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1. Abstract 
In our previous study (Part I), the anti-plane steady state hyperbolic mode III fracture of a 
magneto-flexoelectric material was solved for the displacement, the polarization and the 
magnetic fields. The solution, however, was based on the assumption of the development of 
strain discontinuities, and the propagation of the crack-tip was related to a critical shear strain. 
However, in the current study, the asymptotic details of the fields close to the crack-tip were 
investigated. The asymptotic analysis assumes strain continuity at the crack-tip (discontinuity 
in the strain gradients), and reveals the existence of a positive dynamic J-integral. The 
asymptotic analysis was performed not only for hyperbolic but also for elliptic conditions, and 
the energy release rate was calculated as a function of the crack-tip velocity in both regimes. 
These results are very different from those predicted by classical singular elastodynamics, 
where the dynamic J-integral is zero when super-shear is attained and there can be only an 
elliptic solution. Moreover, the results are very useful for couple stress elastodynamics where 
equivalent length scales are present due to the analogy with flexoelectricity. 

Keywords: Magneto-flexoelectricity, mode III crack, steady state, asymptotic analysis, energy 
release rate, couple stress analogy 
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2. Introduction 
The flexoelectric effect describes the phenomenon when inhomogeneous strain fields produce 
polarization in a dielectric material (see Introduction of Part I [1] for a review of the dynamic 
flexoelectricity literature). This electromechanical property becomes especially important in 
cases where the mechanical fields are singular. It should be noted that the inverse flexoelectric 
effect should be included in the energy density formulation [2–4], suggesting that strain 
gradients will appear when polarization is induced. The mode III fracture regimes considered 
here could either be sub-shear, which is the only regime possible in classic singular 
elastodynamics [5,6], or super-shear which has been observed in the context of lattice dynamics 
[7–9]. The mode III sub-shear asymptotic field of classic elastodynamics can be found in [10]. 
In this case, the energy flux into the tip of an extending mode III crack in an isotropic elastic 
solid has been investigated by [11,12]. Incidentally it is interesting to note that flexoelectricity 
when applied to anti-plane deformations, predicts anti-plane Rayleigh waves [13], and in this 
context super-shear rupture growth is also super-Rayleigh. In classical elastodynamics anti-
plane Rayleigh waves are not possible [14]. Mode III rupture growth at exactly the Rayleigh 
wave speed corresponds to governing equations that are parabolic.  

The Magneto-flexoelectric problem [15] reduces to two uncoupled governing equations, one 
for the displacement and one for the polarization, with the first one resembling a couple stress 
elasticity problem [3,13,15–17]. The hyperbolic mode III rupture region has been analyzed in 
Part I [1] of this study, in which the development of characteristic (Mach) lines for the 
displacements has been shown. In this part we will provide the crack-tip asymptotic analysis.  

In terms of couple stress elasticity, mode III fracture has been studied for the elliptic regime 
(static and steady state dynamic). Zhang et al. [18] showed that the near tip field is dictated by 
a single parameter and the validity zone of the asymptotic solution is within a microstructural 
length. Georgiadis, Gourgiotis, Radi and Tian et al. [19–22] solved the static problem of mode 
III fracture and calculated the energy release rate.  

3. The hyperbolic mode III steady state problem 
The anti-plane flexoelectric problem can be described by two parameters, the out-of-plane 
displacement 3 1 2( , , ) [m]u x x t  and the out of plane polarization -2

3 1 2( , , ) [Cm ]P x x t , where 

1 2,x x  are the plane coordinates and t  is the time. For a flexoelectric material, the energy 
density can be particularized to the following form (for the general formulation see [2,17,23]), 
with ,( ) ( )i ix =    : 
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( )( ) ( ) ( )

( ) ( ) ( )

2 2 2
3 44 77 3,1 3,2 44 13 31 3,1 23 32 3,2

2 2
12 13,1 31,1 3 23,2 32,2 3 13 23

1 2
2
2 2

U aP b b P P e P P

f P P

   

      

 = + + + + + + + 

 + + + + + + 

 (1) 

The materials constants are the density -3[kg m ] , the atomistic radius -2
0 [Nm ]a , the shear 

modulus -2[Nm ] , the flexoelectric constant -1
12 [NmC ]f , the reciprocal dielectric constant 

2 -2[N m C ]a , the inverse flexoelectric constant -1
44 [N mC ]e , the gradient polarization constant 

4 -2
44 77( ) [Nm C ]b b+  and 2

max[C/ m ]P  is the polarization strength. Typical values of the 
constants of some flexoelectric materials are shown in Table 1. In the Following, we briefly 
present the mechanics of the problem (for details see Part I of this work). 

Table 1. Characteristic constants of some flexoelectric materials [16]. 

Parameter Dimension PMMA PbTiO3 NaC 

0a  nm  − 0.415 0.281 

  3kg/ m  1180 7520 2160 

44c =  GPa  2.215 110 12.8 

a  8 2 210 Nm / C  627.5 0.168 174 

44 77b b+  -9 4 210 Nm / C  1807 0.115 0.688 

44 12e f−  Nm/ C = V  7.015 2.00 −2.42 

maxP  2μ C/ cm  − 57 − 

sc  m/ s  3191 4583 2469 

12H  nm  5.36 2.62 0.199 

2  nm  5.33 2.17 0.113 

( )6H   1.01 1.21 1.76 

Considering an equivalent “microstructural length”, an equivalent “micro-inertial length” (as 
shown in eq. (2) and (3)); 

 ( ) 22
44 1244 77 0

2
e fb b

a 

−+
= −   (2) 

 
2 2

44 77

12 2
b bH

a
+

=   (3) 

absence of body forces and zero initial electric field, the problem decouples into two equations, 
one for the polarization (which was studied in previous work)  and one for the displacement, 
eq. (4), which will be used in the current work.  
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2 2

2 4 2
3 3 3 32 12

Hu u u u
   −  = −   (4) 

The displacement equation (4), which is produced by the decoupling of the problem, must then 
be modified to accommodate the steady state mode III fracture problem, which is described in 
Figure 1. In this problem, the crack-tip, propagates in a direction with constant velocity. To 
capture the movement of the crack-tip, the following steady state transformation should be 
applied to equation (4). 

 1x Vt = +   (5) 

 2x =  (6) 

 

Figure 1. The motion of the steady state mode III fracture with rupture velocity V . 

The displacement equation is then transformed to the steady state displacement equation: 

 
2 2 4 4 42 2 2 2 2 2 2 2

3 3 3 3 3
2 2 2 2 2 4 2 2 2 2 41 1 2 0

2 6 2 6 2s s s

u u u u uV V H V H
c c c     

         
− + − − − − − =     

          
 (7) 

In the steady state displacement equation, the categorization in Figure 2 can be implemented. 
The motion could be super-shear if sV c  = , or sub-shear if sV c , elliptic if 

2 2 2 2( ) / (6 ) 1sV H c   or hyperbolic if not. The elliptic problem has been solved by [13], while 
the hyperbolic problem has been presented in Part I of this work. Similar results have been 
found by [24] in the context of couple-stress elasticity. The hyperbolic problem, which has 
been solved with the use of the Analogue Equation Method in a finite element code and 
analytically with the method of the characteristics (Part I), suggests the development of Mach 
cones with slope: 

 
2 2

0 2 2 2

1sin and 1 0
1 6 s

H Va
a c

 = = − 
+

 (8) 
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Figure 2. The three regions in which the steady state mode III fracture could reside. Note 
that a hyperbolic problem could occur for both super-shear and sub-shear crack-tip 
rapture [1]. 

 

Figure 3. The mode III fracture problem [25] that was solved with the method of the 
characteristics and the Analogue Equation Method with Finite Elements (see similar 
Figure 1 of Part I). 
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We particularized our problem to the one suggested by McClintock and Sukhatme [25] for the 
classic sub-shear case, as shown in Figure 3. The method of characteristics predicts (Part I) the 
displacement at the end of the loading region ( )L =  equal to: 

 0
L

Lu
a



=  (9) 

We can assume that this result requires for the propagation of the crack-tip a critical shear 
strain: 

 0
c





=  (10) 

Note that inside the elliptic region, if bounded by the velocity / 1sV c  , there is a sub-Rayleigh 
region as found by [13]. 

 

Figure 4. The displacement suggested by the solution based on the characteristics with 
strain discontinuity at the crack-tip and at the end of the loading region and by the 
solution given by the Analogue Equation Method with Finite Elements (Part I). Strain 
continuity leads to a cusp-like displacement examined in this work. 
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4. Asymptotic solution near the crack-tip 
Assuming strain continuity, we consider the possibility of a cusp-type asymptotic 
displacement, in the vicinity near the crack-tip ( 0)r → , in terms of polar coordinates 

2 2 2, tanr     = + = , attached to the moving crack-tip (Figure 4). Recent experimental 
work on dynamic Mode II rupture suggests such cusp-type displacement [26]. Conjecturing 
from the static and the sub-Rayleigh dynamic cases, we assume that the leading term of the 
asymptotic which can provide positive energy release is: 

 ( )3
2

3 Ou r=  (11) 

 

Figure 5. Polar coordinates used in the asymptotic analysis and the circular contour Γ  
used for the evaluation of the J-integral, where 3u  is antisymmetric with respect to   

coordinate. Note that / 2L . 

It is tacitly assumed that the motion of the crack-tip is determined in terms of a specific surface 
fracture energy (Griffith-like fracture criterion), as envisaged by [27] for a mode II crack. Such 
asymptotic relation can provide a positive energy release rate at the crack-tip. This asymptotic 
displacement should obey the following differential equation, which contain only the highest 
derivatives of the equilibrium equation (7) , with 2 2 2 2 2/ /  =   +   : 
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2 2

4 2
3 3, 2 20, 0

6 s

H Vu u
c  −   =   (12) 

It will be later confirmed from Finite Element Method (FEM) results that the leading 
asymptotic term takes the form: 

 ( ) ( )3
2

3 3 , ; ;ru u r F   =   (13) 

By substituting (13) to (12) we obtain the differential equation for ( ; )F   : 

 
( ) ( )2 2

2

4 1 sin 12 sin cos 4 cos 7 10

45 18 927 sin cos cos 0
4 4 4

IVF F F

F F

       

     

 



− − + − +

 − − − − = 
 

 (14) 

2 2 3 3 4 4( / , / , , / )I II III IVF F F F F F F F   =   =   =   =   . 

The general solution of (14) takes the form; 

 

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) (

)

1 2

3
2 4

3 2

4

; 1 cos 2cos 1 1 cos 2cos 1

3 coscos arcsin 1 sin
2 1 sin 1

sin 1 cos 1 sin 1

sin 1 cos 1 cos 1

sin 1 cos 1 sin 1

sin 1 cos 1 cos 1

F c c

c

c

       


  

 

     

   

    

   

= − + + + − +

  
   − +

  −  

− + − −

+ − + − −

− − − − −

+ − − − −

 (15) 

where ( ) 1, 2,3, 4ic  =  are (complex) constants that depend on λ and on the boundary 
conditions. Note that 2 2 2 2 21 ( ) / (6 )sa H V c = + =  and that for the static case 0 = . We will 
examine the region 0    , noting that ( ) ( )F F = −  for 0 −   . 

Regarding the boundary condition along the crack face, ( 0) = , we assume vanishing couple 
stress traction: 

 
2

3
2 0u




=


 (16) 

and vanishing stress traction: 
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 ( )
2 2 22

3 3 3 3
2 2 21 0

2
u u u u


    

    
− + + − = 

     
 (17) 

Asymptotically ( 0)r →  these boundary conditions reduce to: 

 

( )

2

32 2
0

2
3, 3, 0

1 1 0

1 0

u
r r r

u u



  





=

=

 
 
 

 + =
 

 + − =

 (18) 

4.1. Asymptotes for the Elliptic case 

The asymptotic results for the elliptic case ( 2 2 2 20 ( ) / (6 ) 1sH V c =  ) can be found from 
eq.(15) with B.C. (18) along the crack face and 

 

( )

( )

; 0

1 1 ; 0

F

F
r r r

 

 

 
 =

=

  + = 
  

 (19) 

in front of the crack tip ( = ). As a result, we obtain; 

 

( ) ( ) ( ) ( )

( ) ( )



3 42

2

2

4 1 1; 2 cos 1 1 cos 2 cos 1 cos
3 2

2 4 3 coscos arcsin cos 1
3 2 cos 1

2 cos 1 2 sin 1 cos

ellpF B


      


 
  

   

     

−   = + − + − − +   
  

  −  
  − − +      − +  

− − + + −

 (20) 

where the constant;  

 ( ) ( )
3 2

4 4ellp ellpB B B


= =
−

  (21) 

And B  is the amplitude of the asymptotic solution (to be determined by the full solution of the 
problem): 
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 ( ) ( )3
3 20

, 0
lim 0;
r

u r
B

r
F


 

→

=
= = =  (22) 

For the static case 0 → , the solution returns to the static solution that was proposed by 
[18,19] and the particular solution proposed by [21]. 

 ( )
0

3 3 5 3lim ; 3cos 5cos cos cos
2 2 8 2 8 2staticF B B



   
 

→

          = + = +          
          

 (23) 

Note that 8 16 ( ( 1)) / (3 2)static ellpB B B = = − = . For 1 → , it can be seen that for angles 
greater than / 2  the displacement is zero, as will be confirmed from the solution of the 
hyperbolic problem. The normalized angle variation of the asymptotic displacement is shown 
in Figure 6 for a range of normalized rupture velocities 1  . Note that as 1 →  (the 
Rayleigh wave speed) 3 0u   for / 2    , i.e. in front of the crack-tip, and so a vertical 
Mach line at / 2 =  will emerge and will carry over to the hyperbolic (post-Rayleigh rupture) 
regime 1   (see later Figure 9). 

 

Figure 6.  Angle variation of the normalized asymptotic displacement for the elliptic anti-
plane steady state problem, for a range of λ.  

A short account for the classic elastodynamics elliptic case ( 0 / 1sV c  ) is given in Appendix 
A. 
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4.2. Asymptotes for the Hyperbolic case 

For the hyperbolic case ( 1)  , finite element results focusing close to the crack-tip (see later 
Figure 11) reveal three regions as shown in Figure 7. The FEM results suggest an additional 
boundary should be considered vertical to the crack:  

 3 /2
0u

 =
=  (24) 

 

Figure 7. The 3 different regions that appear asymptotically close to the crack-tip

0(sin 1/ ) =  that are also suggested by FEM solution. 

Therefore, for region 3, 2     in front of the crack-tip, we have 3 0u = .  

For region 2, 0 / 2    , where 0sin 1/ = (characteristic line) the analytic solution for 
( )F   is:  

 ( ) 2
3 3; sin cos
2 2

F A  
 

 = + 
 

 (25) 

while in the last region 1 the analytic solution takes the following form  
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( ) ( )
( )

( )( )

1; cos sin 1 cos sin 1

cos sin 1 cos sin 1

2 1 2cos 1 1 cos

F A       

     

  

= − − − −


+ + − + −

+ − − +


 (26) 

The displacement continuity at 0 =  suggests that 2A , 1A  and B  are connected through the 
following relation. 

 
( ) ( )

( ) ( ) 

3 43 2

2
3 4

1 1 0.5 0.5 1 12

sin 3 arcsin 1 2 cos 3 arcsin 1 2

B
A

      

   

 − − − + + − + −
 =

   +
   

 (27a) 

 1
1

2
A B


=  (27b) 

Finite element analysis supports eq. (25) and (26), as can be shown in Figure 8. 

 

Figure 8. The asymptotic solution for 1.50, 2.00 = = , according to the FEM code, and 
the theoretical approach for region of validity (2 / 3) / 2  and 2

0 / 4.00 10  −= . 

A special case can be considered for 1 = . The angular variation of the displacement can be 
given as follows.  

 ( ) ( )3/2
1; 2 cosF A    (28) 

Finite element analysis supports eq. (28), as can be shown in Figure 9. However, in this case 
1 .A →  
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Figure 9.  The asymptotic solution for 1.00 =  according to the FEM and its theoretical 
estimate (28) for 2

0 / 4.00 10  −= . 

The region on validity of the asymptotic order 3 2O( )r  is for 1 (3 / 2)( / 2)r  = . However, 
the solution of the characteristic lines begins from a point further away as 

13
1/2
1 / ] .tan (3/ 2) [ asym

rB u r   =  =  From the FEM results (Figure 10), the normalized 

asymptotic amplitude B  can be approximated as: 

 
1

2
0 1

2 1
B 

 

 
  − 

 (29) 

 

Figure 10. The numeric values of the parameter B  in the hyperbolic problem according to 
the results close to the crack-tip finite element analysis, for 2

0 / 4.00 10  −= . 
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The solution for the displacement 3u  may include terms of greater order (see for example [28] 
for the plate analogue asymptotics). For example, taking the next term in the asymptotic 
solution we have: 

 
3 22

3u B r C r= +  (30) 

This solution holds for 1 2r   , where 2  is the point where characteristic line solution 
becomes dominant. Assuming that for 1  there is displacement continuity between the near 
and the far field; 

 
1/2

1

3
2 2

BC B


−
 = =  
 

 (31) 

and that at 2 1 ( 1)   =  , the gradients of the characteristic line and the second term 
asymptotic are the same: 

 ( )2 0 1 02 tan 2 tanC C    =  =  (32) 

Inserting (31) in (32), we obtain: 

 
1

2
1

0
2 tan

2 2 3
B  −  = 
 

 (33) 

Acquiring from the FEM solution the result (29), we conclude that for the particular problem: 

 1 0 0
0 0

2 tan 25 0.073tan 0.2237
2 3

 
   

 

−  
  = 
 

 (34) 

Thus, near the crack-tip, the characteristic line solution is secondary to the asymptotic behavior, 
within a radius of  

 00 0.3356
2

r 


   (35) 

For larger radius, characteristic line solution dominates as can be seen from Figure 11.  
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Figure 11. The three regions of the asymptotic solution, as computed by the finite elements 
(the general purpose code ABAQUS [29] was used), for 2

0 / 4.00 10  −= . 
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5. The Energy Release Rate 
From the analogy of the present problem with that of the couple stress elasticity we can obtain 
the dynamic J-integral ( ), introduced by Freund [11]. In the general flexoelectric case, the 
dynamic J-integral is given in the Appendix of [16]. For the present problem, the J-integral is 
derived from Appendix B. Considering the form of the displacement described by eq.(13), as 

0r → , only the fourth order derivatives in the formulation of the J-integral should not be 
neglected and thus: 

 

( )

( )

( )

( ) ( )

( ) 

2 2
2 2 2

3, 3, 3,
0

2

3, 3, 3,

2 2
3, 3, 3, 3,

2 22 2
3 3 3, 3,

2 2
3, 3, 3,

2 cos cos
2 12

cos sin
6

cos 2 sin
2

1 cos cos sin
2 2

cos sin

x xy xx

x xxx yxx

y x x y

xx xy

x x y

V Hu u u

H u u u

u u u u

u u u u

u u u r d




  


 


 


  

  

 
 = + + 

 


− + 



 + + − +
 

+  − + +


+  +




 (36) 

Equation (36) was derived for a crack rupture in the opposite direction than that of Figure 5. 
Thus for eq. (36) to be compatible with eqs. (20), (25), (26) the   argument should be mapped 
to ( − ). Then, the energy release rate can be simplified for both the Elliptic (sub-Rayleigh) 
and the hyperbolic (super-Rayleigh) problem as:  

 

( ) ( )

( )

( )

2 2
0

2 2 2

2 2 2 2

12 9 4 4 3 cos 8 sin
64

9 1cos sin 3 cos sin
4 2 2

5 9 5cos cos 2 cos
4 4 4

II II I

II II I II I

I

F F F F F
B

F FF F F FF

F F d



 



   

   

   = + − +  

     + + − + +    
    

     − − + −     
     



 (37) 

The normalized energy release rate for the elliptic case ( 0 1  ) can be found from eq. (37) 
by inserting the asymptotic solution found in (20) and the result is shown in Figure 12 
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Figure 12. The normalized energy release rate for the elliptic (sub-Rayleigh) case 
(0 1).   

For the static case ( 0 → ), we obtain: 

 2 21.325static B  =  (38) 

in accord with [18,19,21]. 

For the hyperbolic case ( 1  ) the energy release rate can be found by eq. (37) using the 
asymptotic solution found in eq. (25) and (26). The normalized result for the energy release 
rate can be depicted in Figure 13. For 1, →  its normalized value is zero*, while as  →  
the normalized energy release rate tends to infinity. Note that a positive energy flux into the 
rupture front is possible in the entire hyperbolic (super-Rayleigh) regime, as found for a mode 
II crack propagation with a velocity weakening and with a rate-dependent cohesive zone by 
[30,31].  

 
* Note that the zero normalized value of the J-integral does not make the J-integral itself zero. The parameter B
may take an infinite value, rendering the J-integral infinite. On the other hand, other types of loading could result 
in 0J =  at 1 = , see for example [27]. 
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Figure 13. The normalized energy release rate for the hyperbolic mode III steady state 
crack 2 2 2 2( ) / (6 )sH V c = .  

Figure 14 shows the normalized energy release rate for both the sub-Rayleigh (0 1)   and 
the super-Rayleigh ( 1)   cases. For 1 = , both the elliptic and the hyperbolic cases give: 

 2 2 0; 1
B





= =  (39) 
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Figure 14.  The normalized energy release rate for the anti-plane mode III fracture in a 
flexoelectric material. 

 

Figure 15. The normalized energy release rate for the particular loading and 1  . Note 
that for this problem B can be given from eq. (29). 

To complete the evaluation of the J-integral we need the asymptotic amplitude 
3

2
3( , 0) /B u r r= = , which can be estimated from FE (eq. (29)). Figure 13 ( 1)   can be 

combined with eq. (29) and the energy release rate can be renormalized as in Figure 15.  

In addition, we can normalize the J-integral (found form FEM) with its static value and obtain 
Figure 16. Note that the J-integral for the static case has been estimated by [16] as: 
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2
0 34 1

L

static
L e

 

− 
   

 
−  (40) 

Equation (40) implies a shielding effect due to the microstructural length . For 0= , eq. (40) 
gives the classic static value of 2

0(4 ) / ( )L  . 

 

Figure 16. The normalized J-integral with respect to the static case, where the results show 
the combined influence of / sV c  and / ( 6 )H  in the parameter ( ) / ( 6 )sHV c =  

for 2
0 / 4.00 10  −= , and / ( / 2) 6.667L = . 

A good approximation for 1   was given by [16] as: 

 1
1static 




 −
 (41) 

Considering a Griffith like fracture criterion, rupture occurs when the energy release rate is 
equal to a critical value, unique for each material. The critical energy release rate critical  that 
starts the crack tip motion ( 0  ) occurs for a critical shear stress critical : 

 
24 critical

critical
L

 
 =  (42) 

This criterion is equivalent to critical slip displacement. For the elliptic case ( 1  ): 

 ( )

1 2

0
3

1
1 L

critical e
 

 −

 −
  
 −

 (43) 
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For the hyperbolic case ( 1  ), the energy release rate can be given by 2
0 ( / 2) ( ) / ,Q   =  

with ( )Q   the dimensionless quantity obtained by Figure 15. Demanding the energy release 
rate to be equal with its critical value, the normalized shear loading 0 / critical   can be given by 
the following relation: 

 
( )

1 2

0 4 1 1
2critical

L
Q



  

 
  
 

 (44) 

 

Figure 17. The approximate normalized shear stress with respect to the critical shear, for 
which crack starts to propagate. For a specific shear stress, crack tip accelerates and it 
is possible to jump to super-shear rupture.  

Note that for 1  the strength increases with / L  showing a size dependency. For 1   
and 0→ , the super-Rayleigh region cannot be reached, as predicted by classic 
elastodynamics.  
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6. Burridge-Andrews type of dynamic crack advance 
The previous analysis implies that, if the crack-tip can attain super-Rayleigh velocities 
( 1),   then there can be a steady state admissible crack tip velocity 2  . This velocity 
limit is independent of the loading and can be viewed as a critical normalized rupture velocity. 
A similar result has been found theoretically and experimentally for mode II fracture under 
slip-weakening friction with admissible rupture velocity in the intersonic range; 2 ,s dc V c   

where /sc  =  is the shear wave velocity and dc  is the dilatation velocity (see for example 
[32–34]). However, the lack of transient solutions for our problem precludes us at this point to 
investigate the conditions governing the transition from sub-Rayleigh velocities to super-
Rayleigh velocities. Regarding mode III classic elastodynamics, Andrews [33] proposed a slip-
weakening interface model that removes the stress singularity, creating a cohesive zone in front 
of the crack-tip. The same slip-weakening interface model has been utilized by [35] who 
investigated the nucleation of mode III rupture and its transition to crack-like self-similar 
rupture in the context of classic elastodynamics. They found that super-sonic speed is allowed 
after a time that scales with the nucleation time. Dunham [36] presented a very thorough 
analysis on the conditions governing the occurrence of super-shear ruptures under Dugdale 
type slip-weakening friction. He proposed that ruptures jump between sub-Rayleigh and 
intersonic speeds when fast moving stress waves of the rupture reach the peak strength of the 
fault and initiate slip in the form of a “daughter” crack ahead of the main crack, as Burridge 
[37] initially suggested for self-similar crack models. An emerging super-shear “daughter” 
mode II crack propagating at a characteristic velocity 2 sc  has been experimentally observed 
by [38] and numerically for a crack with a velocity weakening cohesive zone by [30]. In this 
work we predict that the crack-tip asymptotic displacement in the moving with the tip 
coordinate system varies as 2 2 3/4( ) + , as found by [39] for slip - weakening rupture 
instability. An overview of the analysis of super-shear mode III transition in rupture 
experiments that includes the effect of nucleation condition and friction parameters is given in 
[40]. 

Moreover, our previous analysis [13] implies that for a sub-Rayleigh solution, a local maximum 
shear traction appears ahead of the main crack-tip, as the Burridge scenario implies; 

 
2 2 2

1 2 01
max 1 22 2 2

2

2 20.585 , , 1 , 1
62

III
III

s s

LK V H Vt K
c c

 
 

 

− = = − = −  (45) 

which increases with / sV c  up to a critical shear strength that will make the crack jump to the 
intersonic range. This maximum shear stress occurs at a distance; 

 1
max

2

1.3 1.3



   (46) 

which decreases with / sV c  and approaches the major crack. The zero-shear stress occurs at a 
distance; 
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 1
0

2

0.43 0.43



   (47) 

which also decreases with / sV c . These results are implying that a “daughter” crack, could 
appear at a certain load level and could move towards the major crack. Our model does not 
need a slip weakening cohesive zone [41,42] in order to trigger the “daughter” crack scenario 
[43], because it includes an a-priori length scale which results to a local maximum traction in 
front of the major crack. Further analysis on the transient problem can be very useful for the 
study of fast ruptures and the “mother – daughter” crack interaction. 

 

Figure 18. Schematic of a Burridge – Andrews type of dynamic crack advance based on 
[13]. Note that the classic solution holds outside our present solution. 

7. Conclusion 
This work examines the near crack-tip structure of the dynamic steady state mode III fracture 
in flexoelectric materials propagating along a weak crack path line. The asymptotic near field 
displacement was estimated within the elliptic, parabolic and hyperbolic regimes which are all 
possible withing the context of flexoelectricity. It was shown that the asymptotic displacement 
near the crack-tip is of order 3/2O( )r , that is a cusp-type spatial variation and thus ensures 
uniqueness for the solution. For the limit of “small” rupture speeds the asymptotic near field 
displacement agrees with the available solutions in the literature. For rupture speeds approach 
the Rayleigh wave speed the elliptic regime prediction reduced to the expected parabolic 
predictions. The displacement field for the hyperbolic regime is found to be composed of three 
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independent regions while the amplitude of the asymptotic displacements depends on a 
common parameter, which is estimated using finite element results. In the limit of the rapture 
tip to the Rayleigh wave speed from above, the parabolic point is also approached. 

Lastly, the dynamic J-integral was calculated for all type of conditions as a function of the 
normalized rupture velocity 2 2 2 2( ) / (6 )sH V c = . For static conditions ( 0 = ), the J-
integral agreed with the literature, for the parabolic condition ( 1 = ) it was found to be 
singular, while for the elliptic ( 1  ) and the hyperbolic ( 1  ) regimes was always positive.  

These results can also be useful for couple and dipolar stress elastodynamics due to the shown 
analogy with flexoelectricity. The results are sharply different to those of classic mode III 
elastodynamics that do not predict Rayleigh waves and feature zero dynamic J-integral at 
super-shear rapture velocities.  

Appendix A. The classic Elliptic (sub-shear) case 
The classic sub-shear case for mode III fracture was studied by Freund [44]. The displacement 
near the crack-tip ( 0r → ) can be described as (in accord with Figure 5); 

 ( )
1/421/2

3

sin2 1 sin
22

sIII

ss

VK ru
ca
  

 

 −  = −  
   

 (A.1) 

with: 

 ( )
2

1 tan tans s s
s

Va a
c

  
 

= − = − 
 

 (A.2) 

For the static case ( / 0sV c → ), (A.1) is reduced to; 

 3 1/20

2lim cos
2 2

s

s
V

c III

au
K r
  

→

 
=  

 
 (A.3) 

while for / 1sV c → , the displacement is being described as; 

 
( )1/2

3
1/2

cos , 02 2
2 0 ,

2

s

III

u a
K r


 

 


 


 = 

  


 (A.4) 
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Figure A.1. The Normalized mode III classic elastodynamic displacement (considering 
the parameter sa ) A region with zero displacement appears as the velocity reaches the 
limiting velocity / sV c .  

The Energy Release Rate (J-integral) can be given as: 

 
2

2

2 1

III

s

K

V
c



=

 
−  
 

 (A.5) 

 

Figure A.2. The mode III J-Integral for the classic elastodynamics (sub-shear) case Acc
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Appendix B. The uniqueness of the elastodynamics 
solution of the running crack in mode III rupture 
of flexoelectrics 

The uniqueness of the solution for the classic static case was shown through the boundness of 
3u  [45]. The standard uniqueness theorem in classic linear elastodynamics with appropriate 

boundary conditions was stated in [46]. An extension of the proof to include unbounded 
domains was presented by [47]. For the static gradient and couple elasticity [48] we obtain the 
following continuity relations: 

• 0R  is the domain R  without the crack faces ( 0, 0)  =   
• R+  is the domain R  above the   axis without the crack-tip ( 0, 0)n    
• R−  is the domain R  below the   axis without the crack-tip ( 0, 0)n    
• Smoothness condition of the displacement and its derivatives: 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
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3 0
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x x
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x x x x

+ −

+ −

+ −
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   

    

 (B.1) 

• Necessary edge conditions for the field near the crack tip that guarantees unique 
solution [48]: 

 3 3
3

1 2

, , : must be boundedu uu
x x
 

 
 (B.2)  

For running cracks, the classic elastodynamics uniqueness was shown by Freund and Clifton 
[49] for crack tip speed less than the Rayleigh wave speed of the material. 

To prove the uniqueness of the elastodynamics solution for the running crack in mode III 
rupture of flexoelectrics, we will follow the work of Freund and Clifton [49]. We start from the 
equilibrium equation in absence of body forces (4), multiply it by 3u  and then, integrate it in 
any region R  around the crack tip: 

 
2 2

2 4 2
3 3 3 3 3 0

2 12
R

HI u u u u u da
  
 

=  −  − +  = 
 





 (B.3) 

Let n  be the velocity of any point on curve 1S , that encircles the crack-tip, in the normal 
direction on n , as shown in Figure B.1. The region R  is between the outer boundary S , the 
inner curve 1S  and the crack faces. 
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Figure B.1. The crack tip configurations at a certain time instant. 1 2( , )x x  is the fixed 
coordinate system and ( , )   is the coordinate system moving with the crack-tip. 

Equation (B.3) can be modified by expanding each term and then it can be rewritten as: 
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 (B.4) 

In equation (B.4) we define the rate of a positive “potential energy” and the rate of a positive 
“kinetic energy”; 
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2

2 2
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 (B.6) 

And thus: 

 ( )I t W T= − −E  (B.7) 

The energy flux through the boundary 1S , can be calculated from eq. (B.4) utilizing eqs. (B.5) 
and (B.6) as: 
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 (B.8) 

Since ( ) 0W t   and ( ) 0T t  , uniqueness is ascertained, if ( )tE  is finite and positive. Note 
that for 0→  and 0H → , eq. (B.8) reduces to the result of Freund and Clifton [49]. 
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