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The problem is considered of a fibre that is driven dynamically, by compression at one
end, into a matrix. The fibre is not initially bonded to the matrix, so that its motion is
resisted solely by friction. Prior work based on simplified models has shown that the
combination of inertial effects and friction acting over long domains of the fibre–matrix
interface gives rise to behaviour that is far more complex than in the well-known static
loading problem. The front velocity may depart significantly from the bar wave speed
and regimes of slip, slip/stick and reverse slip can exist for different material choices and
loading rates. Here more realistic numerical simulations and detailed observations of
dynamic displacement fields in a model push-in experiment are used to seek more
complete understanding of the problem. The prior results are at least partly confirmed,
especially the ability of simple shear-lag theory to predict front velocities and gross
features of the deformation. Some other fundamental aspects are newly revealed,
including oscillations in the interface stresses during loading; and suggestions of
unstable, possibly chaotic interface conditions during unloading. Consideration of the
experiments and two different orders of model suggest that the tentatively characterized
chaotic phenomena may arise because of the essential nonlinearity of friction, that the
shear traction changes discontinuously with the sense of the motion, rather than being
associated with the details of the constitutive law that is assumed for the friction. This
contrasts with recent understanding of instability and ill-posedness at interfaces loaded
uniformly in time, where the nature of the assumed friction law dominates the outcome.
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1. Introduction

This paper will address certain aspects of the more general problem illustrated in
figure 1. In the general problem, a fibre that is initially bonded to a matrix is
loaded dynamically in either tension or compression at its end, with a load that is
some function of time. The fibre and matrix are elastically dissimilar. The
assembly may be of plane or axisymmetric geometry. Boundary conditions for
the axisymmetric case may be those of type I or type II (i.e. stress or
displacement conditions at the boundary of a cylindrical cell), as designated
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Figure 1. Schematic of a general problem of fibre/matrix debonding, under dynamic end loading,
with possible crack wake friction.
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by Hutchinson & Jensen (1990) to simulate an array of fibres; or those
corresponding to an isolated fibre in a semi-infinite body. Boundary conditions
for a plane problem may be periodic to simulate an array; or again those of an
isolated fibre in a semi-infinite body. A state of initial compression may exist
across the fibre–matrix interface, e.g. due to residual thermal stresses. The load
causes the fibre to debond progressively from the matrix, allowing relative sliding
between the two, which is opposed by friction. The constitutive law of the
friction may involve displacement, displacement rate and the magnitude of the
interface compression. The debonding mechanism may result in a nonlinear
process zone in the debond crack wake of significant length. Friction will
generally act over much longer lengths, often the whole domain of sliding.

In this paper, model experiments and numerical simulations of the push-in
problem (compressive end loading) will be used to study the particular limit that
the interface is initially debonded (limit of zero debond toughness). One
motivation is to explore the connections between the physics of long range
frictional sliding and shear fracture, using model experiments in which a reduced
set of mechanisms operates. Simultaneously, the question is addressed of how
simply dynamic interface failure in composites can be represented, without loss
of accuracy. The latter query is inspired by seminal experiments in the static case
on cylindrical fibres in a matrix (e.g. Marshall 1992). In the static case, shear-lag
analysis of the fibre/matrix debonding problem, which assumes Lamé-like field
solutions, proves very accurate for most parameter ranges (Hutchinson & Jensen
1990) and forms an immediate link to the problem of composite fracture
(Marshall et al. 1985; Budiansky et al. 1986). Where static shear-lag models are
accurate, analytical results usually stand independently of whether the fibres are
more or less compliant than the matrix and whether plane or axisymmetric
conditions exist; preliminary shear-lag analyses of the dynamic case suggest
Proc. R. Soc. A (2006)



1083Dynamic fibre sliding along interfaces
the same compass, although the physics are considerably more complicated
than in the static case (Sridhar et al. 2003). The problem of figure 1 may also be
considered as a particular case of delamination failure in a symmetrically laid up
laminated composite, for which the plane geometry is directly applicable and the
lamina represented by the fibre may be more or less compliant than the other
layers. The questions of how accurate shear-lag theory might be in dynamic
cases, and what subset of the physics of interface failure might remain
reasonably well represented in it, are therefore of practical interest. Issues
specific to the push-in problem will be addressed here, including how the degrees
of freedom used in representing displacement fields in modelling and the
assumed nature of the friction law influence stability, front formation, front
velocity, stress fields, etc.

(a ) Friction acting along bars

Shear-lag models of the dynamic case of the problem of figure 1, with friction
that is spatially and temporally uniform in magnitude (but not in sign), have
revealed the regimes of behaviour that might be expected for an initially
debonded interface (Nikitin & Tyurekhodgaev 1990; Cox et al. 2001; Sridhar
et al. 2003). First, the front of the furthest deformation in the fibre does not
travel at the longitudinal wave speed for the fibre, Cf, but at some other velocity
that depends on the friction strength, the elastic mismatch, the wave speeds in
the fibre and the matrix and the loading rate. The front velocity is bounded by Cf

and the longitudinal wave speed in the matrix, Cm, and may be lower or higher
than Cf. Second, depending on the same parameters, distinct regimes of slip, slip
and stick and reverse slip exist, even when the load point displacement is
monotonic. Reverse slip refers to the condition that the relative motion of the
fibre and matrix is opposite in sense to that of the load point. Reverse slip is
possible when the wave speed in the matrix is higher than that in the fibre, so
that the fibre is pulled along, at the deformation front, by the matrix. The
domains of slip, stick and reverse slip are fixed (growing similarly with time) for
linearly increasing loads, but appear and disappear in complicated sequences for
other loading cases, even those that are simple functions of time (e.g. step
functions). The solutions are much more complicated than for the same problem
in static loading, where the only history dependence that affects the solution is
the order of any load reversals (e.g. Marshall 1992). There is even a hint
(unproven) that the birth and death of slip, reverse slip and stick-slip domains
may be chaotic, with arbitrarily small changes in the load point history resulting,
at later times, in finitely dissimilar domain patterns. Numerical work has
supported the shear-lag results for linearly increasing loading, under the
modelling conditions assumed, for most parameter values (Sridhar et al. 2003).
However, the strong nonlinearity of the friction law, which may reverse sense at
moving boundaries, makes accurate numerical location of the boundaries
very challenging, even under the constraint of assumed Lamé-like solutions
(N. Sridhar, K. Dunn & B. N. Cox 2002, unpublished work).

(b ) Friction between half-spaces

The problem of an interface with no debond energy but long, possibly infinite,
domains of friction has been studied extensively in the geometry of two remotely
Proc. R. Soc. A (2006)
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and uniformly loaded half-spaces, contacting on a plane. Among a number of
insightful articles, the introductory sections of Cochard & Rice (2000) provide an
especially helpful summary. Some salient results are as follows. (i) For elastically
dissimilar materials subject to Coulomb friction, uniform slip becomes unstable
and slip pulses can form instead, i.e. slip domains on either side of which the
interface is not sliding (Weertman 1980; Adams 1998). Slip pulses can propagate
in either direction, in different cases, and at values of the remote shear stress that
are less than the friction stress. (ii) Unstable slip is also possible for elastically
homogeneous cases, but not for a simple Coulomb law. (iii) Cochard & Rice go on
to distinguish instability from ill-posedness: the former exists when spatial
perturbations to the state of slip grow in amplitude; the latter refers to the non-
existence of solutions of any kind. Instability does not preclude the possibility of
uniform slip as a formal solution, given the hypothetical presence of perfectly
uniform conditions. Ill-posedness points to an inconsistency in the physics of the
problem as stated. (iv) Whether the interface problem exhibits ill-posedness or
instability depends on both the degree of elastic mismatch and the nature of the
assumed friction law. The relevant measure of elastic mismatch is the point at
which the generalized Rayleigh velocity (a mode of interface wave propagation
found for a frictionless interface along which loss of contact does not occur)
ceases to be defined. Ill-posedness prevails for all friction coefficients when the
elastic mismatch is mild (generalized Rayleigh wave exists); and for friction
coefficients above a modest critical value when the mismatch is more severe.
Thus, ill-posedness is the common case. (v) Ranjith & Rice (2001) assign blame
to the simplified physics of Coulomb’s law, in particular its implication that
friction can change discontinuously in time upon a finite change in the normal
contact pressure. A modified law, in which the change occurs smoothly over a
characteristic response time, had in fact already been inferred from experiments
(Prakash & Clifton 1993; Prakash 1998). Such a law regularizes the ill-posed
planar interface problem; and the regularized solutions continue to exhibit slip-
pulse character (Cochard & Rice 2000).

The complexity seen in the Lamé-like solutions to the push-in problem of
figure 1 has different physical origins to the instability and ill-posedness discussed
in the last two paragraphs. In the work based on Lamé-like solutions, the friction
force was assumed to be uniform and constant, apart from sign reversals, and not
influenced by changes in the normal compression at the interface. Complexity
arises from the effects of friction on the propagation of wave pulses along the fibre
and matrix system, excited by the dynamic end loading, and is associated with
the birth and death of slip, stick and reverse-slip domains, which is complicated
by the strength of the nonlinear effects due to the sign-reversal property of the
friction. In the problem of planar frictional interface between half-spaces,
instability and ill-posedness are direct consequences of the assumed relation
between friction and the normal traction, and depend strongly on whether
Coulomb’s or another law is assumed.

The final point from the body of work on planar interfaces that is of present
relevance is the relation of the boundedness of slip-pulse domains to the nature of
the assumed friction law. Zheng & Rice (1998) looked at this question with a
velocity-weakening friction law, expressed as a decrease in the coefficient of
friction as the shear displacement rate rises. (This law is similar to that of
Prakash & Clifton, but expressed in inverse form, in terms of the displacement
Proc. R. Soc. A (2006)
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rate rather than the rate of change of the shear traction.) For such a law, slip
motion can occur either as a crack-like event, in which the interface slips
simultaneously over a semi-infinite domain extending back from a slip front; or
as a slip-pulse motion, with slip confined to finite, moving domains. Which case
prevails (in the problem of contacting half-spaces) depends on the rate of velocity
weakening: if the slope of the decline is small, crack-like slip behaviour occurs; if
it is large, slip-pulse motion occurs (Zheng & Rice 1998).

(c ) Effects of interface bonding

A separate, major body of literature has been written on the problem of
interface shear crack propagation in systems in which the interface is initially
bonded. The most pertinent results here refer to the question of allowed and
preferred crack velocities. Energy considerations suggest that, unlike mode I
cracks, which are forbidden above the Rayleigh wave speed, shear cracks can in
principle propagate at any velocity, c, in the so-called intersonic regime,CS!c!CL,
where CS and CL are the shear and longitudinal wave speeds (Broberg 1994;
Burridge et al. 1979). However, numerical studies imply a restrictive condition for
intersonic propagation, that the crack tip process zone be diffused over a finite
interval and not concentrated at a point, as in a classical brittle crack (Andrews
1976). In the work of Burridge et al., the velocity O2CS assumes a special role: for

c!O2CS, crack acceleration is unstable (associated with decreasing load); while

for cOO2CS, crack acceleration is stable (increasing load).
These early theoretical deductions have now been complemented by

experiments that have achieved shear crack conditions for the first time in the
laboratory by exploiting the propensity of laminated materials to confine cracks
to prescribed planes (Rosakis et al. 1999). Specimens consisting of monolithic
slabs laminated at a bonded interface as well as composite ply laminates have
been studied. Under appropriate dynamic loading, approximately mode II
conditions can be maintained, in contrast to tests with a uniform body (free of
pre-existing weak planes), where crack deflection or bifurcation would quickly
cause a transition to mode I conditions. The laminate experiments confirm mode
II crack propagation in the intersonic regime and are also consistent with the
predicted stability transition at O2CS, since the crack is observed to accelerate
rapidly past the shear wave speed, but decelerate and achieve approximately
uniform velocity at O2CS. Needleman has performed numerical simulations of
this particular experimental configuration, where the driving force is a dynamic
impact end-load rather than the remote shear loading of the early theoretical
studies, and confirmed most aspects of the observed behaviour (Needleman
1999). Needleman’s model incorporates mixed mode cohesive elements to
represent the debonding process, with cohesive laws (traction versus displace-
ment) that feature both an initial hardening phase and a decaying tail. These
laws are somewhat different from that in Burridge et al., which was a purely
softening law and for mode II displacements only. The details of the law do affect
the outcome in some ways. For example, while Needleman’s simulations show the
same qualitative history of rapid acceleration to a nearly constant velocity as
seen in experiments (Rosakis et al. 1999), the value of the final velocity generally
exceeds O2CS, rather than equalling it, with the speed attained depending on the
maximum stress assumed for the cohesive law. In a separate theoretical study of
Proc. R. Soc. A (2006)
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shear crack propagation along bi-material (Homalite/steel) interfaces, a large
jump in terminal crack velocity was found at a certain prescribed load point
velocity (Needleman & Rosakis 1999). For inferior load point velocities, crack
propagation was limited by the Rayleigh wave speed in the Homalite (the slower
medium); above the transition, the terminal velocity approximately doubled, to
be near the longitudinal wave speed of the Homalite.

While intersonic propagation is physically admissible, shear crack propagation
remains forbidden in the velocity interval, CR!c!CS, where CR is the Rayleigh
velocity. The mechanism by which a crack can jump across this velocity gap
involves the creation of a daughter crack ahead of the parent crack, which then
links to the parent in an effective surge of crack growth (Burridge 1973; Andrews
1976; Gao et al. 2001). While relationship of this phenomenon to slip-pulse
solutions for planar frictional interfaces must exist, the presence of a velocity gap
must be associated with the presence of concentrations of tractions where
interface debonding is taking place, which do not generally appear in interfaces
coupled solely by friction.
(d ) Contrasts in physics

Thus, shear crack propagation analysis, pulse-slip solutions for the planar
frictional interface, and Lamé-like solutions of the push-in problem with zero
debond energy (figure 1) all show that variable front velocities up to the
maximum of the longitudinal wave speeds in the fibre and the matrix are
physically admissible. However, important distinctions arise between the
different problems. In particular, there is no analogue in the Lamé-like solutions
of the push-in problem with zero debond energy to the velocity gap in the
interval (CR, CS) in fracture problems, nor any special role for the velocity O2CS.
Neither do direct analogues of the phenomena of instability and ill-posedness
that have been so extensively studied for planar frictional interfaces appear in
the existing Lamé-like solutions, since these have been developed for uniform and
constant (not Coulomb) friction.

Solutions in the literature for dynamic shear cracks and the initially-debonded
push-in problem also differ in another very important way. Even though cohesive
models have been used for dynamic shear crack modelling, thus spreading the
debond process into a diffuse process zone, the dimensions of this process or
cohesive zone have been relatively small. For example, in the simulations of
Needleman (Needleman 1999), the cohesive zone is approximately 1 mm (a result
of the assumed parameter values in the cohesive law), while the crack propagates
over distances of approximately 25 mm. Behind the cohesive zone, the fracture
surfaces remain traction free. A small process zone representing debonding is
very different from the conditions expected in the presence of friction, especially
in mode II problems, where shear tractions may act over the whole cracked
specimen. While a shear cohesive traction enters the fracture problem in exactly
the same way that a frictional traction would enter, the extension of cohesive
modelling to friction zones that may be as long as the crack has not been made in
dynamic fracture studies. (Calculations for bi-material interfaces did predict the
existence of large-scale contact zones trailing the crack-tip (Needleman &
Rosakis 1999), but friction in these zones was not modelled.) Models have either
treated long zones of friction in the absence of a debond process (the Lamé-like
Proc. R. Soc. A (2006)
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push-in problem or the planar frictional interface problem), or debonding as a
relatively short process zone in the absence of long zones of friction.

Final introductory comments are directed upon the nature of the cohesive law.
In static fracture of a material that is not rate dependent, only two or three
degrees of freedom in the cohesive law have a significant influence on the fracture
response (e.g. Bao & Suo 1992; Cox & Marshall 1994; Massabò & Cox 1999). If
the zone has finite extent, most characteristics of crack propagation are
determined by two parameters, which may be taken as the critical traction in
the cohesive law and the area under the law (work of fracture). If the cohesive
law incorporates an initial hardening phase (traction rising with displacement),
then the cohesive mechanism may act over the whole crack, even for very long
cracks, in which case a third parameter, the slope of the hardening phase,
controls crack growth (Cox & Marshall 1994). If the cohesive mechanism exhibits
rate dependence (excluding inertial effects), e.g. due to creep or viscosity, then
one or at most two additional parameters, describing the rate of decay of the
cohesive tractions, appear to suffice to predict fracture behaviour (Cox & Sridhar
2001). The possibilities when inertial effects enter may be richer. For example, in
none of the work on static fracture are there cases where the rate of decline of the
law with increasing displacement plays a significant role (except as it affects the
area under the curve, i.e. the work of fracture). Yet in dynamic studies of friction,
the rate of decline of the coefficient of friction, i.e. of the cohesive shear traction
due to friction, with displacement rate has a profound effect: it determines
whether slip occurs in a crack-like or slip-pulse mode (Zheng & Rice 1998). This
and other results, including theoretical models (Lapusta & Rice 2003) and novel
laboratory simulations of slip-pulse motion (Xia et al. 2004), show that
constitutive laws for dynamic friction need to be represented with more degrees
of freedom than laws in static facture. Inertial effects appear to manifest further
details of the traction law in fracture behaviour.

All of these background works have addressed some aspects of the general
problem of figure 1, but they remain separate pieces of understanding, not yet
connected to one another. Thus, large-domain friction problems have not yet
embraced the influence of a strong bond (energetically significant crack tip
process); while fracture work has not yet extended to very large (possibly semi-
infinite) domains of friction. Generality in the friction law has begun to appear
only in studies devoted to friction as a phenomenon, but these studies imply that
over-simplifying friction laws can have a strong affect on the possible behaviour
in other systems. And last, the most general studies of fibre push-in as a special
problem, with general end-loading histories, remain to be undertaken.
2. Experiments

A model planar specimen geometry was designed to investigate dynamic fibre
push-in for a bi-material system in which no chemical bond exists at the material
interface. A transparent and birefringent polymer sheet (Homalite-100), acting
as a ‘fibre,’ was placed between two steel plates, analogous to a ‘matrix’
(figure 2). The dynamic fibre push-in process was mimicked by loading the fibre
with a projectile travelling at speeds ranging from 10 to 40 m sK1. The resistance
of the polymer/metal interfaces to slip was manipulated by applying a static
Proc. R. Soc. A (2006)
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Figure 2. Planar test specimen under static pre-load applied to the top and bottom plates of the
fixture.

Table 1. Density and elastic wave speeds for the test materials.

density,
r (kg mK3) CR (m sK1) CS (m sK1) CL (m sK1)

Homalite 1230 1087 1187 2060
steel 8000 2977 3254 5443
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compressive pre-stress (s
ðrÞ
22 ) acting perpendicular to the interfaces, whose value

varied from 0.5 to 175 MPa.
Discussion of the resulting deformation will refer to the coordinate system,

(x1, x2), with the origin located at the mid-plane of the Homalite piece, at the end
where it is impacted (figures 1 and 2). The half-height of the Homalite will be
denoted h. Thus, the interfaces lie at x2ZGh. The origin of time, t, is the
moment of first impact.

Materials and specimens. The densities and relevant wave speeds of the test
materials are given in table 1. All plates were 9.5 mm thick and 82.5 mm in
length. The steel pieces were 50.8 mm in height. The height, 2h, of the Homalite
piece was 16.5 mm. The Homalite dimensions were chosen to provide a fibre
aspect ratio, defined as length divided by the half-height, h, of 10. The steel
height was chosen to minimize the interactions of wave reflections from the
specimen boundaries with the dynamic sliding process. This assures that the case
studied is equivalent to that of an isolated fibre in a semi-infinite body. The
pieces of the specimen were aligned and stacked vertically (steel/Homalite/steel)
without the use of adhesive or bonding agent.

Dynamic loading and characterization. The fibre was loaded dynamically by
impacting its end with a 25.4 mm diameter cylindrical steel projectile, 44.5 mm
in length, which was accelerated using a light air gun. Projectile speeds were
varied over the range 10–40 m sK1 by varying the gun pressure. A small steel tab
was affixed to one end of the Homalite piece to eliminate the possibility of impact
Proc. R. Soc. A (2006)
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Figure 3. Representative image from a dynamic sliding experiment (38 m sK1 impact speed,
50 MPa static pre-stress). The constancy of the interface shear stress in the region labelled
‘t constant’ is consistent with the fringe pattern, but not well resolved experimentally above the
noise. It is marked so because of modelling results. The labels of the other domains are clearly
implied by the nature of the fringe patterns.
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damage to the end of the relatively brittle polymer during dynamic loading
(figure 2). The dynamic sliding of the Homalite relative to the steel was
characterized using high-speed photography in conjunction with dynamic
photoelasticity. A strain gauge was mounted to the surface of the steel tab to
provide a trigger signal for the initiation of the recording of high-speed
photographs (described below). From sequences of images, the dynamic loading
history, s(t), of the fibre, the initiation time for the onset of interface sliding and
the interface slip speed histories were obtained.

Dynamic photoelasticity apparatus was configured as follows. A collimated
laser beam, 100 mm in diameter, was passed through a circular polarizer, the
length of the Homalite, and a second polarizer to generate the photoelastic
images, which were recorded using a high-speed digital camera (Cordin 220-16,
Cordin Scientific Imaging, Salt Lake City, UT 84119, USA). The camera was
capable of recording 16 frames. The frames were recorded every few
microseconds; the interframe times were varied in each experiment. In dynamic
photoelasticity, the fringes show constant-value contours of the difference of
principal stresses, s1Ks2.
(a ) General observations

A total of 16 experiments were conducted. The role of impact speed (loading
rate) was investigated at a constant static pre-load; and that of pre-load was
investigated at a constant impact speed. Figure 3 shows a representative high-
speed isochromatic fringe pattern recorded during sliding in the common member
of these two test sets (s

ðrÞ
22 Z50 MPa, v0Z38G2 m sK1). The approximately

vertical fringes represent the stress generated from the impact (from the left) and
propagate to the right. Shortly behind the propagating front, kinks form in the
fringes in angled bands. These bands intersect the top and bottom interfaces,
implying non-smooth variations in the interface displacement. Among the many
fringe patterns collected from all tests, consistency in the pattern of bands was
Proc. R. Soc. A (2006)
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Figure 4. Fringe patterns obtained at low and high values of the static pre-load (as marked).
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imperfect. In some images, either noise or experimental variance made it difficult
to confirm or refute the presence of bands that might have been expected to be
present based on their presence in other images. In the images with better-
defined fringes, two bands were prominent, typified by the dashed white lines in
figure 3. Based on changes in the spacing or angle of fringes before and after a
band, or in the derivative of the spacing, the first of these is interpreted as the
beginning of a domain of increasing interface shear stress; the second as the point
of transition to interfacial sliding. In figure 3, the domain marked ‘increasing
friction’ (or interfacial shear stress) is clearly defined as such by the fringe
behaviour; in the domain marked ‘constant friction,’ the fringe variations are
consistent with this interpretation, but the implication is not as clear due to
noise. A peak in the fringes on the specimen mid-plane locates the onset of
unloading.

Figure 4 presents images similar to that in figure 3 but taken from experiments
conducted with higher and lower static pre-loads. The difference in the visibility
of bands in these figures and figure 3 is representative. Further inspection of
figures 3 and 4 shows that as the pre-load increases, the kinking of the fringes is
associated with larger distortions, suggesting that the onset of sliding is
associated with a sharper discontinuity. A similar trend was observed as the
impact speed was increased. The dynamic sliding process is associated with
higher, more localized stresses at higher loading rates and higher static pre-load.
(b ) Sliding speeds

The velocity of the dominant band in each image along the interface was
estimated by comparing its position in successive frames. Figure 5 shows plots of
the positions of the intersections of a symmetric pair of such bands with the top
and bottom interfaces as a function of time for an experiment conducted with
12.5 MPa pre-load and 38 m sK1 impact speed. The bands propagate at the same
velocity on the top and bottom and the variation of sliding position with time is
essentially linear. This contrasts with the common case for shear crack
propagation, where a period of acceleration of the crack tip is often observed,
which may approach constant velocity asymptotically. Here, the velocity of the
bands is constant throughout the experiment, within the experimental error of
Proc. R. Soc. A (2006)
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approximately G3% (typically on the order of G50 m sK1). These observations
were consistent in all of the experiments, indicating that on this scale of
observation, sliding is a steady-state process. In this particular experiment, the
slope of the plot in figure 5 indicates a sliding speed of 2050 m sK1 or
approximately the dilatational wave speed of the Homalite. Model analysis
(see below) suggests that these bands probably corresponded to the beginning of
a domain of enhanced interfacial shear stress.

Figure 6 provides a summary of the velocities of the dominant bands measured
from all of the experiments, plotted as a function of static pre-stress. While the
data show substantial scatter, individual points are accurately determined (see
above). In all cases, the observed speeds were in excess of the shear wave speed of
the Homalite, i.e. greater than 60% of the dilatational wave speed. In general, the
trend is toward decreasing sliding speed with increasing static pre-load. However,
there is no clear functional dependence. Insight provided by modelling (see below)
Proc. R. Soc. A (2006)
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suggests that the bands identified as dominant in collating the data of figure 6 may
have corresponded in some cases to the onset of interfacial sliding, but in other
cases to the beginning of a domain of increasing interfacial shear stress.

Data for all of the experiments conducted at 0.5 MPa and varying impact
speed lie along the ordinate (the axis of sliding speed) in figure 6. There was no
systematic variation of sliding speed with impact speed, with all the measured
sliding speeds being approximately the dilatational wave speed of the Homalite.

(c ) Sliding stresses and loading rate

The photoelastic fringes can be equated to the local difference in principal
stresses

s1Ks2 ZFsN=W ; ð2:1Þ
where Fs is the stress-optic coefficient (22.6 kN mK1 for the Homalite), N is
the fringe order, and W is the specimen width (in the through-thickness
direction, x3). The stress along the centre line of the Homalite can be determined
from equation (2.1) alone if the following conditions are met: (i) the principal
stresses along the centre line act in the x1 and x2 directions and; (ii) plane stress
conditions exist; and (iii) strains 322 in the x2 direction are negligible. Then
equation (2.1) reduces to

s1ð1KnÞZFsN=h; ð2:2Þ
where n is Poisson’s ratio for the Homalite, and hence the stress distribution
along the centre of the fibre can be determined. The condition of negligible strain
component, 322, will not be met in the presence of large compressive pre-stress.
Nevertheless, equation (2.2) proves useful, for the following reasons. Numerical
simulations (see below) show that, in the absence of compressive pre-stress,
dynamic contributions to 322 are very small and the stress, s1, estimated from
experiments using equation (2.2) and that calculated by the simulations are very
close. When the compressive pre-stress is large, its contribution to 322 will be
invariant in space and time. Therefore, equation (2.2) can be used to estimate the
applied loading rate, ds1/dx1, in steady-state conditions from experimental data,
since this involves taking a derivative.

The variation of stress with position is found to be approximately linear,
yielding a constant value of ds1/dx1 for each test. (Thus, experiments and
simulations (see below) confirm the rapid attainment of steady-state conditions
in the axial stress and the proper application of equation (2.2).) This steady-state
value can be divided by the dilatational wave speed in the Homalite to give a
loading rate per unit time. The loading rate rises in proportion to the impact
speed and decreases linearly with static pre-load (figure 7). When the coupling of
the fibre and the matrix is increased, the input momentum is transferred more
rapidly to the matrix, resulting in slower loading of the fibre.
3. Numerical modelling

A computational simulation of the test was set up in a commercial finite element
package (ABAQUS1), with cohesive elements to represent interface friction.
1 ABAQUS, Inc., Pawtucket, RI 02860, USA.

Proc. R. Soc. A (2006)



0

5

10

15

20

25

30

35

40

50 100 150 200
confinement (MPa)

lo
ad

in
g 

ra
te

 (
M

Pa
 µ

s–
1 )

Figure 7. Variation of loading rate with magnitude of static compressive pre-load.

1093Dynamic fibre sliding along interfaces
Symmetrical boundary conditions (u3Z0; t12Z0) were imposed along the centre
of the Homalite piece (x2Z0) and the top surface of the steel piece. A state of
plane stress was assumed in the (x1, x2) plane. Semi-infinite elements were used
to prevent elastic waves bouncing back from the right end of the model (figure 8).
The cohesive elements introduce a relationship between the shear tractions, tint,
and the sliding displacement rate, ½ _u1�, at the interface. The law used (figure 9) is
intended to represent friction that is uniform and constant in magnitude, but an
initial linear part is included to avoid numerical difficulties where the sense of the
motion changes. A dynamic loading history (figure 10), corresponding to that
caused by the experimental impactor, was imposed as a prescribed stress, s11(t),
acting uniformly over the interval Kh!x2!h at the left end of the Homalite.
The simulation described in detail in the following had a loading rate, ds11/dtZ
31.5 MPa msK1, a rise time of 6.0 ms, and linear unloading over a further 12.0 ms.
The loading rate and maximum stress correspond to those deduced from
measurements of stress distributions at the end of the Homalite for the test with
an impactor velocity of 39 m sK1 and a compressive pre-stress, s

ðrÞ
22 Z50 MPa.

The unloading rate was set to be half that of the loading rate in magnitude,
which corresponded approximately to the measured rate. Thus, the boundary
stress was not predicted, but fitted to experiments; but all other characteristics
of the deformation, including front velocities and the general distribution of
stresses, etc. were predicted given only this fitted condition. The interfacial
frictional stress was assigned the magnitude tfZ40 MPa. This would correspond
to a friction coefficient of 0.8 for the same test, if friction had obeyed Coulomb’s
law in the test; but this, of course, may not have been the case. The magnitude of
tf was held constant in the simulations. Since the loading rate depends only
weakly on the compressive pre-stress (figure 7), the simulation could also be
interpreted as representing cases of higher compressive pre-stress, if a lower
Proc. R. Soc. A (2006)
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Q. D. Yang and others1094
value of the coefficient was believed to be more appropriate. (The calculation
would be unchanged because the coefficient of friction does not enter explicitly
into the model.)
(a ) General character of the predicted wave deformation

Figure 11 shows predicted contours of the principal stress difference s1Ks2
and the shear stress t12 in the Homalite at time tZ9.822 ms. These plots and
plots of stress variations along single lines (see below) distinguish four zones in
the wave propagation. Rightmost is the so-called head wave zone, where the
interface friction stress is opposite in sense to that in the trailing zones. (This
change of sign is not evident in figure 11b, because of the small magnitudes of the
stresses involved.) In the head wave zone, the Homalite is loaded by the steel and
the wave speed exceeds that of the Homalite, Cf, by a factor of more than 2 (the
factor being difficult to pinpoint numerically) but is less than that of the steel, Cm.
Proc. R. Soc. A (2006)
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1095Dynamic fibre sliding along interfaces
Following the head wave zone is a linearly increasing shear stress zone, where
the interface (friction) stress increases approximately linearly with position up
to the limiting value, tf, given by the cohesive law. This zone derives from the
finite-sloped transition from negative to positive shear stress used in the
cohesive model to avoid numerical problems (figure 9). However, domains with
this character were also observed in the model experiments, suggesting that the
law of figure 9 may fortuitously represent, at least qualitatively, the true
constitutive behaviour of the interface under rising shear stress. The next zone is
the constant friction zone, which is characterized by a suddenly and greatly
reduced density of the contours in s1Ks2, while the shear stress is constant at
the value, tf.

The last zone is associated with the unloading part of the loading history. The
contour lines near the interface become chaotic, which is also seen in the
experiments (figures 3 and 4). In the simulation, alternating contact and
separation zones exist along the interface in this region. The experimental
contours show similar variations, suggesting the same contact behaviour
(although in the experiments no direct confirmation of interface displacements
is possible).
(b ) Stress distribution and front velocities

Comparison of the measured and predicted stress contours has shown that,
even though the numerical model is based on an ad hoc and probably incorrect
friction law, most aspects of the experiments appear to be reproduced. Further
insight into the physics of the deformation is available from other calculated
characteristics.
Proc. R. Soc. A (2006)
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Q. D. Yang and others1096
Figure 12a–c shows stress profiles at three different instants during the
simulations of figure 11. Figure 12a shows the axial stress along the centre line of
the Homalite, s11(x1, 0), along with a measurement from the experiment
executed with impactor velocity, v0Z39 m sK1 and compressive pre-stress,
s
ðrÞ
22 Z50 MPa. The agreement between the simulation and the experiment is

quite close. (See also the discussion following equation (2.2).) The furthest
disturbance evident in this plot corresponds to the transition in figure 11 from
the head wave to the domain of linearly increasing friction. The peak axial stress
along the centre line decreases as the wave propagates, which is attributed to
Proc. R. Soc. A (2006)
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1097Dynamic fibre sliding along interfaces
the dissipative frictional sliding process along the interface. Invariance of the
stress profile confirms the attainment of steady state conditions by time 6.2 ms,
shortly after peak load is attained at 6.0 ms.

Figure 12b shows the interface shear stress at the same three instants. The
shear stress increases approximately linearly until the constant friction stress
assigned in the cohesive law is reached. It remains almost constant through the
‘constant friction’ zone of figure 11, although small oscillations are evident
around the prescribed value, tf. The unloading zone is dominated by high
frequency, severe fluctuations in tint.

Figure 12c shows the axial stress, s11(x1, h), along the interface. A knee behind
the furthest visible disturbance corresponds to the transition from linearly
increasing to constant interfacial stress. In the region ahead of the knee, the
loading rate of the material is remarkably small.
Proc. R. Soc. A (2006)
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Figure 12d illustrates further the nature of the interface fields in the chaotic
unloading zone. Large spikes in the fibre sliding displacement periodically reach
down to the sliding displacement of the matrix, indicating locations of fibre/
matrix stick. Reverse slip is also possible for brief intervals at these locations, but
is difficult to resolve in a numerical simulation, due to computational noise.

The plots of figure 12 provide reasonably accurate information for evaluating
the velocities of the various fronts. Figure 13 shows histories of the locations of
fronts as functions of time, obtained by interpolating measurements of the
locations of the corresponding features in figure 12. The leading edge of the head
wave is not shown, since it could not be accurately discerned.

The velocity, V2, of the transition to the linearly increasing friction zone is
evaluated from both the earliest significant axial stress along the centre line and
the earliest significant shear stress along the interface. The former gives V2Z
1.04Cf, while the latter yields a slightly lower value V2Z0.98Cf. To within
reasonable uncertainty, neither is significantly different from the wave speed in
the Homalite.

The front of the constant friction zone can only be determined accurately from
the interface stresses, either the knee in the axial stress or the onset of the shear
plateau (figure 12b). The inferred wave velocity is V3Z0.87G0.02Cf, the error
reflecting the difference between the two sources and the axial stress implying the
higher value.

The front associated with the onset of unloading is best identified by the peak
in the axial stress along the centre line of the Homalite (figure 12c). The velocity
takes the value V4Z0.98G0.02Cf, once again close to the wave speed in the
Homalite.

The velocity estimates can be approximately confirmed by analysing the
bands or kinks in the predicted stress contours, which propagate from locations
on the interface at which a transition (non-smooth behaviour) is present in the
displacement fields. Two bands are traced by dashed lines in figure 11, emanating
Proc. R. Soc. A (2006)
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approximately from the fronts associated with the onset of linearly increasing
friction and constant friction (sliding). The angles subtended by the lines to the
interface, ai, iZ2 and 3, are given by sin aiZCS/Vi, where CS is the shear wave
speed in the Homalite. While difficulty arises in locating the bands on some
contours, the fitted values sin a2z0.45 and sin a3z0.6 are probably correct to
within 20%. These values yield V2Z(2.2G0.4)CS and V3Z(1.6G0.3)CS, in
reasonable agreement with the more accurate values deduced above from
figure 12. The boundary of the domain of chaotic fields is also marked by a
dashed line in figure 11, which emanates from the unloading front. The angle
subtended by this line, a4zarcsin 0.35, yields VchaosZ(3.0G0.3)CS. This high
implied velocity is consistent with the observation in the simulations that the
onset of chaos is delayed somewhat after the beginning of unloading, but the
chaotic zone tends subsequently to catch up with the unloading front, and
therefore propagates at a velocity exceeding that of the unloading front, which is
approximately Cf.

The different velocities predicted for the onset of sliding and the beginning of
the domain of increasing interface shear help understand the distribution of the
data in figure 6. Some uncertainty arose in identifying bands in fringe images, so
that the nature of the interfacial phenomenon corresponding to a particular band
was not always clear. Given the velocities predicted by the model, those data in
figure 6 falling close to Cf would be associated with the beginning of the domain
of rising interfacial shear stress, while other data would be associated with the
sliding front.

Since the front of the constant friction zone propagates at slightly different
velocities at the interface and along the centre of the Homalite, the configuration
of contours must change with time. Other contour plots at different times (not
shown) show that the nearly parallel, vertical contours in the ‘linearly increasing
friction’ and ‘constant friction’ zones of figure 11 do move apart more rapidly at
the centre of the Homalite than at the interfaces, which causes them to bow out
towards the head wave with increasing time. The same fringe divergence was
seen (via dynamic photoelasticity) in the model experiments. In both the
simulations and the experiments, the divergence is limited in magnitude and the
stress contours remain at angles less than approximately 108 from vertical during
passage of the deformation along the length of the test piece.

Other changes with time are: (i) the zone of chaotic contours grows into the
interior of the Homalite with time. In fact, other contour plots from the same
simulations as reported in figure 11 reveal that chaotic behaviour does not appear
at all until the elapse of approximately 8 ms. (ii) The constant friction stress zone
shrinks with time, since V4OV3, indicating that the unloading wave propagates
faster than waves ahead of it.
4. Results from shear-lag models based on Lamé fields

For the static problem of figure 1 and related thermal and mechanical problems,
many useful results have been obtained using shear-lag analysis and the
assumption that the fibre deformation fields are separable in x and the
transverse or radial variables; and that fields are simple, known functions of
the latter (Marshall et al. 1985; McCartney 1987; Cox 1990; Cox et al. 1990;
Proc. R. Soc. A (2006)
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Hutchinson & Jensen 1990). Analysis shows that these approximations give quite
accurate predictions of the end load versus the end displacement as long as the
slip distance is long compared to the fibre diameter (or fibre width in a plane
problem; Hutchinson & Jensen 1990). The fibre fields are well represented, and
also the matrix fields, provided the volume fraction of fibres is not too small.
Since these results in the static case are simple and have enlightened many
aspects of the mechanics and engineering principles of designing fibre-reinforced
materials, the question of their utility in the dynamic case is of interest.

For dynamic end loading that increases linearly in time and friction that is
uniform and constant, shear-lag analysis predicts that the deformation will
propagate in two or three domains, depending on the value taken by the
following three dimensionless parameters (Sridhar et al. 2003):

k Z
tfCf

h

�
ds0
dt

; C Z
Cf

Cm

; fZ
fEf

ð1� f ÞEm

; ð4:1Þ

where f is the fibre volume fraction. The specimen of figure 2 and the simulations
have lateral boundary conditions that are not periodic and therefore are not in
strict correspondence with the shear-lag model of Sridhar et al., but approximate
correspondence can be sought, using the dimensions of the specimen, by setting
fZ8.25/50.8Z0.162. The domains predicted by shear-lag modelling consist of
different interfacial conditions: slip, stick and reverse slip. For the case of the
simulations reported in §3, kZ0.317, CZ0.378 and fZ0.0043. Shear-lag
modelling predicts, for these values, that the deformation during the linearly
rising part of the loadingwill comprise a stick zone and a slip zone (see appendixA).
Furthermore, the interface friction stress in the stick zone is negative and has a
very small magnitude, 0.036 MPa (see equation (A 6)). The sign is negative
because the matrix (steel), having the higher wave speed, is pulling the fibre
along in this zone. The magnitude is small because the volume fraction of the
fibre is small, so that the stresses in the matrix remain small, the spatial
derivative remains small, and therefore the friction stress remains small. For the
case studied, the shear-lag model predicts (appendix A) that the head wave front
will propagate at V1Z2.6Cf.

A further prediction of the shear-lag model is that, if the fibre volume fraction
rises, then the interface shear stress in the head wave zone will exceed the friction
stress in magnitude and reverse slip will occur (consider figure 14 as the
parameter f rises). The head wave zone would no longer be a stick zone.

Figure 11 broadly confirms the predictions concerning the head wave zone.
The zone is a stick zone (no slip), the interface shear stress is negative and very
small in magnitude, and the front velocity, while not well determined, is
consistent with the value 2.6Cf.

The zone of linearly increasing friction in figure 11 has no analogue in the
shear-lag results of Sridhar et al., because in that particular modelling, the
friction stress was assumed to change sign with reversing slip direction as a step
function. The zone of linearly increasing friction in figure 11 arises from the linear
friction stress regime at small displacements in the law of figure 9. The constant
friction zone of figure 11 is equivalent to the slip zone in the shear-lag model. The
front of the constant friction zone is predicted in the shear-lag model to
propagate at 0.73Cf. This is less than the velocity, V3Z0.87Cf, computed in
Proc. R. Soc. A (2006)
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1101Dynamic fibre sliding along interfaces
the simulations of figure 11. An interesting question is whether the two models
would agree in the predicted front velocity for higher fibre volume fractions,
equivalent lateral boundary conditions, and as the linearly varying domain in the
constitutive law of figure 9 shrinks in extent.

If it is assumed that the friction stress value used in the shear-lag model would
vary with compressive pre-stress according to Coulomb’s law, then a prediction
of the variation of front velocities with compressive pre-stress can be made. Two
such predictions for the velocity of the sliding front, V3, have been superimposed
on figure 6. The rates of change of the friction stress correspond to assuming a
coefficient of friction of 0.1 or 0.4. The trends of the curves are not inconsistent
with the weakly defined declining trend in the data, especially when those data
lying at Cf, which are believed to correspond to the front of increasing interfacial
shear stress, are excluded.
5. Possible chaotic behaviour

The noisy behaviour appearing in the unloading zone in the simulations does not
appear to be a numerical artefact, but rather a consequence of the modelling
assumptions and the physics of the problem. If it were due to Gibbs’
phenomenon, i.e. numerical ringing at a near-discontinuity in the solution, it
would not be confined to the vicinity of the interface (note, for example, the
smoothness of the axial stress at the centre line of the Homalite, figure 12a); nor
to the unloading zone, since non-smoothness of equal strength exists in the fields
at other fronts (zone boundaries).

The noisy behaviour is not associated with Coulomb’s law, since this was
not the constitutive assumption of the model. In fact, the friction law assumed
(figure 9), which contains no relation between the friction stress and the
normal pressure, is simpler than that used in most studies of either stability or
ill-posedness in problems of slip between half-spaces. For the same reason,
Proc. R. Soc. A (2006)
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the predicted phenomenon cannot be directly related to Poisson’s effect, even
though Poisson’s ratio was non-zero in the simulations.

The fact that the noisy behaviour is confined to the unloading zone, while the
deformation propagates smoothly at a range of speeds in other zones, has no
obvious analogue in any prior studies of instability. The closest to a hint of
similar behaviour is in incomplete and unpublished results for the shear-lag
modelling described by Sridhar et al. (2003). Attempts to trace solutions for
linear unloading that follows linear loading lead to apparently complex patterns
of the birth and death of slip, stick and reverse-slip zones, as the unloading wave
overtakes deformation of earlier origin. The possibility is suggested (but not yet
thoroughly researched) that arbitrarily small changes in the loading history
cause finite changes in the subsequent pattern of slip, stick and reverse-slip
zones. In the shear-lag problem, the only possible source of instability or
complexity is the strong nonlinearity associated with the change in sign of the
friction stress when the direction of interfacial slip changes. While the analysis is
incomplete, the suggestion of chaotic behaviour in the shear-lag model provokes
the speculation that the noisy behaviour seen during unloading in the
experiments and the numerical simulations is also an example of chaos.

Shear-lag modelling also highlights the role, in the possible generation of chaotic
behaviour, of the coupling of wave motions between the fibre and the matrix. For a
fibre in a rigidmatrix, where the fibre deformation ismodified by interfacial friction
tractions that depend only on its ownmotion, stable andwell-behaved solutions can
be mapped out systematically for quite complex loading and unloading histories,
e.g. by themethod of characteristics (Nikitin&Tyurekhodgaev 1990).Thismethod
is not useful when the fibre motion is coupled to that of a matrix.

Numerical solution of the shear-lag problem, e.g. numerical solving of
difference equations subject to the constraint that displacement fields are
Lamé-like, is not enlightening, because the rapid births and deaths of different
zones are quickly obscured in numerical noise at the fronts.

The similarity of the predicted domains of chaotic behaviour and those
measured in the model experiments is very eye-catching (figures 4 and 11), but
the conditions assumed for the interface are unlikely to be the same in the two
cases. In particular, the friction law of figure 9 is an idealization that is likely to
be an oversimplification of the true friction behaviour in the experiments
(although the experimental law is not known in detail). This suggests that the
putative existence of chaotic behaviour is not especially sensitive to details of the
friction law, but could be a consequence of unloading with any friction law that
possesses the strong nonlinearity of sign reversal.
6. Conclusions

Comparing the characteristics of model planar experiments, numerical
simulations and shear-lag modelling leads to the following inferences about the
push-in problem of interest (figure 1), for a bi-linear sequence of loading and
unloading.

(i) The broad characteristics of the deformation in the fibre, exclusive of
shock waves, can be predicted at least qualitatively by simple shear-lag
Proc. R. Soc. A (2006)
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models, in which the displacements are reduced to Lamé fields. The shear-
lag solutions have the advantage of proposing clearly defined zones of
different slip behaviour, which while present in both the experiments and
the numerical simulations, are not so easily identified in them without
prior knowledge. For engineering studies of dynamic deformation in
composites reinforced by fibres, rods, or stitches, shear-lag results will
convey at least the trends of dynamic response at the macroscopic level.
For example, the dynamic fibre end displacement is likely to be described
quite well by shear-lag theory, since those fine details of the push-in (or
pullout) phenomenon that shear-lag theory misses are unlikely to strongly
influence the end displacement, which is derived from integrated strains.

(ii) For the given geometrical conditions and loading rate, shear-lag modelling
correctly predicts the system of stick followed by slip found in the
numerical simulations and model experiments, even though the details of
the assumed or actual friction laws are likely to be different in all three.
One infers that the pattern of zones is mainly determined by the interplay
of stress waves of different speeds in the fibre and the matrix and is
insensitive to the friction constitutive law.

(iii) The speeds of fronts (or the boundaries between zones) are fairly well
predicted by shear-lag modelling, but more consistent between the
numerical simulations and the model experiments. Shear-lag modelling
could be expected to be a better approximation as the volume fraction of
the fibres rises.

(iv) As far as shear-lag theory is accurate, results found here for plane
geometry should be equally applicable to axisymmetric conditions, which
are a useful approximation to composites of cylindrical fibres.

(v) The literature is replete with analyses of frictional sliding between half-
spaces under uniform far-field velocity conditions. For that problem, the
presence of ill-posedness, instability, pulse and crack-like slip systems, etc.
depends strongly on the nature of the friction law (see §1). The present study
considers non-uniform (time-dependent) loading, which yields results that
are not accounted for by the prior literature.Complex behaviour,whichmay
be chaotic, arises during unloading, but not at other stages of the
deformation, in both the experiments and the numerical solutions. This
behaviour appears to be a consequence of the strong nonlinearity associated
with the sign reversal in the frictional tractions with slip direction and is not
sensitive to the details of the friction constitutive law.

(vi) The results that some characteristics of engineering relevance, especially the
fibre end displacement and the pattern and velocity of sliding fronts, are
insensitive to details of the friction law (being so similar in the experiments,
numerical modelling and shear-lag analysis) also contrasts with the
literature on shear crack propagation. One would expect that as the
frictional traction rises inmagnitude, or a large debond energy is included in
the problem, the fibre push-in problemwould begin tomanifest the complex
dependence seen for shear cracks. At the same time, the conditions required
for shear-lag analysis to be accurate would be lost.

(vii) Changing the compressive contact pressure in the experiments has
quantitative but not qualitative effect on the deformation patterns.
Proc. R. Soc. A (2006)
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Appendix A. Results from shear-lag analysis

The following results are reproduced from (Sridhar et al. 2003) and apply to the
fibre/matrix geometry of figure 14 when friction is uniform and constant and the
fibre is subjected to a linearly increasing end load. For this problem, three cases
arise in the solutions, viz. cases where domains of slip occur, cases where domains
of slip and stick occur and cases where domains of slip and reverse slip occur.
Figure 14 shows how which of these cases prevails depends on the loading rate
and material parameters of the problem. The parameter

k Z
tfcf
h

. ds0
dt

; ðA 1Þ

represents the loading rate, with cf the longitudinal wave speed in the fibre
(Homalite), tf the constant friction stress, and ds0/dt the rate of increase of the
stress at the fibre end. With the subscripts ‘f’ and ‘m’ referring to the fibre and
matrix, respectively, the parameters C and f are defined by

C2 Z
c2f
c2m

Z
Ê f=rf

Êm=rm
; ðA 2Þ

fZ
fEf

ð1Kf ÞEm

; ðA 3Þ

with ÊiZEið1KmiÞ=ðð1CmiÞð1K2miÞÞ, iZm or f, and Ei, mi and ri, iZm or f,
denoting Young’s modulus, Poisson’s ratio and the density.

The case of the test shown in figures 3, 10 and 11, i.e. for 38 m sK1 impact
speed, falls into the regime of stick/slip in the map of figure 14. The front of the
stick zone therefore advances at a speed V1 given by

V1 Z cf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Cf

C2 Cf

s
; ðA 4Þ

while the front at which slip begins advances at a speed V3 given by the root of a
cubic equation in h3ZV3/cf,

ðh23 C2kh3K1Þð1CC2h3h1ÞC2k4ð1Ch3h1Þh3 Z 0: ðA 5Þ
Analysis shows that h3 has only one real positive root which always lies in (0,1),
whereas h1 can clearly exceed unity. The interfacial friction stress in the stick
zone is

tZ tf
ðh23 C2kh3K1Þð1KC2Þ

2k h3ð1KC2ÞCð1Kh23Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC2 C4Þð1C4Þ

pn o ; ðA 6Þ

where h3 has been obtained by solving equation (A 5). This expression for the
friction stress always satisfies jtj!jtfj.
Proc. R. Soc. A (2006)
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