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investigation, is very close to the measurement posi-
tion. The study of the entire set of the 16 recorded
photoelastic images in combination with the relative
vertical displacement history sheds light on the dis-
tribution of the dynamic compression along the
interface during sliding. The interface was locally
under dynamic compression immediately after the
arrival of the P-wave front until the arrival of the
mentioned fringe formation at B. The entire area
from the rupture point A to the location of the fringe
structure at B was sliding under compression. The
length of the area AB was estimated to be approxi-
mately 40 mm, whereas the entire length of the
interface was 139.7 mm. The fringe structure at B
caused a local opening (�5mm) at the interface. At
approximately 42ms the relative vertical displacement
became again negative and the compression increased
abruptly. During the rest of the recording time the
interface at the velocity measurement position was
sliding under compression. The fringe structure at B
can thus be clearly related to a wrinkle-like pulse
propagating along the interface. As was stated earlier,
its propagation speed was very close to 0.96 CS which
lies in the interval between the shear and the Rayleigh
wave speeds of the material in agreement with the
prediction of Comninou and Dundurs (1977).

Reviewing the results from the entire spectrum of
experiments, it is verified that, at a confining stress of
10 MPa, the lowest impact speed which can generate
a wrinkle-like pulse in the present setup is approxi-
mately 17 m s�1. Figure 26(a) displays an
isochromatic fringe pattern obtained at a confining
stress of 10 MPa and at an impact speed of 9 m s�1. It

is clear that no fringe structure related to a wrinkle-
like pulse appears. That is reflected by the relative
vertical displacement history shown in Figure 26(b),
where the maximum positive value of the displace-
ment was only about 0.3 mm. A comparison of the
photoelastic image shown in Figure 26(a) with
photoelastic images obtained at the same static com-
pression of 10 MPa and at similar impact speeds
during experiments where the horizontal particle
velocities measurements were available, shows that
the rupture started at point A.

The propagation speeds of wrinkle-like pulses at
different impact speeds and at the same confining
stress of 10 MPa are shown in Figure 27. The sliding
speed was measured to be between the Rayleigh
wave and the shear wave speed of Homalite-100.
This result, in combination with the experimental
results obtained via velocimetry, favors our conjec-
ture that the interface disturbance was actually a
wrinkle-like pulse. As has been already mentioned,
the available theoretical and numerical analysis on
the subject predicts the same speed range with this
identified in Figure 27. It is also noted that both the
prestress and the impact speed do not affect the
propagation speed of the wrinkle-like pulses pro-
vided that such pulses could be generated.

4.06.5.4 Discussion

Finite element calculations of dynamic frictional
sliding between deformable bodies have always
been a very challenging task for the numerical ana-
lysts. As it was recently recognized (see Section
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Figure 26 (a) Isochromatic fringe pattern generated during an experiment for which the impact speed was 9 m s�1 and the

external compression was 10 MPa. The rupture tip is at the fringe concentration point A. No wrinkle-like pulse appeared.

(b) Relative vertical displacement history of points M1 and M2 located at a distance of 100 mm from the impact side of the

Homalite plate.
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4.06.4.1), the main source of difficulty was the ill-
posedness of the corresponding boundary and initial
value problem, if a rich-enough friction law was not
implemented. Coker et al. (2005) took advantage of
the latest advances in the theory of the frictional
sliding (Rice, 2001) and by using a rate-enhanced,
rate and state friction law of Prakash–Clifton type,
they were able to perform stable (grid-size indepen-
dent) finite element calculations for a configuration
very similar to the experiments described above. The
use of a rate-enhanced Prakash–Clifton type of law
was an essential element for the successful comple-
tion of the simulations because of the presence of fast
changes of the local compression at the interface,
caused by wave propagation, during dynamic sliding.
As it is explained in Section 4.06.4.1, the Prakash–
Clifton law is currently considered the only friction
law which correctly describes the effect of fast
changes in compression on the resulting frictional

resistance. We note that for various impact speeds

the numerical simulations exhibit a richer behavior
than the experimental results and generate not only

crack-like, pulse-like and mixed mode ruptures but

also trains of pulses and pulses following a crack-like
rupture. A representative result is shown in

Figure 28(a), where the distributions of the sliding

speed (� _uslip) and the shear traction Ts along the

interface at three times (t¼ 32, 38, 44 ms) are illu-
strated, for the case of 40 MPa static compression

and of a 2 m s�1 impact speed. Contours of maximum

shear stress, which correspond to isochromatic fringes

in photoelasticity, at t¼ 38 ms are shown in
Figure 28(b). In this numerical experiment, a mixed

mode of rupture, where a pulse was followed by a

crack-like rupture, was obtained. This is reminiscent
of the experimental case shown in Figure 21. We

believe that the similarity between the numerical and

the experimental results can be further improved by

binding and eventually fine tuning the parameters of
the friction law.

The experimental results presented in Section
4.06.5 elucidate the sliding process and provide con-

clusive evidence of the occurrence of various sliding
rupture modes (crack-like, pulse-like, or mixed) pro-

pagating dynamically along incoherent interfaces. Of

particular interest here is the experimental evidence

of the formation of both supershear and sub-Rayleigh
sliding pulses of the ‘self-healing’ type, leading the

direct validation of predictions made on the basis of

theoretical and numerical models of dynamic shear

rupture. These pulses were found to propagate in the
absence of interfacial opening. The experiments also

provide hints of the dominant physical mechanisms
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Figure 27 The wrinkle-like pulse speed remained

between the Rayleigh wave speed and the shear wave
speed of Homalite-100, independent of the impact speed.
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Figure 28 (a) Distributions of the sliding speed (� _uslip) at t¼ 32, 38, and 44ms, and of the shear traction (TS) at t¼ 44ms

along the interface for external compression of 40 MPa and impact speed of 2 m s�1. (b) Contours of maximum shear stress

(isochromatic fringe pattern) at t¼38 ms.
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governing the choice of various rupture modes and
their evolution. It is finally noted that ‘wrinkle-like’
pulses which feature finite opening in addition to
sliding were discovered propagating along the inter-
face at speeds between CR and CS for various loading
conditions.
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