full-field measurement of all components of the curvaturecurvature. This constraint is relaxed in the numerical analysis
tensor as well asn situ and real-time capabilities. In the discussed below.
second part of this study, we use CGS to record the evolution For the case wheh;<hg, and when the film strain is
of curvature fields in the nonlinear deformation regime ofnot changed appreciably as a result of substrate deformation,
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FIG. 2. Graph of the relationship between normalized curvafused nor- r/R - normalized radial distance

malized mismatch strai implied by Eq.(3) with v=1/4 for large deflec-

tion with spatially uniform substrate curvature. The dashed line representglq 3. Contour_ plot showmg "?"e' curves ofnormallzeq curv_at(;(re) for
the linear relationship implied by small deflection theory. axially symmetric deformation in the plane with normalized distariéas

coordinate on the horizontal axis and normalized mismatch sBain the
vertical axis for common Poisson ratic=1/4. Uniform curvature requires

R . . . . the level curves to be parallel to the horizontal axis.
the equilibrium equations in terms of midplane displace-

ments have been studied by Friedrichs and Stdkerthe
context of postbuckling behavior of circular plates. Someine value 0.3, the curvature distribution becomes increas-
useful observations follow from examination of these nonlin-ing|y nonuniform. The general trend is that the curvature
ear equations. For example, suppose the solution for the digssumes values substantidglowthe average curvature for
placementsi, (r),u(r) is known for some values of the sys- qrtions of the substrate near its center, and it takes on values
tem parameters,, Mg, andM; and for some dimensions g pstantiallyabovethe average value near the periphery of
R, hy, andh. If all dimensions are then scaled by a positive ihe supstrate. For example, for a normalized mismatch strain
factor, saya, holding the other system parameters fixed, theys S=2, the normalized curvature varies from ab&((0)
displacements for the scaled system atg(r) and au,(r). ~0.55 at the substrate center to a value of ab&(R)
Thus, the solutions of the nonlinear equations scale with the. 1 3 4t the substrate edge.
absolute size of the structure, so only one size need be con- e feature that level curves of curvature in Fig. 3 even-
sidered for a complete descriptidat a given aspect ratio  5)ly assume a tangent direction which is parallel to the
Consequently, all lengths can be normalized with respect tQirain axis near/R=0 implies that the curvature near the
substrate radiug. o center of the wafer first increases as the spatially uniform
A second observation is that the parameters M¢,  girainSincreases. Eventually, the curvature reaches a maxi-
andh; enter only through the combination,Mhy, which 1y value at some level & and then decreases with fur-
is the membrane forcé in the film. All situations with @ her increase in strain beyond this level. This behavior is a
certain value of are identical at this level of approximation, jirect consequence of the nonlinearity of the deformation.
no matter what values the individual parametefs, Mg,
and h; may assume. For this reason, the dime_nsio_nless P BIFURCATION OF EQUILIBRIUM SHAPES
rameterS, which was introduced above and which involves
these parameters in the same combination, will be adopted to Imagine the mismatch strain in the film being increased
represent the magnitude of mismatch strain in the subsequeint magnitude from the zero initial value. For relatively small
discussion. values, the deformed shape of the substrate is essentially
The deformation is analyzed in greater detail by meanspherical as long as the response remains within the linear
of the Abaqus finite-element code. A result in the form ofrange. Once ,, becomes large enough in magnitude to bring
level curves of curvaturi in the (r/R,S) plane is shown in  the system into the range of a geometrically nonlinear re-
Fig. 3 for the case whehg/h;=20 andR/h;=50. The cur- sponse, the deformed shape may continue to be axially sym-
vature is essentially constant over the entire substrate atraetric. However, this deformation mode requires that the
given level of mismatch strain as long as the level curves osubstrate must deform in extension as well as in bending, and
curvature are parallel to the radial distance axis fetrOR  the stiffness against such deformation is very large compared
=<1. This is indeed the case for normalized curvature varyingo the bending stiffness at comparable levels of surface
between zero and a value of about 0.3. Because of the nostrain. On the other handylindrical bending, or generalized
malization convention for curvature and mismatch strainplane strain bending, can occur with no midplane extension.
adopted here, this implies that the corresponding normalize@his suggests that, at some point as the magnitude,of
mismatch strain is also in the range=s®=<0.3. Thus, the increases, the system may begin a transition from axially
implied limit on the range of linear response found here issymmetric deformation toward cylindrical bending deforma-
consistent with the result represented in Fig. 2. Similar contion. Such a transition would represenbigurcation of equi-
clusions were reported by Finot and Surésin the basis of librium states.
nonlinear finite-element calculations. Before proceeding with a full numerical simulation, a
As the normalized mismatch straiis increased above simple variational approach is taken. The transverse deflec-
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tion of the substrate midplane is assumed to Whex,y) 3| ¥
= (rk,X*+ kyy?)/2, wherex, and «, are the(spatially uni- \
form) principal curvatures of the deformed shape. A strain A
distribution consistent with this deflection, which accounts Y
for midplane stretching, is also assumédhe principle of
stationary potential energy is then invoked to determine the
relationship of the principal curvatures to the system param-
eters, which is necessary for the system to be in equilibrium.
This development follows the work of Masters and
Salamon® and Salamon and Mastef'SA more-detailed ex- 2
amination of bifurcation on the basis of a finite-element
simulation withouta priori restrictions on the deformation
beyond the Kirchhoff hypothesis is then described. 0 1 ) 2 3
The goal in this development is to extract fairly simple Kx - normalized
analytical results, which are merely representative of theriG. 4. Relationship between normalized principal curvatutgsand K,
phenomena of interest. As before, attention is restricted tanplied by equilibrium condition4) for »=1/4. The intersection between
systems for which the elastic response of both the film anqm brsr)ch(hﬁbléy cor_respor?dlng to spherical curvature and the hyperbolic
substrate materials is isotropic, and the moduli of the film ranch is the bifurcation point.
and substrate are the same. While it is not necessary to place
restrictions on the relative thicknebks/hg for this develop-
ment, results are presented under the assumptiorhtiht librium configurations. All equilibrium configurations on the
<1 in order to be consistent with other parts of the discus@symmetric branch in Fig. 4except that corresponding to
sion. the bifurcation point itsejfare found to be stable configura-
For the present case, the equilibrium conditions can b&ons.
obtained in closed forn£%° In particular, for a given mis- If the strain magnitude is increased beyond the value
match strain and geometric parameters, a relationship b&orresponding to the bifurcation point, then the deformation
tween Ky and Ky is obtained, which represents the locus of becomes asymmetric with the curvature increasing in one

-
-

-

4
1 7 bifurcation Ko Ky

2 point

Ky - curvature (solid)
1
H
'
1
S - mismatch strain (dashed)

equi"brium states for the system in the p|ane,@fvs Ky, direction and decreasing in the orthogonal direction. The
namely, principal directions of the asymmetric deformation are com-
pletely arbitrary, of course. The bifurcation is stable, in the

(ky— ky) kykyR*(1+ ) = 16(hg+hp)?[=0, (4 sense that an increasing strain is required to move the equi-

where » is the common Poisson ratio. This result is exact“b”um configuration away from the bifurcation point along

within the class of deformations under consideration. An im-the asymmetric branch in Fig. 4. As the strain magnitude

- - L increases further, the equilibrium shapes become more and
portant consequence of admitting the possibility of finite de- . . A A
. X : X X . more asymmetric, approaching a cylindrical-limiting shape
flections is evident in Eq(4). It is clear that a spherical .
. L - with ky/ky,—0 or — oo,
deformed shape of the system, with= k., is still an equi- oo . . -
L : y : The variation of mismatch straia,, along the equilib-
librium shape(although the magnitude of the spherical cur- . . i, i . .
. - : : ium paths corresponding to the equilibrium configurations is
vature differs significantly from that predicted on the basis of . S . _
. ; : ; also illustrated in Fig. 4dashed curvegs Again, the mis-
the small deflection theory for a given mismatch strain, as S : : .
. . : . match strain is normalized in such a way that the graph is
was noted in the preceding sectioifhe new feature is the . . . .
- : S universal, for the choice of=1/4. The nonlinear relation-
possibility of a seconésymmetricequilibrium shape repre- . . L .
o . .ship between curvature and mismatch strain prior to bifurca-
sented by the vanishing of the term in square brackets in _=." " . R
Eq. (4) tion is identical to that shown in Fig. 2.

o The results in Fig. 4 are valid for the full range of geo-
metrical parameters for systems which meet the general char-
acteristics of compliant free-standing layers. To give an im-

ression of the magnitudes of parameters involved, consider
he state represented by the bifurcation point in Fig. 4. If the
geometry of the system is characterizedyR, the ratio of

ubstrate thickness to radius, andhyyhg, the ratio of film

The locus of possible equilibrium curvatures is plotted in
Fig. 4 (solid curve$ for v=1/4. The straight line bisecting
the quadrant represents the spherical shape wijth «, .
The curved branch of the locus is obtained by setting th
second factor in Eq4) equal to zero, and it represents asym-
metric deformation, that isx,# k. The intersection point

of these two branches is a bifurcation point. For values o hickness to substrate thickness, then the normalized spheri-

spherical curvature on the branch widy= «,, which are . ; : . .
; Oy T cal curvature and mismatch strain at the bifurcation point are
less than the curvature at the bifurcation point, it is found”.

that the equilibrium value of potential energy is a local mini- given by
mum under variations in curvature. Thus, that part of the 1 2
symmetric branch represengsable equilibrium configura- K(bif):\/ﬁv S(bm:m- ®)

tions. On the other hand, for values of spherical curvature

which are larger than the curvature at bifurcation, the stationFor »=1/4, the value oS, is about 1.43.

ary value of potential energy is found to be a saddle point, so  The foregoing bifurcation analysis is based on the as-
that part of the symmetric branch represemtstableequi-  sumption of spherical curvature of the substrate midplane
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ar 6=0,n7 7 malized by substrate thicknebg at nine points around the

/ S8, /8 outer edge of the substrate versus normalized mismatch

strain S As S increases from zero, all nine points at first

experience the same transverse deflection within the resolu-

tion of a graph. AsS increases through the value of about

1.77, a fairly sharp transition in response occurs. The deflec-

tions at the points on=R at /=0 and 6= 7 increase dra-

matically for a very small increase i while the deflection

at the point onf=7/2 decreases dramatically. The deflec-

n/2 tions at the points on=R at #= 7/4 and 37/4, on the other

o o hand, remain nearly unchanged.

0.0 05 1.0 15 2,0 25 3.0 It is noted that the behavior of thin structures of the kind
8 - normalized mismatch strain being discussed here is strongly sensitive to imperfections in

FIG. 5. Plots of normalized transverse deflectig(R, #)/hg at nine points the SySt.em' TQ lllustrate the pglnt n the.pre.sent context, the

around the circumference of the substrate midplane vs normalized mismatdi@lculation which led to the solid curves in Fig. 5 was redone

strain S for »=1/4. These results were obtained by finite-element calcula-with @ mismatch strain that is 1% larg&malle) than the

tion, and they involve na priori assumptions on the deformed shape. The nominal values ,, in the x direction(y direction. The result

‘:ﬁg;‘it‘;‘#‘éf; irnepresem the equivalent result wita186 anisotropy in the 5 sho\wn by dotted curves in Fig. 5, where it can be seen that

' a 1% imperfection in mismatch strain obliterates the sharp
bifurcation transition. Instead, the system undergoes a long,
gradual transition from axially symmetric deformation to

w/4, 3n/4

u, (R.8)/h,

3n/8, 5n/8

prior to bifurcation and on the assumed transverse deflectio , , : )
with spatially uniform principal curvatures following bifur- 2Symmetric deformation &increases. There are other sig-
cation. Therefore, the bifurcation analysis is repeated withouftificant fegtures Of the behaV|or_ illustrated in Fig. 5 Among
a priori assumptions on the deformed shape of the substraff€Se aréi) the axially symmetric response is nonlinear for
midplane by means of the numerical finite-element method@/ues ofS beyond about 0.3, consistent with the behavior
The calculations were carried out under the assumption th&°Served in Fig. 3(ii) the maximum deflection at the sub-
the deformation has at least one plane of reflective symme3trate periphery reaches a value of about two times the sub-
try. The midplane of the 180° sector of the substrate wastrate thickness before bifurcation occurs; &ifid the post-
covered with a regular radial—circumferential mesh. AnPifurcation deformation becomes more like cylindrical
eight-noded plate element was prescribed in each mesh seggnding asSincreases further beyond 1.77. ,
ment. The element adopted admits through-the-thickness Another noteworthy aspect of the result illustrated in

variation of material properties, and the film—substrate SysI_:lg. 5 is the apparent insensitivity of the bifurcation results

tem was defined by prescribing the appropriate variationt© variations in the aspect ratio of the substrate. Calculations
Mismatch strain was imposed by specifying a coefficient ofV€re carried out foR/hs=50, 100, and 200. The plots for
thermal expansion for the film material relative to the sub-t€ three cases, when expressed in terms of the normalized
strate material, and by making temperature the imposed loadk@rameters adopted in Fig. 5, are virtually indistinguishable.

ing parameter. The temperature was gradually increasefn€ behavior of a given system at a fixed level of mismatch

from the zero-initial value, and the equilibrium shape for Str@inem will indeed depend on the aspect raiéhs. How-
large deflections was computed. ever, with the rather natural normalization embodied in the

To precipitate stable deformation beyond the point ofdefinition of S the horizontal scale in Fig. 5 can be viewed

bifurcation, a slight imperfection in the system was intro-2S Strain at fixed aspect rat@s is done hejeor, equiva-

duced in the form of an anisotropic mismatch strain. Typi-I€Nty, as aspect ratio at fixed strain. In other words, the
cally, the mismatch strain in thedirection(y direction was sensitivity of behavior to both mismatch strain and aspect

taken to be 0.01% largefsmalle) than the value of the ratio is captured by the single parameterNote that the

nominals . With this level of imperfection, the deformation ratioshs/hy=20 andM/M=1 were maintained in all cal-
prior to bifurcation was essentially indistinguishable from culations so that the film is always relatively thin and the
the results based on anpriori assumption of axial symme- effects of modulus difference are not considered.

try, the bifurcation point was sharply defined in each case

and reproducible from case to case, and the postbifurcatiog'oEE;EEEE%XSEK@Tg;ESmEGASUREMENT USING
behavior was stable and reproducible.

The general response observed as the mismatch strain Figure 6 shows a schematic of the CGS setup in reflec-
was increased was a range of axially symmetric deformatiortjon. A coherent, collimated laser beam is directed to the
with the substrate midplane curvature becoming ever morspecularly reflecting specimen surface by means of a beam
nonuniform. Then, over a very narrow range of values ofsplitter. The reflected beam from the specimen then passes
nominal mismatch strain, the midplane showed first a slighthrough the beam splitter and is then incident upon a pair of
waviness in the circumferential directidckompared to the identical high-density40 lines/mm Ronchi gratings, and
substrate thickneg$ollowed by large amplitude waviness in G,, separated by a distance The diffracted orders from
the circumferential direction. This behavior is illustrated inthe two grating are spatially filtered using a filtering lens to
Fig. 5, which shows plots of the transverse deflection norform distinct diffraction spots on the filter plane. An aperture
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Specimen amountw along thex, direction as compared to the wave
% N front along the diffracted beark,; [given by S(x;,X,)].
The wave-front shift is parallel to the principal axis of the
gratings, i.e., along, if the grating lines are oriented along
X1, as shown in Fig. 7. Moreover, the magnitude of the shift
is a function of the grating separatidnand the diffraction
angled as

w=Atané, (6)

Collimated
Laser Beam Filter Plane

where the diffraction angl@ is given by

Camera A
0= arcsinB , (7)

with \ the wavelength of light angd being the grating pitch.

FIG. 6. Schematic of the CGS setup in reflection mode. For a small angle of diffraction, Eqé) and(7) approximate
to
placed in this plane serves to filter out the diffraction order of w=~A0, ®
interest, which is then imaged onto the film plane. For our
purpose, either of the:1 diffraction orders is of interest, as o~ 5 (9)

will become clear in the following discussion.

Figure 7 illustrates the working principle of CGS in two Now, consider the interference of the original and shifted
dimensions. Consider an optical wave front incident on theyave fronts. The conditions for constructive interference
grating pair and let both the gratings have their rulings alongnay be expressed as
the x, axis. A wave front incident on the primary grating, @ @

G,, is diffracted into several wave fronts denoted as  S(X1, X2t ®)=S(Xy,Xp)=n'"A, n==0,£1,22K,
Eq,E1,E_1,E5,E_,, etc. For illustrative purposes, only (10
Eo, E1, andE_; are shown in Fig. 7. Each of these wave where, n(®) represents the integer identifying fringes ob-
fronts is further diffracted by the second gratii@,, to give  served for shearing along txg direction. Dividing Eq.(10)
rise to wave fronts denoted as EggEq;, by wgives

EO,—l!'"!El,OlEl,llEl,—li""E—l,O!E—l,llE—l,—li etc. _ (2)

Again, only some of the diffracted wave fronts are shown. ~ S(X1:X2 @)= S(X1,Xz) N7\ N2—0+1+2K
Now, various sets of parallel diffracted beams are combined w o ' T
using the filtering lens to form diffraction spots (11)
D.1,D0,D_1,..., in thefilter plane (which coincides with  \hich for sufficiently smallw may be approximated by
the focal plane of the lefisFor exampleE, ; andE, g inter-

fere to give diffraction spoD . ; E; 1, Ego, andE_; dS(x1,%p)  n?\ NP =021 +2K 12
interfere to giveD, etc. An aperture is placed on the filter X, o ST T e

plane to block all but th® , ; diffraction spot. Subsequently,
this diffraction spot is imaged onto the film plane.
Assume that the optical wave front incident on the first  5S(x;,x,) n®p 2

grating, Gy, is approximately planar and has a local phase x, A " =0,£1,x2K. (13
difference given a$(x,X,). The net effect of the two grat-
ings is to produce a lateral shift, or “shearing,” of the inci- Generalizing the result to include wave-front shearing in ei-
dent wave front. Thus, the optical wave front along the dif-ther thex; or thex, direction, we have
fracted beant, ; [given by S(x;,X,+ w)] is shifted by an (@)

’ 9S(Xy,Xp)  N'p

oXx A

Using Eqgs.(8) and(9) in Eq. (12), we have

n®=0,+1+2K, (14)

a

St o) wheren(®) represents the fringes observed for shearing along
' the x,, direction anda €{1,2}. Equations(14) are the gov-
erning equations for interferograms formed using the tech-

L S(a,x)

- A

Stas, 1) '
5 IZ ; - niqgue of CGS. A substantially more involved derivation of
7 : ~ Egs. (14) has been determined by using Fourier optfcs.
~le " "< : However, the above simple demonstration of the physical
E, . . . . .
B D, principle of CGS suffices for the purposes of this article.
E For a curved surface, the optical wave front may be in-
Grating, Gi Grating, Gs ering Lons e Plne terpreted |n.terms of the topography .of the sqrface as fol-
lows. Consider a specularly reflective specimen whose
FIG. 7. Schematic illustrating the working principle of CGS. curved surfacdi.e., the reflectgrcan be expressed as
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Speci}nen Surface Reference Surface —2f, —2f, 1- f21_ f22

X = fx,x,) L =0 = ! , = : , — : <

2 p * T 11315 A T A A A
(23

To determine the change in the optical path length due to
reflection from the curved specimen surface, as compared to
reflection from a flat reference surface, consider the plane
containing the unit incident and reflected vectors at any ge-
neric point §4,X,), as shown in Fig. 8. The net change in
optical path length at pointxg,X,) is given as

X3
\ S(X1,%2) =|OA(X1,X,)| +|OB(xq,%2)]|
FIG. 8. Reflection of the incident wave front from the curved specimen . f(xq,%2)
surface. —‘(—d(xl,xz).% d(xq,%p)| +[f(X1,X2)€5].
(24)
F(X1,X2,X3) =X3— f(X1,X2)=0. (15 Thus,
The unit surface normall at a generic pointx;,X,) of this B 2
curved surface is given bisee Fig. 8 S(X1,X2) = (X1, ) 1-f3—15) (25
N VE _ —fae—Toetes (16) Assuming|V?f|<1 and substituting Eq25) into Eq. (14),
IVE J1+12+ 15 we get
wheref , denotes in-plane gradient components of the speci-  df(x;,x,) n(®p (@)
men surfacex;=f(x;,%,), (ee{1,2), ande is the unit " oa NU=0xLE2K, (26)

a

vector along thex; axis (i=1,2,3). Now, consider an ini-

tially planar wave front incident on the specimen surfacewhere a€{1,2. Equations(26) are the basic governing

such that the incident wave front is parallel to the ,k,) equations that relate CGS fringe contours to in-plane gradi-

plane. The unit incident wave propagation vectoector ents of the specimen surfagg=f(xy,X,).

normal to the incident wave fronis given as Now, in order to relate CGS interferograms of a given
do=—e a7 surface_ to .its curvature, consider a .curved specimen, as

0 s shown in Fig. 9a). The normal at a poinP(&,,&,) on the
If the specimen surface was flat and occupied thg X5) surface is defined as
plane, the unit reflected wave propagation ve¢tector nor-

mal to the reflected wave frontvould be collinear with the _ ap X ay @7
incident vector and would be given as ER T
d=es. (18 wherea; anda, are unit vectors tangent to the curvilinear

However, since the specimen surface is curved, the reflectezPordinates axeség, £,). Unit tangent vectorsy anda, are
wave front is perturbed, and the unit reflection propagatior@iVeén in terms of position vector(é,,&;,£5) of the point

vector can be expressed as P(£1.62) asa,=drlig,, ae{l,2. _ _ _
The rate at whicla; varies between neighboring points
d=ae;+ pe;+ yes, (19 provides a measure of curvature at the point of interest. Now,
where a(X1,X5), B(X1,X,), andy(x{,X,) denote the direc- Ja
tion cosines of the reflectedgerturbeg wave front. From the da3=—3d§a. (28)
law of reflection the unit incident wave propagation vector &

dy, the unit reflected wave propagation veatpand the unit

. Note thatdaz/d¢,, are tangent vectors sineg- (dag/dé,
surface normaN, are coplanar and related losee Fig. 8 3/9% g @8- (93/0¢4)

=0. The curvature tensae is defined as the projections of
d-N=(—dy)-N=e5-N. (20)  the rate of change vecto#sg/J¢, along unit tangent vectors
. . n

This leads to the relation 8 anda, as

d=(2e3-N)N—e;. (21 Kaﬁ:_?.aﬁ, a,Be{1,2. (29)
Substituting Eq(16) into Eq. (21) yields Ea

2(—f 161~ 20+ €3) Or, in terms of position vectar(&,,&,,&3),

1+f5+f15

d= ael+,8€2+ Y€3= 3. (22) (92
r
K, ;=38 ———, «a,Be{l,2. 30

Thus, B8 9€ L0 Be{12 (30)
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Specimen Surface

53 = f(f]aéz)

(2)
A

Specimen Surface

x; = f(x,x,)

P(x, x2, X3)
/!

X2

(b)

FIG. 9. (a) Curved specimen surface described in terms of curvilinear coN this prOCEdure are described below.

ordinates, andb) shallow surface with small curvatures.
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Pf(x1,x2) P [ In'®(Xq,Xp)
X, Xp)=————— =~ | ——————
Kap(X1,%2) IX4Xg 24 IXg ’
(35

where, a e {1,2}. Equation(35) is the principal governing
equation for determining curvature tensor fiekdg;(x1,X5),
(a,Be{1,2), from CGS interferograms. In this manner,
CGS interferograms provide a full-field technique for deter-
mining the instantaneous value of the specimen curvature
tensor at any pointx,X,).

V. CGS FRINGE ANALYSIS USING THE FOURIER
TRANSFORM

In this section, we present the methodology used in au-
tomatically postprocessing the CGS fringe patterns captured
in this work by a high-resolution charge-coupled-device
(CCD) camera. Our goal is to take advantage of the obtained,
high-resolution, digital information and to increase our data
accuracy. To achieve this, a Fourier transform phase mea-
surement techniqd@is used to extract the full-field phase-
angle information from the CGS images and to differentiate
it in order to obtain the desired curvature fields. The inter-
ference fringe patterns are captured in real time by the CCD
camera and the video signal is subsequently forwarded to a
PC-based digital processing system. The principles involved

In general, the intensity field of the CGS interference
fringe patterns can be expressed by

[(X1,X2) =a(Xy,Xp) +b(X1,X2)C0SH(Xq,X3), (36)

Kap 1S the symmetric curvature tensor whose componenthere| (x,,x,) is the intensity of the fringe pattern at a field

Kk, and ky, are termed as the “normal curvatures” and
K15 = 1e27) as the “twist.” The principal values ok, ; are
termed as the principal curvatures.

Consider the case of a shallow surfaxgs f(x4,X,), as
shown in Fig. @b). The curvilinear coordinate systems re-
duce to

xi=é1, Xo=&, Xg=f(£1,6)=f(x1,%), (3D
and

F(X1,X2,X3) =X1€ + X8+ f(Xq,Xz)€5. (32
Thus,

a°r f g

Kap= 3 IXa0Xg V1+£3+£5 «peill. (33
For small curvaturegV?f|<1, and thus

kog~F ag, a.Be{1,2. (34)

Substituting Eq.(26) into Eq. (34), we get the basic equa-
tions that relate CGS fringes to specimen curvature,

point (X;,X,) on the specimen surfacea(x;,x,) and
b(x1,X,) are its background intensity level and the fringe
visibility, respectively, and(x; ,X,) is the phase-angle term
contributed by the deformation of the specimen. This inten-
sity distribution can also be expressed in terms of a sum of
complex field quantities as follows:

(37

wherec(x;,x,) = 2b(x;,X,)e'11X2) andc* (x4 ,X,) is its
complex conjugate.

By taking the Fourier transform of this intensity distri-
bution, we get

I(X1,X2) =a(Xq,Xp) +C(Xq,Xp) +C* (Xq,Xp),

l(@1,07) =A(w1,03)+ C(w1,0) +C*(— w1, — 0,),
(39)

with w, andw, being the spatial frequencies in the transform
domain, andC* (— w4,— w,) the conjugate symmetric of
C(wq,07). A(wq,w,) contains the constant- and low-
frequency information due to slow variations of the intensity
backgroundC(w;,w,) andC* (— wq,— w,) carry basically
the same information. By using bandpass filtering in the spa-
tial frequency domainA(wq,w,) and either olC(w;,w,) or
C*(—wq,— w,) are filtered out. The remaining spectrum
C(w,,w,) or C*(—wq,— wy) contains the required phase-
angle informationd(x, ,X,), so that its inverse Fourier trans-
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FIG. 10. CGS fringe pattern of spherical wave frgpt=25um and A FIG. 11. Two-dimensional Fourier transform of spherical wave front shown
=22mm. (a) CGS fringe patterns, an) intensity profile alongA—B in in Fig. 10. (a) Fourier transform magnitude in the frequency domain
(a. (wq,w5), and(b) magnitude variation along* —B* in (a).
form gi\_/es us back either c_omple?(xl,xz) or_c*(xl,xz), xf+x§
respectively. The phase distributiaf(x;,x,) is then ob- S(Xq,X5)= (40

21,

When grating lines are oriented such that their principal di-
(39)  rection is parallel to the, axis, CGS provides vertical gra-

tained as follows:

8(Xq,X )—tanfl—lm[c(xl’xm
1:72)—

Re[c(xy,%2)]" dient component information in the form of parallel fringes,
where R¢ ] and Inf ] represent real and imaginary parts, Whose equation is given by
respectively. S X, n@p

To verify the above Fourier transform fringe methodol- — == (47
ogy, a well-defined spherical wave front was examined, as Xz Ty A
shown in Fig. 10a). This spherical wave front is generated Figure 1@a) shows the raw digitally recorded CGS images.
by passing a collimated laser beam through a planoconveXhe noisy intensity variation corresponding to a vertical
lens of focal lengthf; (=546 mm), and a known, constant cross sectionAB is displayed in Fig. 1®). The Fourier
radius of curvature 2,. We will now apply the Fourier transform is then applied, and its two-dimensional power
transform technique to recover this curvature accurately. Thepectrum is shown here in Fig. (8], and the corresponding
spherical wave front passing through the planoconvex lensross section in Fourier spacA{B*) is displayed in Fig.
can be described by 11(b). By applying the procedure outlined before, through
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FIG. 12. Wrapped phase information by ‘in\‘/erse Fourier transform using=|G. 13. Unwrapped phase informaticia) unwrapped phase variation, the
bandpass filtering(a) wrapped phase variation, ar#) wrapped phase |ines indicate the same fringe order contours; éndfringe order variation
variation alongA-B in (a). A-B in (a).

bandpass filtering, we invert the transform and display irdure field «z(xy ,x,) obtained by this method is shown here
two-dimensional “wrapped” phase-angle fiel{x; ,x,) in Is Fig. 14. Notwithstanding small fluctuations that result

Fig. 12 and the corresponding cross-sectional informationfrom the differentiation procedure, the level of curvature is
in Fig. 12b). In Fig. 12, the phase angle is wrapped or re_constant and equal to the known curvature of the leps

— -1
stricted to vary between the values-ofr and . It should be (21))""~1092 mm.

noted that the filtering process has eliminated the low- and
VI. APPLICATION OF CGS FOR CURVATURE

h|gh-ff‘eq'uency noise, resulting in |nforma't|on. which is rela_MEASUREMENT OF A FILM=SUBSTRATE SYSTEM
tively “crisp” compared to that displayed in Figs. (& and
10(b). The technique of CGS described in the previous sections
The results of Fig. 12 are then “unwrapped” by extrapo- was applied to determine instantaneous full-field maps of
lating between the discrete peaks and assigning a continuoasirvature of a film—substrate system. The behavior of a sys-
spectrum of fringe numbers, thus creating the smooth contem consisting of a thin Al film of thickneds;=6 um de-
tours of phase information and fringe order shown in Figsposited on a circular Si wafer of radil8=25.4mm and
13(a) and 13b), respectively. The fringe order represents thenominal thickness of,=105um was studied in the labora-
linear first partial derivative 08(x;,X,) with respect tax,. tory. The wafer was a single crystal with (400 normal
The curvature is then obtained by numerically differentiatingorientation and the film had a fine-grained columnar poly-
this variation once more with respect xg. crystalline microstructure. The wafer was flat prior to film
A three-dimensional representation of the entire curvadeposition at a temperature of 87.5°C, where, after, it was
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FIG. 14. Normalized curvature variatioRy,/ kjens DY USING Koo(X1,X5)
~pl2A (NP (X1 ,%,)1 9X5).

cooled to room temperature. The temperature was then
cycled between room temperature and the film deposition
temperature of 87.5 °C. This was done in a temperature con-
trol chamber over approximatela 2 htime cycle. It was
assumed that within this range the deformation remained
elastic.

During thermal cycling, the deformation of the sample
was remotely monitored through a quartz window attached
to the heating chamber. The measurement was performed by
means of the optical coherent gradient sensing method and a
CCD camera which continuously recorded the CGS fringes.
The CGS method is noninvasive, allows for continuous ob-
servation over the full field of view. Standard interferometric
methods are sensitive to rigid-body motion of the sample;
and displacement data thus obtained must be differentiated
twice numerically to obtain curvature fields. The CGS
method, on the other hand, permits a direct measure of sur-
face gradients; it is, therefore, insensitive to rigid-body mo-
tions and in addition only one differentiation of data is re-
quired to extract the curvature fields. The technique is
capable of resolving radii of curvature up to approximately
10 km?*’

In Fig. 15, a set of CGS fringe patterns captured by the
CCD camera at the Al film deposition temperature of 87.5°C
are shown. The bright fringe lines are level curves of slope in
the verticalx, direction of each figure, while the spacing of
the lines is an indicator of curvature of material lines in the
vertical direction. Each image corresponds to different
sample rotations by increments of4. Figures 1&), 15b),
15(c), and 15%d) reveal the large spacing of fringes in the
central portion of the sample. This implies that the Al film
thickness is rather uniform there since the Si substrate was
flat before deposition.

However, high fringe density near the edge clearly rep-
resents nonuniform film thickness in a boundary layer of
approximately 6 mm. From a simple profile calculation, us-

ing fringe information in this area, a simple parabolic equa-':IG 15 Set of CGS fi , for the Al film d ited on the Si
. . . . . _ . . et O ringe patterns tor e IIm aeposited on e Sl
tion was found to provide a good fit of the nonuniform thick substrate at deposition temperature 87.5 °C. Imaggs(b), (c), and (d)

ness profile, which is shown schematically here in Fig. 16¢orrespond to different sample orientaticins=0, /4, w2, and 37/4, re-
This higher fringe density area startsrat 0.79R, and the  spectively.
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Al-film 6 um

Si-substrate F R=25.4 _
105 pm mm

FIG. 16. Al-film thickness profile; hy=6 um for r<0.78R, h
=hiJ1—(r—3R/4)%(R/4)? for r>0.7R
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ing to this cooling process are shown in Fig. 17. Images
and (c) correspond to temperature changes of 7.5°C while
images(b) and (d) correspond to temperature changes of
52.5°C. Imagesa), (b) and(c), (d) correspond to two dif-
ferent sample orientationg)= w/4 and 37/4, respectively.

In images(a) and (c), the CGS fringes are similar and are
horizontal in the center. The similarity betweé and (c)
indicates that at that temperature the wafer, although not
spherical, remains axially symmetric everywhere. In images
(b) and (d), the curvature has become quite large, as evi-
denced by the close spacing of the fringes. It is clear that the
sample has taken on a curved shape, which is neither axi-
symmetric nor spatially uniform, a situation which is clearly

film thickness profile then is approximated by a parabolicdeduced by the pronounced nonuniformity of the fringes of

equation, as shown in Fig. 16.

Fig. 17d). Magnified views of the central region of samples

After recording the thickness profile, the system was(b) and(d) of Fig. 17 are shown in Fig. 18. It should be noted
gradually cooled from deposition temperature down to roonthat the biggest fringe densitfhighest curvatuneand the
temperature. A sequence of CGS interferograms correspontbwest fringe density(lowest curvaturg are observed in

FIG. 17. Series of CGS fringe patterns for an Al film deposited on a thin Si substrate subjected to temperature change$(af @Zsi{€)] and 52.5 °d(b)
and (d)], respectively. Different sample orientatiorig,= /4 [(a), (b)] and 37/4 [(c), (d)]), are shown.
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FIG. 19. Curvature of a radial line vs distance along four radial lines when
the deformation is still axisymmetric but beyond the linear range. The ex-
perimental data points are from separate lines/dtto each other. The solid
line is from a finite-element simulation of the sampleT(=22.5°C).

natural specimen imperfections, and the substrate anisotropy.
‘ However, both experiment and numerics clearly exibit the
physical picture discussed in the theoretical part of this ar-
(b) ticle. Indeed, for a temperature change\dt~ 22.5 ° C[cor-
responding to the value of normalized mismatch st@if
FIG. 18. Magnified CGS fringe patterns near the center portion of the]l.5  where g,,= (ap— ag)AT], the deformation is still
3\6/12?5]',8 at temperature changes of 52.5$€® Figs. 1) and 17d), respec- largely radially symmetric as discussed earlisee Fig. 5.
However, the specimen is rather flat in the center, becoming
increasingly curved towards the edges.

We now turn to investigating the bifurcation behavior
fringe patterns corresponding to the two orthogonal direcdiscussed in Sec. lll. We concentrate our attention on a small
tions ¢=7/4 and =3 7/4, respectively. area of the sample near its center and monitor the curvature

These seem to be principal directions of curvature. For dhere as a function of thermally induced mismatch strain re-
case in which the deformations are large but the deformedulting from cooling the sample from its deposition tempera-
shape is still axisymmetric, similar to the situation illustratedture to room temperature. Figure 20 shows the observed and
in images(a) and(c) of Fig. 17, the distribution of curvature calculated curvatures near0 as functions of the normal-
along four radial surface lines at angles7g# to each other ized mismatch strairs as the temperature change becomes
was extracted from the data. The results are displayed in Fidarge enough to drive the behavior of the wafer into the post-
19 in the form of radial curvatur&, vs r/R along these bifurcation regime. Again, the results are presented in the
radial lines. Figure 19 clearly shows that the curvature, alnondimensional form, which is consistent among all results
though largely still axisymmetric, is clearly nonuniform, in- reported here. The two dashed curves are measured curvature
creasing steadily from the center of the wafer to the outeof lines in the directions of largest curvatureé #/4) and
edge. The solid line in Fig. 19 is the curvature distributionsmallest curvature ¢=3m/4) on the asymmetric deforma-
predicted from a finite-element simulation of the sample untion branch. It was anticipated in Fig. 5 of Sec. Il that the
der the conditions of the experiment. This calculation takesifurcation point would be largely obscured by even very
into consideration the nonuniform thickness of the film assmall imperfections in the system, and this seems to be the
obtained by the experimental measurements and as approxiase here. Nonetheless, it appears that the deformation is no
mated in Fig. 16. The general features of this radial variatiodonger axisymmetric wherS has increased beyond 1.5,
are described in the earlier section of this article. whereas it appears to be reasonably axisymmetric up to this

It is clear from Fig. 19 that the numerics captures wellpoint. As before, the exact sample geometry tested in the
the experimentally measured curvature variation. Throughkaboratory was simulated by means of the finite-element cal-
out most of the specimen centex0.75R does a good job in  culation, and the solid curves in Fig. 20 represent the result.
predicting the curvature right at the specimen rim but underThe predicted mismatch strain level for bifurcation is ap-
estimates the maximum curvature rat0.8R by approxi- proximatelyS=1.4. The film and substrate moduli differ in
mately 15%. This discrepancy is most probably related to théhis case, so this system does not fall strictly within the class
fact that the calculation does not properly take into accountepresented by Fig. 5 in Sec. Ill. The curvature as obtained
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