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Abstract Many earthquakes propagate at sub‐Rayleigh speeds. Earthquakes propagating at supershear
speeds, though less common, are by far more destructive. Hence, it is important to quantify the motion
characteristics associated with both types of earthquake ruptures. Here we report on the spatiotemporal
properties of dynamic ruptures measured in our laboratory experiments using the dynamic digital image
correlation technique. Earthquakes are mimicked by the frictional rupture propagating along the interface
of two Homalite plates. Digital images of the propagating ruptures are captured by an ultrahigh‐speed
camera and processed with digital image correlation in order to produce sequences of evolving displacement
and velocity maps. Our measurements reveal the full‐field structure of the velocity components, bridge
the gap between previous spatially sparse velocimeter measurements available only at two to three locations,
and enable us to quantify the attenuation patterns away from the interface.

1. Introduction

Most earthquakes propagate at subshear rupture speeds Vr, that is, at speeds less than the shear wave
speed cs (Das, 2007). Supershear rupture propagation speeds, higher than the shear wave speed but lower
than the pressure wave speed cp, had been surmised by theoretical predictions and numerical simulations
(Andrews, 1976; Burridge, 1973) and have been observed for most large strike‐slip events. Some examples
of earthquakes inferred to propagate at supershear speed include 1906 San Francisco earthquake (Song
et al., 2008), 1979 Imperial Valley earthquake (Archuleta, 1984; Spudich & Cranswick, 1984), 1992
Landers earthquake (Olsen et al., 1997), 1999 Izmit earthquake (Bouchon et al., 2001), 2001 Kunlun
earthquake (Bouchon & Vallée, 2003), 2002 Denali earthquake (Ellsworth et al., 2004), and more recently
the 2018 magnitude 7.5 Palu earthquake (Bao et al., 2019; Socquet et al., 2019). While supershear ruptures
are less common than sub‐Rayleigh ones, it is important to study them as supershear propagation can
cause much larger shaking far from the fault than sub‐Rayleigh ruptures (Andrews, 2010; Bernard &
Baumont, 2005; Bhat et al., 2007; Dunham & Archuleta, 2005; Dunham & Bhat, 2008). Theoretical pre-
dictions and numerical simulations are based on assumptions about the fault kinematics or the fault
rheology that affect a wide range of earthquake mechanics issues. For example, assumptions about the
evolution of friction can result in a dramatically different behavior in terms of energy partitioning, rup-
ture speed, residual stress levels on faults, patterns of seismic and aseismic slip, and ground motion
(Ben‐Zion, 2001; Brune et al., 1969; Heaton, 1990; Jiang & Lapusta, 2016; Kanamori & Rivera, 2006; Lu
et al., 2007; Noda et al., 2009; Noda & Lapusta, 2013; Shi et al., 2008; Zheng & Rice, 1998). This points
toward the need of well‐instrumented laboratory measurements.

Dynamic rupture propagation, including sub‐Rayleigh and supershear ruptures, has been observed in
numerous experimental studies (e.g., Bayart et al., 2016; Ben‐David et al., 2010; Mello et al., 2010; Mello
et al., 2016; Nielsen et al., 2010; Passelègue et al., 2013; Rosakis et al., 1999; Rosakis et al., 2007; Rosenau
et al., 2017; Rubinstein et al., 2004; Schubnel et al., 2011; Svetlizky et al., 2017; Svetlizky & Fineberg,
2014; Xia et al., 2004). However, most experiments employed either temporally accurate but spatially sparse
diagnostics, such as velocimeters and strain gages, or semiquantitative full‐field measurements (e.g., photo-
elasticity) with low temporal resolution. Acoustic emissions were used in a large body of work on laboratory
earthquake analogs to determine source properties as well as other rupture features (e.g., Goebel et al., 2012;
Lei & Ma, 2014; McLaskey & Lockner, 2016; Passelègue et al., 2016), while other techniques were able to
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measure the contact area as it evolved with rupture propagation (e.g., Rubinstein et al., 2004; Selvadurai &
Glaser, 2015) but these approaches could not measure full‐field quantities, such as velocities or strains.
Recently, some experimental setups have been developed to image the full‐field rupture behavior, employing
either acoustic imaging, based on ultrasound (Latour et al., 2011), or digital image correlation (DIC; Caniven
et al., 2015). Employing acoustic imaging has enabled to simultaneously image, in real time, two planes, par-
allel and perpendicular to the sliding interface, respectively, but it has to use hydrogels as model materials in
order to significantly reduce the shear wave speed and thus the speed of the propagating rupture (Latour
et al., 2011). Some experiments with the DIC method (Caniven et al., 2015) lack adequate temporal resolu-
tion to fully capture rapidly propagating ruptures.

Here we present the first full‐field dynamic characterization of sub‐Rayleigh and supershear ruptures by
using the DIC method coupled with ultrahigh‐speed photography (Rubino et al., 2015; Rubino et al.,
2019). In our laboratory setup, dynamic rupture propagates along a frictional interface in an analog material
(typically Homalite‐100 or PMMA). Earlier versions of this setup have been used to demonstrate a number of
key rupture dynamics phenomena, including supershear transition, bimaterial effect, off‐fault attenuation
and damage, pulse‐like to crack‐like transition, and rupture interaction with the free surface (Gabuchian
et al., 2017; Lu et al., 2007; Lu et al., 2010; Mello et al., 2010, 2014; Ngo et al., 2012; Xia et al., 2004; Xia
et al., 2005). In these studies, measurements captured the time history of selected velocity components at
two to three locations per test, and they were not able to provide a unifying picture of the spatial variations
of the velocity components. Recently, we have enhanced the diagnostics of our laboratory setup by including
ultrahigh‐speed photography with a single camera vision system in combination with DIC, in order to map
temporal evolution of a wealth of field quantities, including displacements, velocities, strains, strain rates,
and stresses (Rubino et al., 2019). This development has allowed us to study phenomena that were undetect-
able before, such as the evolution of dynamic friction (Rubino et al., 2017) and the formation of pressure
shock fronts (Gori et al., 2018). Here, we show that our full‐field measurements, while consistent with pre-
vious point‐wise velocimeter measurements and numerical simulations, can explain the pattern of deforma-
tion across the entire field of view of observation and can be used to quantify the spatiotemporal properties of
dynamic ruptures.

2. Laboratory Setup to Quantify the Full‐Field Behavior of Dynamic Ruptures
2.1. Laboratory Earthquake Setup

Earthquakes are simulated in the laboratory by dynamic ruptures propagating along the frictional interface
of two quadrilateral plates made of a polymer, Homalite‐100 in this study, inclined of an angle α (Figure 1).
The specimen assembly is loaded in compression by a uniaxial load P, so that the interface is prestressed in
compression and shear with σ0 = Pcos2α and τ0 = Psinαcosα, respectively. The frictional interface is first
polished, in order to erase any machining defects, and then bead blasted with microbeads with the sizes
of 104–211 μm, in order to introduce a controlled roughness (Lu et al., 2010; Mello et al., 2010; Rubino
et al., 2019). Ruptures are nucleated by the disintegration of a NiCr wire placed across the interface and con-
nected to a capacitor bank with a set voltage.

An important characteristic of the ruptures produced in our laboratory setup is that, once nucleated, they
propagate spontaneously, driven by the far‐field stresses σ0 and τ0. The rupture speed (ranging from sub‐
Rayleigh to supershear) and rupture mode (crack like vs. pulse like) depend on the combination of P and
α (Lu et al., 2010). The investigation of this parameter space indicates that larger loads and steeper inclina-
tion angles result in supershear cracks, while lower loads and shallower angles produce sub‐Rayleigh pulses
with intermediate behaviors, including supershear pulses and sub‐Rayleigh cracks (Lu et al., 2010). In par-
ticular, sub‐Rayleigh ruptures can be produced at comparatively higher loads when using shallower angles.
One such configuration that will be discussed in the following is P = 12 MPa and α = 24°, which produces
sub‐Rayleigh pulses. Since ruptures produced with larger levels of prestress have a better signal‐to‐noise
ratio, we select this experimental configuration to study sub‐Rayleigh ruptures. On the other hand, to study
supershear ruptures, we select a steeper inclination angle, α = 29°, and a level of prestress depending on the
rupture speed regime to be obtained. We choose P = 4.5 and 23–25 MPa, for a slower and faster rupture,
respectively. Dynamic ruptures produced in our laboratory setup are highly repeatable as documented in
previous studies (e.g., Lu et al., 2010; Rosakis et al., 2007). The ruptures presented in this study, selected
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from a large set of experiments, provide characteristic behavior for each of the experimental
conditions explored.

2.2. Ultrahigh‐Speed DIC Diagnostics Employed to Quantify Dynamic Ruptures

We employ the ultrahigh‐speed photography, based on a single camera vision system, in combination with
2D‐DIC (Sutton et al., 2009) in order to quantify the full‐field behavior of dynamic ruptures (Rubino et al.,
2019). The diagnostics comprise an ultrahigh‐speed camera (Shimadzu HPV‐X), a white light source
(Cordin 605), a high‐voltage capacitor (Cordin 640), and a pulse generator (575 Series, Berkeley
Nucleonics Corp.) to introduce controlled delay between individual elements of the diagnostics, and an
oscilloscope (Tektronix® DPO‐3034) to monitor the signals. The ultrahigh‐speed camera is equipped with
a fixed focal distance telephoto lens (see Rubino et al. (2019) for details) and is rotated about the camera's
optic axis by an angle α, so as to align its pixels with the specimen's interface and facilitate the DIC analysis.
Digital images of a portion of the specimen are acquired at 1–2 million frames per second, depending on the
rupture speed, with an exposure time of 200 ns and at a resolution of 400 × 250 pixels2.

The size of the imaged area of the specimen, or field of view (FOV), ranges within a broad span, from 19 × 12
up to 131 × 82mm2, depending onwhether the aim is to image rupture features in the far field or to achieve a
high level of accuracy (Rubino et al., 2019). In this study, we focus on ruptures imaged with a small field of
view (19 × 12 mm2) in order to accurately capture the behavior in the near field. We also report the case of a
rupture imaged with a large field of view (131 × 82 mm2) to study the far‐field rupture features. Image and
image analysis parameters are reported in Table S1 of the supporting information, according to the
International Digital Image Correlation Society guidelines (Jones & Iadicola, 2018). The area of the speci-
men to be imaged is coated by a white paint and subsequently textured by a black speckle pattern in order
to provide a characteristic gray‐level signature to the images. The sequence of deformed digital images is
then processed by a 2D‐DIC software (Vic‐2D by Correlated Solutions Inc.), which performs image

Figure 1. Schematics of the laboratory earthquake setup used to produce sub‐Rayleigh and supershear rupture and to
quantify their full‐field behavior using ultrahigh‐speed photography and digital image correlation (DIC). Dynamic
ruptures propagate along the oblique interface, inclined of an angle α, of two quadrilateral plates of Homalite, simulating a
fault in the Earth's crust. The specimen is loaded axially with a uniform compressive pressure P. Ruptures are nucleated
by the pressure released by the electrical discharge of a NiCr wire placed across the specimen's interface. The applied
load P and interface inclination angle α control the rupture speed and mode. An ultrahigh‐speed camera captures a
sequence of textured images (at 1–2 million frames/sec), which are analyzed with the digital image correlation method
and are used to infer the displacement and velocity fields. The full‐field maps depict the fault‐parallel and fault‐normal
displacements of a sub‐Rayleigh rupture obtained with P = 12 MPa and α = 24°.
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matching in order to provide the full‐field maps of the displacement components u1(x1, x2, t) and u2(x1, x2,
t) (Figure 1). The digital correlations are performed over image subsets (typically 41 × 41 pixels2 in our ana-
lysis) that are overlapped with a step of 1 pixel. Displacement maps of u1 and u2 are then postprocessed using
a nonlocal filter (Ayoub et al., 2009; Buades et al., 2006, 2008; Rubino et al., 2015; Rubino et al., 2019).

The image correlation is performed over two independent domains, above and below the interface, in order
to preserve the fault‐parallel displacement discontinuities. Standard local DIC techniques can compute the
displacement fields only up to half a subset away from the boundary, which is an important limitation if one
wants to capture the rupture behavior very close to the fault. In order to overcome this limitation, the DIC
software we employ (Vic‐2D by Correlated Solutions Inc.) has been specifically modified to extrapolate dis-
placements all the way to the interface, using affine transformation functions (Rubino et al., 2019). Since the
correlation is performed independently over the two domains and there is no continuity constraint imposed,
the measurement noise can result in displacement fields containing small deviation from symmetry or anti-
symmetry. We address this issue by using the “symmetry‐adjustment” procedure described in Rubino et al.
(2019), based on the symmetric and antisymmetric properties of the fault‐normal and fault‐parallel displace-
ment fields, respectively.

The velocity fields _u1 x1; x2; tð Þ and _u2 x1; x2; tð Þ are computed from the sequence of the displacement compo-
nents u1(x1, x2, t) and u2(x1, x2, t), using a central difference scheme. The velocity magnitude fields are then

computed as _uj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_u21 þ _u22

q
. Strains are also obtained via the central difference scheme, and stresses are

computed using linear elastic constitutive properties with a Poisson's ratio of ν = 0.35 and dynamic
Young's modulus of E = 5.3 GPa, corresponding to the high strain rate properties of Homalite‐100
(Rubino et al., 2019; Singh & Parameswaran, 2003).

2.3. Assessing Triggering Delays and determining the Time After Rupture Initiation

In order to determine the time after rupture initiation and correctly plot time histories and compare them
with wave arrival times, we need to pinpoint the time when the rupture actually starts propagating. To do
that, we need to assess the various delays involved in the triggering procedure. The Cordin 605 light source
takes about 100 μs to ramp up to its maximum intensity and maintains it for approximately 1 ms. In order to
guarantee a uniform level of lighting during the image acquisition process, the Cordin 605 source is triggered
200 μs ahead of the high‐voltage capacitor used to initiate dynamic rupture, via the delay generator. This
arrangement guarantees that, by the time images are acquired by the high‐speed camera, the light intensity
has already reached a stable plateau level with minimal oscillations. The high‐speed camera has a delay t-

camera with respect to the capacitor signal, which is set depending on the size and position of the field of view,
as well as on the expected rupture speed.

Selected experiments were conducted imaging the rupture nucleation region. Careful analysis of these
tests, in particular of the image sequence of the NiCr wire detonation, reveals that the wire burst starts
8 μs after the trigger signal to the high‐voltage capacitor. Simultaneously, the displacement and velocity
maps obtained via DIC from the same image sequence indicate that the rupture initiation occurs at the
same time as the wire burst begins, with a delay of tini = 8 μs to the trigger from the capacitor bank.
Another time delay is associated with the high‐speed camera recording procedure. The high‐speed camera
continuously records images to a buffer memory at the set frame rate and exposure time. When it receives
a trigger signal, it transfers the images from the buffer to permanent memory storage. The first image of
the recorded sequence is the closest to the triggering signal and has a time delay trec to the trigger that is
less than the interframe time.

In the analysis of time histories in this work, we use the time from rupture initiation defined by t= ta+tcamera

+trec − tini, where ta is the acquisition time obtained from the high‐speed camera at the set frame rate and
starting with the camera triggering, tcamera is the camera delay to trigger, trec is the recording time delay,
and tini is the rupture initiation delay with respect to the capacitor trigger. In previous studies employing
ultrahigh‐speed DIC, we have reported the time after triggering the test, t = ta+tcamera (Gori et al., 2018;
Rubino et al., 2017, 2019). In this study, since we interpret the velocity time histories and wave arrival times,
it is important to account for the rupture initiation delay, as well as all other delays mentioned above.
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2.4. Rupture Speed Computation From the Experimental Measurements

The rupture speed Vr is computed by tracking the rupture tip along the interface. The rupture tip position as
a function of time is obtained from the rupture arrival times at each location along the interface, which are
determined by the time the slip rate function exceeds a set threshold Vthr, in analogy with numerical simula-
tions (Liu & Lapusta, 2008; Needleman, 1999). The threshold is chosen to be just above the noise level, and
therefore, it depends on the signal‐to‐noise ratio and sampling rate, which vary for different rupture modes
and speeds. In the presented calculations, we choose Vthr in the range of 0.5–2 m/s. The slip rate is obtained
at every pixel along the interface from the fault‐parallel velocity maps (Figure 2), as the difference of the par-
ticle velocities immediately above and below the interface. Since the time at which the slip rate exceeds the
threshold may not coincide with an actual data point, a linear interpolation is performed between frames
right before and after exceeding Vthr. The rupture speed is then computed from the rupture tip position func-
tion describing its location along the interface as a function of time, by a central difference scheme. A
Butterworth filter is used to smooth both the rupture tip position as a function of time before differentiation
and the rupture speed versus position.

3. Full‐Field Properties of Sub‐Rayleigh and Supershear Ruptures

The model material employed in our experiments, Homalite‐100, has a strain rate‐dependent behavior
(Singh & Parameswaran, 2003), resulting in a heterogeneous effective material properties field (Gori et al.,
2018; Rubino et al., 2019). Since it is the local wave speeds that control the rupture speed, we will refer to
these hereafter when indicating the rupture speed regime. For example, when we refer to supershear rup-

tures, we mean Vr>cHSR
s , where cHSR

s is the local high strain rate shear wave speed. Note that for

Homalite‐100, cHSR
s ¼ 1:28 and cHSR

p ¼ 2:6 km=s are the high strain rate shear and pressure wave speeds

(Mello et al., 2010), respectively, and the high strain rate Rayleigh wave speed is cHSR
R ¼ 0:92 cHSR

s ¼ 1:18 km
=s. These wave speeds have been measured by tracking the pressure and shear wave fronts in sequences of
photoelastic images (Mello et al., 2010; 2016). The low strain rate properties can be estimated using the

Young's modulus (ELSR = 2.17 GPa) measured at low strain rate ( _ε ¼ 10−5 s−1 ) by Singh and
Paramesawaran (2003) and assuming effective linear elastic relations. The low strain rate shear wave speed

yields cLSRs ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μLSR=ρ

p ¼ 0:82 km=s, where μLSR = ELSR/2(1+ν) = 0.804 GPa is the low strain rate shear

modulus and ρ = 1,200 kg/m3 and ν = 0.35 are the density and Poisson's ratio of Homalite, which are taken
as strain rate invariants. Assuming a linear elastic relation between the shear and pressure wave speeds and

a state of plane stress yields cLSRp ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2=1−ν

p
cLSRs ¼ 1:44 km=s. Note that the high strain rate wave speeds are

also consistent with the wave speeds computed following a similar procedure, assuming linear elastic rela-
tions and using the effective elastic properties of the material at high strain rate given by Singh and
Paramesawaran (2003).

3.1. Comparison Between a Sub‐Rayleigh and a Supershear Rupture With Vr>
ffiffiffi
2

p
cHSR
s

Let us start by analyzing two ruptures whose speed is sub‐Rayleigh and supershear, respectively.

A selection of snapshots describing the temporal evolution of the velocity components of the sub‐Rayleigh
and supershear ruptures is shown in Figure 2 (see also supporting information Movies S1 and S2). The
two ruptures propagate at Vr= 1.14 and Vr= 2.28 km/s, respectively, where the rupture speeds are computed
using the procedure detailed in section 2.4. Note that the fields are cropped, and their size is slightly smaller
than that of the acquired speckled images. The sub‐Rayleigh rupture is obtained with an applied vertical load
of P = 12 MPa and an inclination angle of α = 24°, which results in a normal and shear prestress levels of
σ0 = Pcos2α = 10 MPa and τ0 = Psinαcosα = 4.5 MPa, respectively. The loading configuration for the super-
shear rupture is P = 23 MPa and an inclination angle of α = 29°, which results in a normal and shear pres-
tress levels of σ0 = Pcos2α = 17.6 MPa and τ0 = Psinαcosα = 9.8 MPa, respectively. These experimental
conditions are known from past experiments to produce sub‐Rayleigh and supershear ruptures, respectively
(Lu et al., 2010). The left‐lateral ruptures enter the field of view from the left and propagate in the positive x1
direction. The fault‐parallel velocities of both dynamic ruptures indicate a marked shear motion (Figures 2a
and 2c). The fault‐normal velocities are distinctively different between the two cases, with the sub‐Rayleigh
rupture being characterized by large regions of initially positive and subsequently negative velocity, forming
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an elongated, peanut‐like shape perpendicular to the fault, while the fault‐normal velocity of the supershear
rupture changes in sign moving from the fault to the far field.

One prominent feature displayed by all supershear ruptures is the presence of the shear Mach fronts
radiating from the rupture tip; another prominent feature of supershear ruptures in viscoelastic materials
is the pressure shock fronts formed by the dilatational field, ahead of the shear shock front (Gori et al.,
2018; Rubino et al., 2019). While these features are best imaged using large fields of view where the shock
fronts are fully developed, we also observe them in the near‐tip field (white and black dashed lines in

Figure 2. Full‐field velocity snapshots for a sub‐Rayleigh and supershear rupture. (a) Fault‐parallel and (b) fault‐normal velocities of the sub‐Rayleigh rupture
(with Vr<cHSR

R ) obtained with P = 12 MPa and α = 24°. (c) Fault‐normal and (d) fault‐parallel velocities of a supershear rupture (with Vr>
ffiffiffi
2

p
cHSR
s ) obtained

with P = 23 MPa and α = 29°. The supershear rupture is reproduced from Rubino et al. (2017) and Rubino et al. (2019). Note that the velocity field of the
sub‐Rayleigh rupture is governed by fault‐normal motion, while that of the supershear rupture is governed by fault‐parallel motion. The white and black dashed
lines represent the shear and pressure shock fronts, respectively.

10.1029/2019JB018922Journal of Geophysical Research: Solid Earth

RUBINO ET AL. 6 of 25



Figure 2c). The formation of pressure shock fronts should not be possible in isotropic linear elastic solids
(Freund, 1998; Needleman, 1999; Rosakis, 2002; Rosakis et al., 2007). In a recent study, we have shown
that pressure shock fronts can indeed develop during propagation of dynamic ruptures in viscoelastic
solids (Gori et al., 2018). As ruptures propagate, they induce a heterogeneous strain rate field, with larger
strain rates in the near‐rupture tip field compared to the far field. Due to the high strain rate sensitivity of
Homalite‐100 used in these tests, the wave speeds are increased in the near‐tip field, where the strain
rates are high (Gori et al., 2018; Rubino et al., 2019). Dynamic shear ruptures can then become supersonic
with respect to the far‐field pressure wave speed, as a result of the material viscoelastic behavior (Gori
et al., 2018), while still staying below the local pressure wave speed in accordance with linear elastic the-
ories (Freund, 1998; Needleman, 1999; Rosakis, 2002; Rosakis et al., 2007). Indeed, this is the case for the
rupture of Figures 2c and 2d.

The rupture speed analysis indicates that the rupture of Figures 2a and 2b indeed propagates at a sub‐

Rayleigh rupture speed (Vr ¼ 1:14<cHSR
R ¼ 1:18 km=s) throughout the entire imaging window considered

in this experiment, while the rupture of Figures 2c and 2d propagates at supershear speed (with Vr ¼ 2:28>

cHSR
s ¼ 1:28 km=s), as shown by plotting the rupture speed Vr versus position along the interface, within the
field of view imaged in our experiment (Figures 3a and 3b for the sub‐Rayleigh and supershear, respectively).
Note that the supershear rupture is also supersonic with respect to the far‐field low strain rate pressure speed

estimated above, as Vr ¼ 2:28>cLSRp ¼ 1:44 km=s. The supershear rupture of Figures 2c and 2d also propa-

gates at a speed different from the Eshelby speed
ffiffiffi
2

p
cHSR
s ¼ 1:81 km=s, which has important implications

on the radiated field. One of them is the formation of distinct shock fronts, as seen above. Another super-

shear rupture that propagates at Vr∼
ffiffiffi
2

p
cHSR
s , and for which the shock features tend to disappear, is dis-

cussed in section 3.2.

To emphasize the full‐field velocity patterns of the dynamic ruptures shown in Figure 2, snapshots of the
fault‐parallel and fault‐normal components are presented with overlaid contour plots in Figures 4 and 5,
respectively. The snapshots are given at a time t = 69.5 and t = 37.6 μs after rupture initiation, for the
sub‐Rayleigh and supershear rupture, respectively. The fault‐parallel velocity map of the sub‐Rayleigh rup-
ture is characterized by two lobes, associated with the dilatational field, propagating ahead of the rupture tip
(Figures 2a and 4a). Behind the rupture tip, the velocity discontinuity across the interface clearly shows the

propagating shear rupture, with the peak slip rate _δ x1; tð Þ ¼ _u1 x1 ¼ 0−; x2; tð Þ− _u1 x1 ¼ 0þ; x2; tð Þof ~2.4 m/s.
The fault‐parallel velocity of the supershear rupture shows a more pronounced shear motion (Figures 2b
and 4b), with the peak slip rate in excess of 20 m/s. As noted above, the velocity field of the supershear
rupture is characterized by shear Mach fronts as well as by the presence of pressure Mach fronts, forming

because Vr ¼ 2:28 km=s>cLSRp . In contrast, the dilatational field lobes associated with the sub‐Rayleigh

rupture tend to extend ahead of the rupture tip due to the rupture speed being less then 50% of the local
pressure wave speed (Figure 4a).

As both ruptures shown here propagate in the positive x1 direction, unzipping the fault with a fault‐
parallel displacement and velocity discontinuity, they also display a motion in the direction perpendicu-
lar to the fault (Figures 2b and 2d). The continuity of the fault‐normal displacement and velocity fields
across the fault indicates that the fault moves in the direction perpendicular to its plane without open-
ing. The sub‐Rayleigh rupture presents a positive peanut‐like‐shaped region of vertical motion (in the
positive x2 direction) covering the entire height of the field of view, just ahead of the rupture tip
(Figures 2a and 2b), indicating that the fault starts moving in the fault‐normal direction before rupture
arrival. As the sub‐Rayleigh rupture swipes through the interface, the fault moves in the opposite (nega-
tive x2) direction with a similar peanut‐shaped pattern. Note that, while the fault‐parallel velocity tapers
gradually after attaining a peak, the fault‐normal velocity goes to zero right behind the rupture tip (as
discussed further below). The fault‐normal velocity field of the supershear rupture displays a small
region of positive motion around the interface, emanating from the rupture tip (Figures 2d and 5b).
Two lobes of negative velocity extend from the rupture tip, outside of the region of positive motion,
and are bounded by the dilatational and shear shock fronts (Rubino et al., 2019). These two negative
lobes are followed by two narrow wedges hosting small positive motion and a large wedge of negative
fault‐normal velocity, starting just behind the rupture tip.
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In order to better understand the structure of the velocity field, the fault‐parallel and fault‐normal velocity
components are plotted along paths parallel and perpendicular to the interface in Figures 4c–4f and 5c–5f,
respectively, for the sub‐Rayleigh (left) and supershear (right) ruptures. These plots are produced using
the same snapshots of the velocity fields, at times t = 69.5 and t = 37.5 μs after rupture initiation, for the
sub‐Rayleigh and supershear ruptures, respectively, as these snapshots fully reveal the transient behavior
at the rupture tip. Curves are plotted every three pixels, corresponding to every 134–140 μm, depending
on the exact size of field of view (the two experiments have slightly different pixel sizes). Plotting the
fault‐parallel velocity along paths parallel to the interface shows that curves traced right on the fault are
characterized by one prominent peak, while curves traced away from the fault display a double peak, for
both the sub‐Rayleigh (Figure 4c) and supershear (Figure 4d) ruptures. The first peak is associated to the
dilatational field and the second to the shear field. On the fault, the two peaks coincide. Tracking the
fault‐parallel velocity on paths perpendicular to the fault and sweeping a region from ahead to behind the
rupture tip reveals the marked velocity discontinuity across the interface in both cases of sub‐Rayleigh
and supershear rupture, Figures 4e and 4f, respectively.

For the sub‐Rayleigh rupture, the fault‐normal velocity plotted along the fault exhibits a negative peak at
x1~5.6 mm (Figure 5c), just behind the rupture tip. The rupture tip is identified at x1~8 mm, assuming a
threshold of 0.5 m/s in the slip rate. Note that since the fault‐parallel velocity is antisymmetric, this slip

Figure 3. Experimentally obtained rupture speed versus position along the interface. Rupture speed tracked for three rupture cases discussed in this paper:
(a) sub‐Rayleigh, (b) supershear, propagating at Vr>

ffiffiffi
2

p
cHSR
s , and (c) supershear propagating at Vr∼

ffiffiffi
2

p
cHSR
s . The rupture propagating at Vr∼

ffiffiffi
2

p
cHSR
s also features a

distinct trailing Rayleigh rupture. (d) Supershear transition distance L, estimated using the rupture speeds measured in Figure 3c and the measured arrival times of
Figure 10a. The rupture speed is computed from the rupture arrival times at pixels along the interface, determined using the slip rate time series.
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rate threshold translates to a threshold of 0.25 m/s in Figure 4c. As the region of fault‐normal velocity has a
peanut‐like shape bent forward, the peak in _u2 tends to move slightly forward with distance from the fault
(e.g., the peak is at x1~6 mm at a distance from the fault of x2~ − 4 mm) and only mildly attenuates
(Figure 5e). For the supershear rupture, the fault‐normal velocity plotted along the interface displays a
positive peak followed by a negative peak, with a gradual transition to an inverted polarity at distance of

Figure 4. Fault‐parallel velocity maps for the sub‐Rayleigh (left) and supershear (right) ruptures, at times t = 69.5 and t = 37.6 μs after nucleation, respectively.
(a, b) Contour plots overlapped on full‐field maps. (c, d) Particle velocity along paths parallel to the interface (x2 = const). Curves are plotted every 3 pixels
(~0.14 mm). (e–f) Particle velocity along paths perpendicular to the interface (x1 = const). Curves are plotted every 5 pixels (~0.23 mm).
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~5 mm from the fault (Figure 5d). Plotting the fault‐normal velocity along paths perpendicular to the
interface reveals the presence of the region of positive _u2 , concentrated around the interface, followed by
two wedges of negative _u2 radiating from the rupture tip in the far field (Figures 5b and 5f).

Figure 5. Fault‐normal velocitymaps for the supershear (left) and sub‐Rayleigh (right) ruptures, at times t= 69.5 and t= 37.6 μs after nucleation, respectively. (a, b)
Contour plots overlapped on full‐field maps. (c, d) Particle velocity along paths parallel to the interface (x2 = const.). Curves are plotted every 4 and 2 pixels for the
supershear and sub‐Rayleigh ruptures, respectively (corresponding to 0.18 and 0.09 mm, respectively). (e, f) Particle velocity along paths perpendicular to the
interface (x1 = const.). Curves are plotted every 2 pixels (0.09 mm) and 3 pixels (0.14 mm), respectively.
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One question regarding the supershear rupture is how it transitions from sub‐Rayleigh to supershear speed.
One typical transition mechanism is the Burridge‐Andrews mechanism, according to which a shear stress
peak (initially below shear strength) traveling in front of the main sub‐Rayleigh rupture at the shear wave
speed reaches the shear strength and gives rise to a secondary crack which then propagates at supershear
speeds (Andrews, 1976; Burridge, 1973; Rosakis et al., 2007; Xia et al., 2004). Typically, when the supershear
transition occurs according to this mechanism, the secondary supershear crack leaves behind the initial sub‐
Rayleigh crack that originated it, as a trailing Rayleigh slip disturbance. This characteristic Rayleigh signa-
ture has been observed before in a number of previous studies (e.g., Mello et al., 2010; Xia et al., 2004). If the
supershear rupture presented in Figures 2–5 transitioned according to the Burridge‐Andrews mechanism, it
should have left behind a trailing Rayleigh signature. In order to look for signs of a trailing Rayleigh signa-
ture, let us select a snapshot of velocity fields at a time corresponding to the arrival of a signal traveling at the
Rayleigh wave speed at approximately the center of the field of view, x1 = 7 mm. An estimate of this arrival

time is easily obtained as t ¼ cHSR
R =d ¼ 67:5 μs, where cHSR

R ¼ 1:18 km=s is the high strain rate Rayleigh wave
speed and d = (dFOV+7) mm is the distance from the nucleation site to a location set at x1 = 7 mm inside the
field of view, where dFOV = 72.5 mm is the distance of the lower end of the field of view (x1 = 0mm) from the
nucleation location. A snapshot of the fault‐parallel and fault‐normal velocity components at the time
t = 67.6 μs, the closest time in our record to the estimated one, is shown in Figure 6. The fault‐normal velo-
city exhibits a distinctive peanut‐shaped region of negative motion (Figure 6b) like the one seen before for a
typical sub‐Rayleigh rupture (Figure 5a). However, the fault‐parallel velocity field is nearly uniform
(Figure 6a), indicating steady state sliding at the back of the rupture. This points toward a disturbance tra-
veling at Rayleigh speeds but without carrying any (or with very small) slip, which implies that there were
no well‐developed initially sub‐Rayleigh rupture, and the rupture either initiated as supershear or transi-
tioned to supershear speeds immediately after nucleation. This result is also confirmed by the fact that the
arrival time of the supershear rupture, traveling at an average speed of Vr = 2.28 km/s, at the beginning
of the field of view t = dFOV/Vr~31.7 μs, is consistent with the rupture traveling at a constant speed of
Vr = 2.28 km/s since its initiation. Traveling at a lower, sub‐Rayleigh speed before transitioning to super-
shear would have resulted in a later arrival time.

3.2. Supershear Rupture Propagating at Vr∼
ffiffiffi
2

p
cHSR
s

Let us now consider another experimental rupture, produced with an applied load of P = 4.5 MPa and an
inclination angle of α = 29°. The resolved normal and shear prestress in this case are σ0 = Pcos2α = 3.5
and τ0 = Psinαcosα = 1.9 MPa, respectively, and also result in a supershear rupture (Figures 3c, 7a, and
7b). This prestress configuration is at the limit between producing a sub‐Rayleigh and a supershear rupture
(Lu et al., 2010), as the comparatively lower compressive loading promotes sub‐Rayleigh ruptures but the

Figure 6. Full‐field maps of the (a) fault‐parallel and (b) fault‐normal particle velocities of the same supershear rupture of Figures 4 and 5, at t = 67.6 μs after
nucleation. At this time, the supershear rupture tip has already traversed the entire field. The fault‐normal velocity field indicates the arrival of a Rayleigh wave,
and its pattern resembles that of a sub‐Rayleigh rupture (Figure 5b); the arrival time at the observation window is also consistent with a wave traveling at cHSR

R .
The fault‐parallel velocity field at this time frame is nearly uniform and indicates a very mild secondary slip disturbance (see also Figure 9b at t = 67.6 μs).
The arrival of a Rayleigh wave without an associated strong trailing slip, together with the supershear rupture arrival time consistent with a nearly constant rupture
propagation, indicates that this rupture nucleated and propagated as supershear straight away and did not transition to supershear speed following the
Burridge‐Andrews mechanism or that it transitioned to supershear straight after nucleation with a very small transition distance.

10.1029/2019JB018922Journal of Geophysical Research: Solid Earth

RUBINO ET AL. 11 of 25



relatively high nondimensional prestress τ0/σ0 = tanα = 0.55 promotes supershear ruptures. Hence, the
result is a special type of supershear rupture, propagating at Vr~1.90 km/s (Figure 3c), just above the

characteristic Eshelby speed of
ffiffiffi
2

p
cHSR
s ¼ 1:81 km=s (Figure 3c). As mentioned above, according to

theoretical predictions the shear Mach features vanish for ruptures propagating at Vr∼
ffiffiffi
2

p
cHSR
s (Freund

1998; Mello et al., 2010; Mello et al., 2016). Indeed, the fault‐parallel velocity field does not display any
Mach features (Figure 7a), in contrast with the corresponding field of the supershear rupture propagating
at Vr = 2.28 km/s (Figures 2c and 4b). The fault‐normal velocity field features a region of positive motion,
just ahead of the rupture tip (Figure 7b), without the wedges of negative fault‐normal motion aligned
with the Mach features seen for the case of faster supershear rupture (Figure 5b).

Regarding the supershear transition mechanism, we observe that after the main supershear rupture has tra-
versed the field of view, the interface nearly locks and then we find a series of snapshots with a distinctive
Rayleigh signature in the fault‐normal component going across the field of view. For example, at a time of
t = 71.5 μs after initiation, the fault‐normal velocity (Figure 7d) has a similar pattern as that observed before
for a sub‐Rayleigh rupture (Figure 5a) or for a Rayleigh wave (Figure 6b). Most importantly, the fault‐
parallel velocity (Figure 7c) indicates the presence of a distinct rupture passing by after the interface nearly
locked, with a pattern resembling that is seen earlier for the sub‐Rayleigh rupture (Figure 4a). These findings
show that the trailing signature is indeed a slip disturbance and is a strong indication that the sub‐Rayleigh
to supershear transition occurred by the Burridge‐Andrews mechanism. Tracking this secondary rupture tip
along the interface reveals a propagation speed of 1.16 km/s, which is just below the Rayleigh wave speed

cHSR
R ¼ 1:19 km=s (Figure 3c). The analysis of the arrival times of the main supershear and trailing

Figure 7. Fault‐parallel (left) and fault‐normal (right) velocity maps for a supershear rupture (propagating at Vr∼
ffiffiffi
2

p
cHSR
s ) followed by a trailing Rayleigh slip

disturbance, obtained for the experimental configuration of P = 4.5 MPa and α = 29°. The maps are given at two different times after rupture initiation showing
(a, b) the initial supershear rupture at t = 54 μs and (c, d) the trailing Rayleigh rupture at t = 71.5 μs. Note that the trailing Rayleigh rupture (bottom) has a
similar velocity pattern to the sub‐Rayleigh rupture shown in Figures 4a and 5a.
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Rayleigh ruptures conducted in section 4.2 confirms that the supershear rupture must have been nucleated
as a sub‐Rayleigh rupture, subsequently transitioned to supershear speeds, and left a trailing Rayleigh rup-
ture in its wake (Figure 3d).

3.3. Comparison of the Experimentally Produced Velocity Magnitude Fields to
Numerical Simulations

To compare the full‐field velocities obtained from our experimental measurements to those obtained from

numerical simulation, the velocity magnitude fields _uj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_u21 þ _u22

q
obtained for the ruptures discussed

above in sections 3.1 and 3.2 are plotted next to corresponding plots produced by the linear elastic finite ele-
ment simulations of Mello et al. (2010) and Mello et al., 2016 (Figure 8). The numerical simulations were
produced employing a linear slip‐weakening friction law, using a commercial finite element code,
ABAQUS (Dessault Systèms Inc.). The velocity magnitude plots are overlaid with a normalized velocity vec-
tor plot. To facilitate visualization of the direction of the velocity field, the vector plot is normalized as

_u¼ _u= _uj j, so that the unit vectors of Figure 8 only carry information about the direction of the velocity field
but not its magnitude, which in turn is shown by the color map. The plots are produced for the three rupture

speed regimes: (i) sub‐Rayleigh Vr<cHSR
R (Figures 8a and 8b), (ii) supershear with

ffiffiffi
2

p
cHSR
s <Vr<cHSR

p

(Figures 8c and 8d), and (iii) supershear with Vr∼
ffiffiffi
2

p
cHSR
s (Figures 8e and 8f). In all three cases, there is a

good agreement between the measurements and the numerical simulations. These full‐field plots confirm
key characteristics of dynamic ruptures in each speed regime that we have analyzed above. The velocity field
of the sub‐Rayleigh rupture (Figures 8a and 8b) is characterized by a peanut‐like shape, mostly dominated by
the fault‐normal component, as shown by the direction of the velocity vector. The velocity field of the super-

shear rupture with
ffiffiffi
2

p
cHSR
s <Vr<cHSR

p is characterized by distinct shear Mach fronts associated with the

supershear propagation (e.g., Mello et al., 2010; Mello et al., 2016). The velocity magnitude field is dominated
by the fault‐parallel component, in sharp contrast with the sub‐Rayleigh case. When the rupture propagates

atVr∼
ffiffiffi
2

p
cHSR
s , theMach front is expected to vanish (Mello et al., 2010). This is indeed the case for the numer-

ical simulation which propagates atVr ¼
ffiffiffi
2

p
cs and for the experimental rupture which propagates at a speed

just above
ffiffiffi
2

p
cHSR
s :Although the fault‐parallel component still dominates the velocity magnitude, the fault‐

normal component is comparatively larger than it is for the faster supershear rupture. Note the remarkable
similarities of the velocity fields between experiments and simulations for the field of view shown in Figure 8
, despite the fact that the finite element simulations of Mello et al. (2010) and Mello et al. (2016) assume a
linear elastic solid, while our experimental measurements are performed on a viscoelastic solid, with high
strain rate sensitivity (Gori et al., 2018; Rubino et al., 2017, 2019). In our previous work, we have shown that
the formation of pressure shock fronts is most evident when plotting field quantities that are more sensitive
to dilatation/compression, such as the volumetric strain rate (Gori et al., 2018), in which case the difference
between viscoelastic measurements and linear elastic finite element simulations becomes apparent. On the
other hand, the differences in the velocity behavior are more pronounced when zooming out to a larger field
of view where the numerical simulations show an expanding dilatational field while the experimental mea-
surements show the formation of the pressure shock fronts (Gori et al., 2018).

4. Temporal Characteristics of Dynamic Ruptures Inferred From Full‐Field
Measurements

We now focus on analyzing the temporal evolution of the velocity fields. To understand how the fault‐
parallel and fault‐normal components compare to each other for the different rupture speed regimes ana-
lyzed so far, we plot their time histories for a point at the center of the field of view (x1 = 9.3 mm) both on
the fault (x2 = 0−) and at distance from it (x2 = − 5.2 mm), in Figures 9 and 10. Dashed lines labeled as
tp, ts, and tR are plotted in Figures 9 and 10 to indicate the estimated arrival times of the high strain rate pres-
sure and shear and Rayleigh waves at the measurement location, respectively.

4.1. Comparison Between the Fault‐Parallel and Fault‐Normal Velocity Components of
Sub‐Rayleigh and Supershear Rupture With Vr>

ffiffiffi
2

p
cHSR
s

One prominent difference between the velocity time histories of the sub‐Rayleigh and supershear rupture

(with Vr>
ffiffiffi
2

p
cHSR
s ) is that the sub‐Rayleigh rupture has the fault‐normal component dominating over the
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fault‐parallel (Figures 9a–9c), while the supershear rupture is characterized by the predominance of the
fault‐parallel velocity component over the fault normal, consistent with previous measurements and
numerical simulations (e.g., Aagaard & Heaton, 2004; Mello et al., 2010). For the sub‐Rayleigh rupture,
another important characteristic of the fault‐parallel velocity time histories is the presence of a
pronounced peak (of ~1.2 m/s for this particular rupture) for the trace at x2 = 0−mm, right at the
interface (Figure 9a), and two lower peaks for the trace at x2 = − 5.2 mm, which is some distance away
from the interface (Figure 9c). The peak of the velocity trace obtained next to the fault (x2 = 0−mm) is
due to the near‐tip region of the rupture, while the presence of an additional peak in the off‐fault
measurement (x2 = − 5.2 mm) is associated with the dilatational field extending ahead of the rupture tip.
The fault‐normal velocity of the sub‐Rayleigh rupture is characterized by a small positive motion, ahead
of the rupture tip, followed by a more pronounced negative, downward, motion with a peak of ~2.3 m/s
(Figure 9a). This signal only mildly attenuates off fault, in the near field, the negative peak being at
around ~1.9 m/s at x2 = − 5.2 mm (Figure 9b and section 5). However, it is expected to attenuate more
appreciably in the far field (Freund, 1998; Mello et al., 2016). These individual measurements are better
understood using the full‐field map of Figure 2b, where an elongated shape of negative motion appears in
the direction perpendicular to the fault and does not attenuate significantly within the field of view (see
section 5). The fault‐parallel velocity of the supershear field measured next to the fault (at x2 = 0−mm) is

Figure 8. Comparison between the full‐field velocity magnitude captured by previous numerical simulations (left) and by
our experimental measurements (right). (a, b) Sub‐Rayleigh ruptures (Vr<cHSR

R ); (c, d) supershear ruptures with Vr>
ffiffiffi
2

p
cHSR
s ; (e, f) supershear ruptures with Vr∼

ffiffiffi
2

p
cHSR
s . The numerical simulations of (a) and (b) are modified from

Mello et al. (2010), and that of (e) is modified from Mello et al. (2016). A normalized vector plot is overlaid to show
the direction of the velocity vector. These plots indicate that the sub‐Rayleigh rupture is dominated by fault‐normal
motion, while supershear ruptures are governed by fault‐parallel motion.
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characterized by an initial sharp peak, exceeding 10 m/s, followed by a second peak (Figure 9b). The second
peak is likely due to the finite thickness of the specimen and has been attributed to the reflection of the shear
shock front at the rear face of the specimen (Lu et al., 2010; Mello et al., 2010; Rubino et al., 2017, 2019). In
the off‐fault trace (at x2 = − 5.2 mm), another peak develops ahead of those associated to the shear motion,
and it is associated to the dilatational field (Figure 9d), similarly to the case of the sub‐Rayleigh rupture. The
fault‐normal velocity time history of the supershear rupture exhibits a prominent positive peak for the
measurement at x2 = 0−mm (Figure 9b), and a prominent negative peak for the measurement at
x2 = − 5.2 mm (Figure 9b), reflecting the full‐field structure shown in Figure 5b. The negative peak in
the off‐fault measurement is followed by a smaller positive peak, corresponding to the two symmetric
narrow wedges visible in Figure 5b and a nearly constant level of negative velocity associated to the
central wedge shown in Figure 5b. Note that while the positive peak present in the near‐fault region
disappears almost immediately away from the fault, the negative motion, associated to the shock fronts, is
carried at a much larger distances from the fault, as it will also be shown in section 4.3. The velocity time
histories shown in Figure 9 also reveal that the sub‐Rayleigh rupture mode is pulselike, that is, particle

Figure 9. Particle velocity time histories for the sub‐Rayleigh (left) and supershear (right) ruptures of Figure 2. (a, b) On‐fault (x1 = 0−) and (c, d) off‐fault
(x1 = −5.2 mm) time histories obtained at a distance of 81.1 mm from the nucleation site (x1 = 8.9 mm). Dashed lines marked with tp, ts, and tR indicate the
arrival times of P, S, and Rayleighwaves. The sub‐Rayleigh rupture arrives together with the Rayleighwaves, while the supershear rupture is well ahead of the shear
waves, as it approaches the pressure wave speed. The velocity traces reveal that the fault‐normal component is dominant for the sub‐Rayleigh rupture, but the
fault‐parallel component governs the supershear rupture motion.
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velocity and associated slip rate go to zero behind the rupture tip, while the supershear rupture behaves as a
cracklike rupture, with the particle velocity retaining a nonzero level behind the rupture tip. Separate
experiments producing sub‐Rayleigh crack‐like ruptures (not shown here), conducted with a lower
prestress and larger inclination angle than those considered here (e.g., P = 4 MPa and α = 29°), reveal
that while the fault‐parallel particle velocity becomes low but nonzero behind the rupture tip, the fault‐
normal velocity exhibits the same characteristics described for the sub‐Rayleigh pulse.

4.2. Velocity Time Histories of a Supershear Rupture Propagating at Vr∼
ffiffiffi
2

p
cHSR
s

Let us now analyze the velocity time histories for the case of the supershear rupture propagating atVr∼;
ffiffiffi
2

p

cHSR
s . In this case, unlike for the case of the previous supershear rupture, the transition to supershear speeds
leaves a trailing Rayleigh rupture (Figure 7). The particle velocities time histories reveal first the arrival of
the leading supershear rupture at t ~ 52 μs, marked by the fault‐parallel velocity signal dominating over
the fault‐normal component (Figure 10) and later the arrival of the trailing Rayleigh rupture at t ~ 70 μs,
characterized by a predominant fault‐normal signal, as seen for a typical sub‐Rayleigh rupture
(Figures 9a and 9c).

The average speed of the leading supershear rupture is Vr = 1.90 km/s, roughly 8% higher than
ffiffiffi
2

p
cHSR
s , cor-

responding to an arrival time of t = 37.2 μs if the rupture propagated at this constant speed from the begin-
ning. Instead, the arrival time of this rupture at themeasuring location at a distance of dmeas = 91.3 mm from
the nucleation site is t= 52.3 μs (Figure 10a), which indicates that the rupture must have traveled at a lower,
sub‐Rayleigh speed before transitioning to supershear. We can use the arrival times of the supershear and
the trailing Rayleigh ruptures to compute the approximate sub‐Rayleigh to supershear transition distance
L, assuming a constant propagation at each speed regime and a seamless transition of the rupture tip from
sub‐Rayleigh to supershear speed.

Considering the main rupture traveling at a sub‐Rayleigh speed VSR until it transitions to supershear speed
at a time ttran, and subsequently traveling at VSS, for a time tSS, until it reaches the measuring loca-
tion d = 81.1 mm of Figure 10a, yields

Figure 10. Particle velocity time histories for a supershear ruptures traveling atVr∼
ffiffiffi
2

p
cHSR
s . (a) On‐fault (x2 = 0−) and (c, d) off‐fault (x2 = −5.2 mm) velocity time

histories obtained at a distance of 81.9 mm from the nucleation site (x1 = 8.6 mm). Dashed lines marked with tp, ts, and tR indicate the arrival times of the
high strain rate P, S, and Rayleigh waves. The dashed‐dotted line represents the arrival time of a signal traveling exactly at

ffiffiffi
2

p
cHSR
s , initiated at a distance

L (see equation (3) and Figure 3d) from the main rupture nucleation location. The actual rupture arrives just ahead of it, indicating that it is traveling at a speed
just above

ffiffiffi
2

p
cHSR
s , as confirmed by the rupture speed plot (Figure 3c).
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d ¼ V SRttran þ V sstSS (1)

where tSS is given by

tSS ¼ tSS−ttran (2)

tSS = 52.3 μs is the arrival time of the supershear rupture. The time ttran
taken for the rupture to transition to supershear speeds can be computed
from equations (1) and (2). The transition distance L is then given by
L = VSRttran or

L ¼ VSR
VSStSS−d
VSS−VSR

(3)

Using the measured speeds VSS = 1.90 and VSR = VTR = 1.16 km/s, where
VTR is the speed of the trailing Rayleigh rupture, equation (3) yields
L = 28.8 mm. Note that equation (3) can equivalently be obtained by the
following relation:

tSS ¼ L
VSR

þ d−L
VSS

(4)

We can use the transition distance to compute the arrival time at the loca-
tion dmeas = 81.1 mm of a signal initially traveling at the sub‐Rayleigh
speed VSR = 1.16 km/s up to the transition distance L and then propagat-

ing exactly at
ffiffiffi
2

p
cHSR
s , in order to compare it with the present rupture.

Writing an equation similar to equation (4) with
ffiffiffi
2

p
cHSR
s at denominator

of the second addendum, we get tsq2 = 53.5 μs. This arrival time is repre-
sented as a dashed‐dotted line in Figure 10 and indicates that the leading
supershear rupture arrives just a fewmicroseconds earlier, consistent with

it propagating just above
ffiffiffi
2

p
cHSR
s as determined independently by

tracking the rupture tip position along the interface.

4.3. Spatiotemporal Properties of Sub‐Rayleigh and
Supershear Ruptures

The spatial and temporal characteristics that so far we have analyzed
separately for simplicity can be summarized in spatiotemporal plots

where the velocity components are plotted versus time and versus distance (Figures 11 and 12). These results
reveal how the fault‐parallel velocity peak present on the interface of the sub‐Rayleigh rupture morphs into a
double peak off fault (Figure 11a) and indicate a mild attenuation of the fault‐normal velocity in the near‐
field region (Figure 11b). For the supershear rupture, Figure 12a reveals the initial attenuation of the main
rupture peak in the immediate vicinity of the fault (~2 mm) but a near‐constant level thereafter. Figure 12b
shows how the positive fault‐normal velocity peak at the interface attenuates rapidly, as this peak corre-
sponds to region of positive motion concentrated around the interface (Figures 3d and 5b). On the other
hand, a pronounced negative peak, not present in the on‐fault time history, appears off fault and propagates
unattenuated, as it is associated with the shear shock front. To better illustrate the spatiotemporal features of
the studied ruptures, an animated version of the figures discussed in this section is given in the supporting
information (Movies S3 and S4) for the supershear case. Note that while our results are fully consistent with
the previous velocimeter measurements (Mello et al., 2010; Mello et al., 2016), such evolution of the off‐fault
fields can only be revealed by the full‐field dynamic measurements presented here.

5. Amplitude Decay of the Velocity Fields

The spatiotemporal plots (Figures 11 and 12) already provide an insight into the amplitude decay of the velo-
city fields. To facilitate the study of the velocity attenuation with distance from the fault, let us consider

Figure 11. Spatiotemporal plots for the sub‐Rayleigh rupture. (a) Fault‐
parallel and (b) fault‐normal particle velocities plotted against time and
position along the (negative) x2 axis. The temporal history of the fault‐
parallel component features one peak on the interface and two peaks at a
distance from the fault. The fault‐normal component is characterized by one
peak, which mildly attenuates in the near field.
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velocity seismograms produced at a fixed x1 and discrete values of increas-
ing x2 (Figure 13), similar to the synthetic seismograms of Dunham and
Bhat (2008).

The seismograms corresponding to the sub‐Rayleigh and supershear (Vr>ffiffiffi
2

p
cHSR
s ) ruptures discussed in sections 3 and 4 are produced at x1 = 8.6

mm and at selected values of x2, starting at the pixel immediately below

the interface and then every 10 pixels or ~0.46 mm in the negative x2 direc-
tion (Figures 13a and 13b and 13c and 13d, respectively). These two rup-
tures are imaged with a field of view of 19 × 12 mm2, depicted in
Figure 1, which offers a dense spatial coverage in the near field. In order

to study the far‐field behavior of a supershear rupture (Vr>
ffiffiffi
2

p
cHSR
s ), we

conduct another experiment using similar loading and geometry config-
uration (P = 25 MPa and α = 29°) as for the previous experiment (P =
23 MPa and α = 29°) and we employ a larger field of view: 131 × 82
mm2. More details about the dynamic rupture captured with the larger
field of view can be found in our previous study (Rubino et al., 2019).
The seismograms are produced at x1 = 62 mm and at selected values of

x2, starting at the pixel immediately below the interface and then every
10 pixels or ~3.28 mm in the negative x2 direction (Figures 13e and 13f).
The arrival times of the high strain rate p, s, and Rayleigh waves are

marked in the seismograms as dashed lines and are computed as tw

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

p
=cw, wherew= p, s, R, for the p, s, and Rayleigh waves, respec-

tively. Note that as x2→0, the arrival times tend to the vertical lines tw~x1/

cw in the seismograms produced in the near field (Figures 13a–13d). As x2
becomes larger the fronts become curved, as apparent from the seismo-
grams produced for the large field of view (Figures 13e and 13f).

The velocity patterns shown in the seismograms of Figure 13 are by and
large in agreement with those exhibited by the numerical simulations of
Dunham and Bhat (2008), including the persistence of the fault‐parallel
motion at increasing distance from the fault for the supershear cases
and the persistence of the fault‐normal motion in the near field for
sub‐Rayleigh ruptures. In order to more accurately compare our mea-
surements with their simulations, let us consider the same nondimen-
sional quantities for velocity, time, and distance from the interface, as
defined in Dunham and Bhat (2008). The nondimensional velocity is

defined as Vi ¼ Vi μ=csσ12, where Vi ¼ _ui is the particle velocity, μ is the shear modulus, cs the shear wave
speed, and σ12 the shear stress drop; the nondimensional time as t ¼ cst=w, where t is time and w the fault
thickness; and the nondimensional distance from the interface as x2 ¼ x2=w: Let us compare some typical
values of our measurements of fault‐parallel velocity to the simulations of Dunham and Bhat (2008). Our
ruptures have peak particle velocities on the order of V1 = 1 − 10 m/s, and dynamic stress drops of
σ12 = 2 − 8 MPa, with the opposite ends of the range corresponding to the sub‐Rayleigh and supershear
ruptures of Figures 13a and 13c, respectively. The shear stress evolution for these two ruptures is not

shown here, but it is given in Rubino et al. (2017). Taking μ = 1.96 GPa and cs ¼ cHSR
s ¼ 1; 280 m=s, as

the dynamic shear modulus and shear wave speed (Mello et al., 2014; 2016; Rubino et al., 2017), and

t~100 μs as characteristic observation time window yields t∼13 and V1 ¼ 0:76−1:9 , for the sub‐
Rayleigh and supershear ruptures, respectively, which is on the same order of magnitude as the values
reported in Dunham and Bhat (2008). The fault geometry of Dunham and Bhat (2008) features a
strike‐slip fault breaking the surface and locked at depth. They use the fault width w as a normalizing
length scale. In the experimental ruptures discussed here, we take the plate thickness h = 10 mm as
the length scale to nondimensionalize the distance from the fault. Note that the two length scales w
and h are physically different, and in particular that having the lower end of the fault locked plays a

Figure 12. Spatiotemporal plots for the supershear rupture. (a) Fault‐
parallel and (b) fault‐normal particle velocities plotted against time and
position along the (negative) x2 axis. After a rapid attenuation in the first
~2 mm the main supershear peak propagates away from the fault with little
attenuation. The fault‐normal component has a larger positive peak
followed by a smaller negative one near the fault. The positive peak
disappears away from the fault, but a pronounced negative peak associated
with the shock fronts appears propagating a strong signal at larger distances
form the fault.
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key role during rupture propagation, sending arrest waves to the propagating rupture. The
nondimensional distances from the fault for the simulations of Dunham and Bhat (2008) are reported
up to x2/w = 15, and therefore, they are suitable to study the attenuation and far‐field rupture
behavior. On the other hand, the nondimensional distance from the fault for the ruptures of
Figures 13a and 13b and 13c and 13d, which are analyzed with a small field of view of 19 × 12 mm2,
is only xmax

2 ¼ xmax
2 =h ¼ 0:5 . This suggests that the fields captured by this imaging window are

Figure 13. Velocity seismograms for the sub‐Rayleigh (a, b) and supershear, (c, d) and (e, f) ruptures produced at fixed x1
and varying x2. The sub‐Rayleigh (top panels) and supershear (central panels) ruptures are captured by a field of view
(FOV) of 19 × 12 mm2 (Figure 1). The seismograms of the bottom panels are associated with another supershear rupture,
captured by a larger field of view, 131 × 82 mm2. The arrival of the pressure, shear, and Rayleigh wave fronts is marked by
dashed lines labeled as tp, ts, and tR, respectively.
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appropriate to describe the near‐field behavior but not the attenuation characteristics. The larger field of
view of 131 × 82 mm2 gives xmax

2 ¼ xmax
2 =h ¼ 4 and can be used to describe some features of the far‐field

behavior.

According to theoretical predictions of singular crack solutions, the particle velocities of a sub‐Rayleigh
rupture should decay as 1=

ffiffi
r

p
where r is the distance from the crack tip (Freund, 1998). To verify this, let

us analyze further the sub‐Rayleigh rupture of Figures 13a and 13b by tracking the particle velocity
swings δ _u1 and δ _u2 of the particle velocity time histories as they evolve away from the fault at a fixed
value of x1, as shown in Figures 14a and 14b, and 14c and 14d for δ _u1 and δ _u2, respectively. The particle
velocity swings δ _ui x1; x2ð Þ, where i = 1,2, are normalized in Figures 14b and 14d by the corresponding
value at x2 = 0+, δ _ui x1; 0þð Þ . The fault‐parallel velocity seems to attenuate roughly with 1=

ffiffi
r

p
.

However, this is not the case for the fault‐normal velocity, which decays very mildly with r. The singular
crack solution is valid at a distance from the crack tip several times larger than the cohesive zone size
λcoh. We can measure the cohesive zone size by computing the shear stress along the interface and deter-
mining the length scale over which the shear stress decreases from its peak to the residual level. Using
the shear stress reported in Rubino et al. (2017) for the same ruptures as those analyzed here, we deter-
mine that our ruptures have a cohesive zone size of λcoh ~2.5 mm, and consequently with the imaging

Figure 14. Amplitude decay of sub‐Rayleigh ruptures, at x1 = 8.9 mm. (a, c) Fault‐parallel and fault‐normal particle velocity time histories at two distances from the
fault. The figure shows the peaks tracked to study the amplitude decay. (b, d) Amplitude decay of the particle velocity peaks. The distance from the fault is
normalized by the cohesive zone size, computed as detailed in the text. Note that the fault‐normal velocity does not attenuate as 1=

ffiffi
r

p
, with distance from the

rupture tip r, for distances comparable to the cohesive zone size where the asymptotic solution does not hold.

10.1029/2019JB018922Journal of Geophysical Research: Solid Earth

RUBINO ET AL. 20 of 25



windows employed here, we are monitoring the particle velocity only up to λcoh/r ~ 2, that is, too close to
the rupture tip for the singular crack solutions to be valid. Nonetheless our measurements showing a
more pronounced attenuation of the fault‐parallel velocity component compared to the fault‐normal
are consistent with the theoretical predictions of Mello et al., 2016, based on linear elastic solutions.
Our results are also in agreement with the measurements of Mello et al. (2016), whose point‐wise
measurements obtained with laser velocimeters for x2 ≤ 3 mm show very little attenuation of δ _u2 (see
Figure 18 in Mello et al., 2016). Moreover, our measurements are able to resolve at a much higher level
of details features within a cohesive zone size that were not possible to resolve with the previous laser
velocimeter measurements.

Let us now turn our attention to study the attenuation of the dilatational field of supershear ruptures. The
singular elastic asymptotic solutions for the in‐plane particle velocity field of a supershear crack can be

decomposed into a shear _usi and dilatational _udi component as (Freund, 1998; Mello et al., 2016) _ui ¼ AVr

_usi þ _udi
� �

, with i= 1,2; whereA= KII/μ is an effective dynamic stress intensity factor, KII is the mode II stress

intensity factor, μ is the shear modulus, and Vr is the rupture speed. The dilatational velocity field attenuates

as (Freund, 1998; Mello et al., 2016) _udi e1=rqd, where rd is given by rd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ21 þ αdξ2ð Þ2

q
, in the local coordinate

system (ξ1, ξ2), centered at the rupture tip. Note that at the crack tip ξ1 = 0, while ξ2 = x2 by definition. The

coefficient αd is a function of the rupture speed Vr and the dilatational speed cd: αd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− Vr=cdð Þ2

q
. The

exponent q is given by (Freund, 1998; Mello et al., 2016):

q ¼ 1
π
tan−1 4αdβs

2−V2
r=c

2
s

� �2
" #

(5)

where βs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vr=csð Þ2−1

q
. Evaluation of equation (4) indicates that 0 ≤ q ≤ 1/2 and that q has a maximum

value of q = 1/2 as Vr→
ffiffiffi
2

p
cs, while q→ 0 as Vr → cs or Vr → cd. The singularity of the dilatational field of a

supershear rupture r−qd is therefore weaker than that of the particle velocity of a sub‐Rayleigh rupture r−1/2,

which indicates a slower decay of the dilatational field in the far field. As noted above, the r−1/2 singularity

comes back whenVr→
ffiffiffi
2

p
cs. The supershear rupture of Figures 7a and 7b propagates at Vr~1.90 km/s and, as

we have seen above, approaches the critical speed
ffiffiffi
2

p
cs ¼ 1:81 km=s. Using the high strain rate wave speeds

yields q = 0.4956. The imaging window employed for the supershear rupture of Figure 7 does capture the
dilatational field; however, it cannot be employed to study its attenuation since it is on the same order of
magnitude as the cohesive zone size.

To study the attenuation characteristics of the dilatational field at larger distances from the fault, let us
consider the supershear rupture captured by the large field of view (Figures 13e and 13f). That supershear
rupture propagates at Vr = 2.34 km/s, which yields q = 0.31. To track the dilatational field, we start by
analyzing the fault‐parallel particle velocity time history at x1 = 65.5 and x2 = 0− mm; we take the velo-

city swing δ _ud1 x1; 0−ð Þ as the reference value to normalize the velocity swings δ _ud1 x1; x2ð Þ for x2 < 0. We

then consider the velocity time histories at x2 < 0, while keeping x1=constant, and track the velocity

swings δ _ud1 x1; x2ð Þ, as shown in Figure 15. The fault‐parallel velocity time history tracked at a distance
from the fault produces a distinct peak associated to the dilatational field, ahead of the velocity peak asso-
ciated to the shear field. Since the two peaks coincide at the rupture tip, we track the dilatational field

after it forms a distinct peak, at some distance from the fault. The nondimensional dilatational peak δ _ud1
x1; x2ð Þ=δ _ud1 x1; 0

−ð Þ decay with distance from the fault x2 is shown in Figure 15b. We find that the func-

tion f x1; x2ð Þe1=xq2, with q = 0.31 given by equation (4), fits well the experimental data, indicating good
agreement between our experimental measurements and the singular crack theory. These are the first
experimental measurements to verify the attenuation of the dilatational field. Note that resolving the dila-
tational field as a function of the distance from the fault using velocimeter measurements would have
required multiple experiments since it is only possible to use two to three velocimeters per test. On the
other hand, with the current measurements based on DIC, it is possible to characterize the attenuation
by only one test.
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6. Conclusions

We have characterized the spatiotemporal properties of experimental dynamic shear ruptures propagating at
sub‐Rayleigh and supershear speeds by using the DIC method coupled with ultrahigh‐speed photography.
Ourmeasurements reveal the full‐field structure of the velocity components at a level of spatial and temporal
resolution that was unattainable until recently and that approaches that of numerical simulations. Indeed,
the velocity maps obtained from our measurements are in excellent qualitative agreement with previous
finite element simulations.

We have analyzed three distinct rupture regimes using three experimental ruptures to characterize their

properties: a sub‐Rayleigh rupture propagating at Vr<cHSR
R , a supershear rupture propagating at Vr∼

ffiffiffi
2

p

cHSR
s , and a supershear rupture propagating at Vr>

ffiffiffi
2

p
cHSR
s . The full‐field maps reveal the marked fault‐

normal motion of the sub‐Rayleigh rupture being persistent in the near field, that is, at distances from

the fault within two cohesive zone sizes. The supershear rupture propagating at Vr>
ffiffiffi
2

p
cHSR
s is charac-

terized by the shear shock fronts both in the fault‐parallel and in the fault‐normal components. For the
particular supershear rupture studied here, the dilatational field develops another set of (pressure) shock
fronts that form the leading edge of both velocity fields. The velocity features associated with the shock
fronts are carried away at large distances from the fault. There are also features localized in the near
field that do not propagate away from the fault, such as the localized positive motion in the fault‐
normal velocity. The discontinuity features associated with the shock fronts disappear for the supershear

rupture propagating at Vr∼
ffiffiffi
2

p
cHSR
s , as expected from singular elastic solutions. The full‐field maps also

allow us to clearly identify a trailing Rayleigh rupture propagating in the wake of the leading super-
shear rupture indicating, together with arrival times and rupture speed analysis, that in this case the
sub‐Rayleigh to supershear transition occurred through the Burridge‐Andrews mechanism. Conversely,

the same analysis conducted for the faster supershear rupture (Vr>
ffiffiffi
2

p
cHSR
s ) indicates that that rupture

may have propagated with similar supershear speeds right from nucleation, likely due to the higher
levels of prestress.

The time history traces obtained from the full‐field measurements confirm that supershear ruptures are
characterized by a more pronounced motion in the fault‐parallel direction, while for sub‐Rayleigh
ruptures the fault‐normal velocity predominates, in accordance to previous theoretical and experimental
studies. At the same time, our measurements reveal the full‐field structure of the velocity components

Figure 15. Amplitude decay of dilatational field of supershear ruptures, at x1 = 65.5 mm. (a) Fault‐parallel particle velocity time history at two difference distances
from the fault. The illustration shows the dilatational peaks tracked to study the amplitude decay on the right panel. (b) Amplitude decay of the dilatational field.
The distance from the fault is normalized by the cohesive zone size, computed as detailed in the text. The peak associated with the dilatational field is tracked
for distances from the fault x2 ≥ 20 mm. For distances x2 < 20 mm, the peak associated with the dilatational and shear fields are indistinguishable as they tend
to coalesce at the rupture tip. Note that the dilatational field follows the theoretically predicted decay 1=xq2, where the exponent q is a function of the rupture speed
defined by equation (4).
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and help to explain previous spatially sparse velocimeter time histories, only available at a limited number of
locations, for example, the transition from one to two peaks in the fault‐parallel particle velocity time history
of sub‐Rayleigh ruptures, the presence of a positive fault‐normal velocity in the near‐tip field of supershear
ruptures, rapidly decaying with distance from the fault, and the appearance of negative fault‐normal velocity
features, associated with the shock fronts, radiating in the far field.

The full‐field maps also allow us to quantify the attenuation characteristics. The small imaging windows
used in this study are appropriate to analyze the near‐field behavior at distances from the fault comparable
to the cohesive zone size, revealing relatively minor attenuation within that region of the fault‐normal (but
not of the faultparallel) velocity of sub‐Rayleigh ruptures. The large imaging window allows us to investigate
the rupture behavior at larger distances from the fault, several cohesive zone sizes away. For the supershear
rupture analyzed with the large field of view, the amplitude decay of the dilatational field is consistent with
the theoretical estimates given by the singular elastic solutions.
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